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1.  Introduction.  In the second part of this paper [4] we consid-
ered the unjustifiably low reputation of antiprisms, and provided
illustrations of the different approaches to these polyhedra.  This
part was devoted to the case of 3–dimensional polyhedra; here we
shall deal with higher dimensions, mostly with 4-dimensional con-
vex antiprisms. In order to make this part more selfcontained, here
is the definition we have adopted:

For  d ≥ 3, a convex d-dimensional antiprism  P  with bases  P1
and  P2  is the convex hull of convex (d-1)-polytopes  P1  and P2
provided:

(i) P1  and  P2  are situated in distinct parallel hyper-
planes, and are dual to each other under a mapping  f;

(ii) the only other facets (that is, (d-1)-dimensional
faces) of  P  are the convex hulls of faces  F1  and  F2  of  P1  and
P2,  which correspond to each other under  f.

For this definition see [3, p. 66] or Broadie [2].  If  f  is induced by
polarity in a (d-1)-dimensional sphere we shall say that  P  is a (p)-
antiprism.   

In the next section we shall first formulate our principal result, that
every polyhedron (that is, 3-polytope) is isomorphic (has the same
combinatorial type) to one of the bases of a 4-dimensional (p)-
antiprism.  Sections 3 and 4 present the ingredients of the proof to-
gether with appropriate examples and some historical notes.  Sec-
tion 5 deals with various comments and open problems.



2.  The main theorem.  In the first part [4] of this paper we have
seen that every polygon can be one of the bases of a 3-dimensional
antiprism, but that one cannot insist that the other basis be a polar
of the first one.  However, it is not known whether every 3-dimen-
sional convex polyhedron can serve as a basis of a 4-dimensional
antiprism.  On the other hand, a negative answer is clear if one in-
sists on (p)-antiprisms.  To see examples, one could modify the 2-
dimensional ones from [4], but it is more useful to recall the fol-
lowing result of Broadie [2]:

Theorem 1.  A convex (d-1)-polytope P and a polar  P*  of  P  can
be the bases of a d-dimensional (p)-antiprism if and only P has the
following property:
(*) There exists a point  O  such that for every face  F  (of any
dimension) of  P  the orthogonal projection of  O  into the affine
hull of  F  is in the relative interior of  F  itself.

As an illustration, consider the octahedron shown in Figure 1, ob-
tained by cutting off two edges of a cube in a suitable way. On the
other hand, the polyhedron in Figure 1 is a hexagonal prism; hence
it is isomorphic to the regular hexagonal prism, which does satisfy
Broadie's criterion.  This leads to the question:

Figure 1.  This polyhedron has no polar such that the two are the
bases of a 4-dimensional (p)-antiprism.  This follows from
Broadie's criterion, since no point can serve as  O:  The slanted
facet at left requires  O  to be near the top, while the other slanted
facet requires it to be near the bottom.



Problem 1.  Is every (d-1)-polytope isomorphic to a polytope  P
satisfying condition (*), such that  P  can be used with a suitable
polar as bases of a d-dimensional (p)-antiprism?

As mentioned above, we know from [4] that the answer is affirma-
tive for d = 3; the main result of this note is that Problem 1 has an
affirmative solution for  d = 4  as well.

Theorem 2.  Every 3-polytope  P  is isomorphic to a polytope  Q
such that  Q  and a suitable polar  Q^ of  Q are bases of a
4–dimensional (p)-antiprism.

A proof of Theorem 2 will be sketched in the next section, after the
introduction of some concepts needed to formulate the result on
which the proof is based.

3.  Midscribed polyhedra.  A convex polyhedron  P  is said to be
midscribed about a sphere  S  provided every edge of  P  is tangent
to  S.  In such a situation we shall also say that  S  is the midsphere
of  P.  The point at which an edge touches the midsphere is called
the tangency point of that edge.

It is immediate that if a polyhedron  P  has a midsphere  S,  then
each facet  F  (that is, 2-dimensional face) of  P  intersects  S  in a
circle, which is the inscribed circle  C  of  F.  In other words, each
facet  F  of  P  has an incircle  C,  and  C  has all edges of  F  as
tangents at the tangency points of the edges.  This implies that the
incircles of adjacent facets meet are the tangency point of the edge
common to these facets.  Therefore the incircles of all facets of  P
form a circle packing.  In general, a circle packing is a collection
of circles (in our case, incircles of the facets of a polyhedron) that
have pairwise one common point if and only if they correspond to
adjacent facets.  Note, however, that the facets of a polyhedron
may have incircles that form a circle packing without the polyhe-
dron having a midsphere.  An example is shown in Figure 2.



