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Abstract.  A result known as Roberts' Theorem states
that  n  lines in general position in the plane determine
at least  n–2  triangular regions.  An interesting proof of
this statement, due to Belov, is presented.

This is an exposition of an elementary but nontrivial fact of
elementary geometry.  Throughout, we denote by  F  a simple family of
n ≥ 3  (infinite) straight lines in the plane, that is, a family in which no
two lines are parallel and no three meet at a common point.  It is easily
proved by induction that the lines of  F  intersect in  n(n–1)

2    different
points ("vertices" of  F) which in turn determine a total of  n(n-2)
finite segments of the lines ("edges" of  F).  The lines also determine
(n-1)(n-2)

2    convex polygonal regions ("faces" of  F).  This is illustrated
for  n = 5  by two examples in Figure 1.

While the total number of faces determined by a simple family
F  of  n  lines is independent of the positions of the lines, the kind of
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faces and the number of each kind are not the same in all cases.  For
example, with  n = 5, the family in Figure 1(a) has three triangles and
three quadrangles as faces, while the family in Figure 1(b) has five
triangles and one pentagon.

Before continuing, the reader is encouraged to experiment a
little, and try to form an opinion concerning the number of triangles
possible for simple families  F  consisting of  n  lines.

This question seems to have been first considered by Samuel
Roberts [R] more than a century ago.  He reached the conclusion:

Simple families  F  of  n  lines always determine at least  n–2
triangles.

It is easy to see that simple families with precisely  n–2
triangles exist for every  n ≥ 3;  Figure 2 illustrates one systematic way
of constructing such families.  However, to establish that for general  n
no simple family of  n  lines can determine only  n–3  or fewer
triangles is not straightforward.  In particular, as mentioned in [G],
Roberts' arguments are not convincing at all.  If the reader now makes
a few experiments and attempts to prove what is known as "Roberts'
theorem", it will become apparent that one of the difficulties arises
from the fact that although adding a line to an existing simple family
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cannot decrease the number of triangles, it is possible that the number
of triangles does not increase.  An example to this effect is shown in
Figure 3.  (It is easy to show that one can always increase the number
of triangles by adding a suitable line, but this is not relevant to the
question considered here.)

The first published proof of "Roberts' theorem" was contained
in a paper by Shannon [S] in 1979.  However, Shannon's proof is not
elementary, since in it Roberts' theorem is a corollary of results
dealing with families of hyperplanes in Euclidean spaces of arbitrarily
high dimensions, without the possibility to restrict the arguments to the
planar case.  The following proof is taken from a note by Belov [B].
As the reader will see, the idea of this proof is very nice, and can be
used in various generalizations and in other contexts.  Unfortunately,
the formulation of Belov's short note is so confused that at first I could
not decide whether it was brilliant or wrong; the translator of the
English version did an excellent job, but could not eliminate the
confusion in the original.  I am greatly indebted to my colleague Boris
Solomyak for his patience in explaining to me the idea behind the
proof.
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Let  F  be a simple family of  n  lines in the Euclidean plane.
Assume that the lines are given by equations  Li :  aix + biy = ci,  for
i  = 1,2,...,n;  we consider a variable family   F(t)  of lines  Mi(t) :  aix
+ biy = ci + dit,  where  di's  are real numbers to be determined, and  t
is a real parameter.  Clearly,  Li = Mi(0),  and  Mi(t)  is parallel to  Li
for all  i  and  t.  We consider now three lines  Li, Lj, Lk  that
determine a triangular face  T  of  F,  and the corresponding triangles
T(t)  determined by the lines  Mi(t), Mj(t), Mk(t).  By using the
determinantal formula for the area of a triangle, after a somewhat
lengthy but straightforward calculation we find that the area of the
triangle  T(t)  is, up to a constant factor, given by
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Thus the area is a quadratic function of  t,  and it will be independent
of  t  (that is, be constant) if and only if the coefficient of  t  in the
above expression vanishes, that is, if

ai bi di
aj bj dj
ak bk dk

 = 0.

This means that the area of  T(t)  is constant if and only if  di, dj  and
dk  satisfy a homogeneous linear equation with coefficients determined
by the coefficients of the equations of  Li, Lj, Lk.  Therefore, if  d1, ... ,
dn   are determined so as to satisfy the linear equations appropriate to
all the triangles of  F,  then all the corresponding triangles generated
by the lines  Mi(t)  will have areas that are independent of  t.  Now
assume that  F  has fewer than  n–2  triangles;  then the  n  variables
d1, ... , dn  are required to satisfy a system of at most  n–3  equations.
Enlarging the system by the addition of the equations  d1 = 0  and
d2 = 0,  we obtain a system of  n–1  or fewer homogeneous linear



equations in   n   variables.  By the basic theorem of linear algebra, it
follows that the system has nontrivial solutions; we choose one such
solution  d1, ... , dn   and use it in the remaining part of the argument.
Note that if  t  is sufficiently close to  0  then  F(t)  is isomorphic to  F;
the combinatorial type of  F(t)  will change, as  t  varies,  only at a
values  t*  of  t  for which  T(t*)  has a vertex of multiplicity  m
greater than or equal to  3.  Moreover, for all  t  in a sufficiently small
neighborhood of such a value  t*,  the faces of  F(t)  resulting from the
separation of the  m  lines concurrent for  t*  will include at least one
triangle (in fact, by an inductive assumption, at least  m–2  triangles),
and this triangle will disappear at  t*.  Observe that such a multiple
point must occur for some value of  t; indeed, the choice  d1 = d2 = 0
means that the intersection point of the lines  M1(t) = L1  and  M2(t) =
L2  is invariant, and hence some value of  t  must move each line  Mi(t)
with a nonzero  di  to concurrence with  M1(t)  and  M2(t);  since  d1,
... , dn  was nontrivial, there is at least one such  di,  and without loss of
generality we can assume that the  t  in question is positive.  Now
consider  t0,  the smallest positive  t  for which  F(t)  has a multiple
point.  Then, for all  t  such that  0 ≤ t < t0,  the family  F(t)  is
isomorphic to  F(t),  hence has at most  n–3  triangles,  and the area of
each triangle in  F(t)  is constant as  t  varies in that interval; but by the
above, for  t  sufficiently close to  t0   there is at least one triangle of
variable area which tends to  0  as  t  approaches  t0.  The contradiction
was reached by assuming that the number of triangles in  F  is at most
n–3;  hence it must be at least  n–2,  and Roberts' Theorem  is proved.

It is easily seen that Belov's proof works equally well in all
dimensions, establishing that simple families of n  hyperplanes in the
d-dimensional Euclidean space determine at least  n–d  n-dimensional
simplices.  In fact, modifications of Belov's proof may be used to
establish the conjecture from [G] that any planar family of  n  lines,



not all concurrent, determines at least  n–2  triangles.  This, and an
appropriate generalization to higher dimensions, has been first
established in [S].  Belov [B] mentions a number of other applications
of the method used in the above proof.

Another remarkable proof of Roberts' Theorem has been found
recently by Felsner and Kriegel [F].  It is purely combinatorial, and
establishes the extension of the result to all simple families of
pseudolines. (A family of curves is a "simple family of pseudolines" if
each curve is obtained from a straight line by continuous deformation
of a finite part of the line, every two curves have precisely one point in
common at which they cross each other, and no three curves have a
common point.)
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