A polyhedron is said to be of midscribable type if and only if it is
isomorphic to a midscribable polyhedron.  The question whether
every polyhedron is of midscribable type seems to have been posed
first as Problem 2 of [5].  For the proof of Theorem 2 we need the
following surprising result: Every convex polyhedron is of mid-
scribable type.  More specifically, we have:

Theorem 3.  For every polyhedron  P  there is a polyhedron  Q
isomorphic to  P  that is midscribed to a sphere  S  and is such that
the centroid (center of gravity) of the tangency points coincides
with the center of  S.  This polyhedron  Q  is determined uniquely
in the sense that all polyhedra satisfying the same conditions are
congruent to  Q.

An illustration of Theorem 3 is shown in Figure 3.  The polyhe-
dron at left is isomorphic to the one at right, which is midscribed to
a sphere; the tangency points are indicated by the solid dots.

We shall not give a proof of Theorem 3.  Instead, in Section 4 de-
tails of its history will be presented, together with references to
ways of establishing its validity.

Figure 2.  This polyhedron is formed as the union of two cube-like
polyhedra, each of which has one facet smaller than the other, and
the remaining four facets are trapezoids of appropriate shape, so
that each facet has an incircle.  Moreover, these incircles form a
circle packing, since they touch in single points of appropriate
edges.  On the other hand, it is obvious that the polyhedron has no
midsphere.



Combining theorems 1 and 3 the proof of Theorem 2 is very sim-
ple.  Given a polyhedron  P,  let  Q  be the polyhedron isomorphic
to  P  and midscribed to a sphere  S  with center  O.  Then the feet
of the perpendiculars from  O  to (the planes of) the facets of  Q
are the centers of the incircles of the facets, hence belong to the
relative interiors of the facets.  Also, the feet of the perpendiculars
to (the lines that carry) the edges of  Q  are the tangency points of
the edges, therefore in the relative interior of the edges.  It follows
that all the conditions of Theorem 1 are satisfied, and hence  Q
and (a translate of) the polar  Q^  of  Q  with respect to  S  are the
bases of a 4–dimensional (p)-antiprism.  This completes the proof
of Theorem 2.

Since a (p)-antiprism it is an antiprism, Theorem 2 implies that
every polyhedron is isomorphic to a basis of a 4-dimensional anti-
prism. However, this does not answer the following question:

Problem 2.  Given a polyhedron P, is there a polyhedron  Q  dual
to  P  such that  P  and  Q  are the bases of an antiprism?

A more specific question is

Problem 3.  Given dual polyhedra  P  and  Q.  Under what condi-
tions is there an antiprism with bases  P  and  Q?

Figure 3.  A polyhedron, and an isomorphic polyhedron that is
midscribed; the tangency points are indicated by the solid dots.



4.  Circle packings and midscribable polyhedra.  A direct proof
of Theorem 1 is presented in Broadie [2], but no analogously
straightforward reference for Theorem 3 seems to exist.  Instead,
there are many papers dealing with a variety of topics, which need
to be interpreted and combined appropriately in order to get the re-
sult.  An account of the relevant works will be given here; for sim-
plicity, it is convenient to introduce and additional concept.

Let  G  be a graph.  We say that  G  has a representation by a circle
packing on a sphere if there is a collection  C  of circles with dis-

      

Figure 4.  A midscribed polyhedron  P  (upper left) with the prop-
erties of Theorem 3, together with its polar (with respect to the
midsphere) shown separately and also in the position in which its
tangency points coincide with those of  P.  The edges meeting at
each tangency point are perpendicular to each other.



joint interiors, each circle corresponding to a vertex of  G,  and two
circles having a common point if and only if the corresponding
vertices of  G  determine an edge of  G.

It is immediate that if a polyhedron  P  has a midsphere  S,  then
the incircles of the facets of  P  form a representation by a circle
packing of the graph of vertices and edges of the polyhedron  P^
polar to  P  with respect to  S.  But elementary properties of circles
on spheres show that  S  is a midsphere of  P^,  hence the incircles
of its faces form a representation by a circle packing of the graph
of  P.  Using stereographic projections, these concepts and results
can easily be modified to circle packings in the plane – from which
the spherical versions can be retrieved as well.

These observations are important since the first relevant results
were obtained by P. Koebe [7] in 1935. In an investigation of con-
formal maps of regions in the complex plane, he showed that the
graph of every planar triangulation of a triangle has a representa-
tion by circle packings.  At the end of his paper he mentions that
he will soon present results that show the relevance of his theorems
to the theory of polyhedra; however, no such paper appeared.  Ac-
cording to Bieberbach [1], in a posthumous appreciation of
Koebe's work, no traces of such a paper were ever found.  In view
of the facts presented in our note, it is reasonable to assume that
Koebe may have had in mind the existence of a midsphere, or of
incircles of facets, for polyhedra, or at least for simple polyhedra
and for triangle-faced polyhedra.

W. Thurston [12]  obtained in 1978/9, independently of Koebe a
result on planar triangulations similar to Koebe's.  This was con-
tained in a set of lecture notes that were informally distributed, and
that only in 2002 became generally available through the Internet
[13].  Meanwhile, a number of people have devised ways of prov-
ing Theorem 3 in its general form.  These papers base their proofs
on various tools from the theory of functions of a complex vari-
able, the geometry of the hyperbolic plane, critical points of non-
linear optimization problems, or other non-elementary considera-



tions.  None of these proofs is suitable for inclusion in the present
paper.  Among the available proofs most accessible are the ones
given by Mohar & Thomassen [8, Section 2.8] and Ziegler [14,
Lecture 1], and, for the triangle-faced polyhedra, Pach & Agarwal
[9, Chapter 8].  Moreover, all presentations deal with the existence
of circle packings or midspheres, but without the uniqueness part
of Theorem 2.  However, Schramm's paper contains no mention of
centroids.  The fact that the uniqueness part of theorem 2 can be
derived from the results on circle packings was established re-
cently by Springborn [11].

Another remarkable aspect of the topic is that the proofs of Theo-
rem 2 are essentially existential, and do not provide a practical way
of determining the midscribable polyhedron  Q,  that is isomorphic
to a given polyhedron  P.  However, in an Internet posting, G. W.
Hart [6] provides a very clever algorithm (in Mathematica®) that
has as its input data about  P, and provides data about  Q  and a
drawing of it.  Figure 4 has been drawn using a modification of
Hart's software.  The algorithm functions by successive approxi-
mations, and in general works very well.  However, in some in-
stances it fails to converge.  The reason for this is not clear, and in
all cases I checked one could reach the goal by taking as  P  an af-
fine image of the original polyhedron.

5.  Remarks and problems.

Theorem 3 implies a negative answer to Problem 6 of [5], by im-
plying that every polyhedron  P  is isomorphic to a polyhedron   Q
such that corresponding edges of  Q  and  a suitable dual of  Q  in-
tersect in one and only one point.  In fact, the edges may be re-
quired to intersect orthogonally.

One additional little-known consequence of Theorem 3 shuld be
mentioned.  Since the midscribed polyhedron  Q  isomorphic to a
given polyhedron  P  is uniquely determined in the usual meaning
of "uniquely" (that is, up to similarity),  Q  can be taken as the ca-



nonical representative of the isomorphism class of  P (and of Q).
While this is an interesting observation, I am not aware that it has
been used to derive any significant results.

Concerning the topics of this paper, there are may open problems.
Here are just a few.

It is easy to see that all convex 3-antiprisms with combinatorially
equivalent bases are isotopic (that is, can be deformed into each
other through polyhedra of the same combinatorial type.

Problem 4.  Are all convex 4-antiprisms with combinatorially
equivalent bases isotopic?

It follows from a theorem of Schulte [10] that there is no analogue
of Theorem 3 in dimensions d ≥ 4.  But this still leaves open the
question about the analogue of Theorem 2.

Problem 5.  For  d ≥ 4,  is every d-dimensional convex polytope  P
isomorphic to the basis of a  (d+1)-antiprism?

Problem 6.  If  P  is a non-convex polyhedron (in the sense of some
more-or-less general definition), are there analogues of Theorems
2 and/or 3?

Finally, can one find elementary proofs of Theorems 2 and 3?
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