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A New Look at Euler’s Theorem for
Polyhedra

Branko Griinbaum and G. C. Shephard

1. INTRODUCTION. Euler’s Theorem for Polyhedra is one of the most beautiful
results of elementary geometry. If v, e and f are, respectively, the number of
vertices, edges and faces of a polyhedron P, then the relation

v—e+f=2 (1)
is true for cubes, pyramids, prisms, octahedra, and many other polyhedra. One
might be tempted to think (as Euler himself apparently did) that this equality holds
for all polyhedra, but it is easily seen that it fails for the picture frame of FiGURe
1(a). Here v = 16, ¢ = 32 and f = 16 so v — e + f = 0. The discrepancy is usually
dealt with by saying that (1) holds only for polyhedra without any “holes”, and
then rewriting it in the form

v—e+f=2-2g (2)

‘.@

(a) (b)

Figure 1. (a) A polyhedron to which Euler’s theorem in its elementary form v — e + f = 2 does not
apply. (b) A polyhedron of genus g = 1 to which Euler’s theorem in the form v — e + f = 2 — 2g does
not apply.

for a polyhedron of “genus” g (that is, “with g holes passing through it”, or “with
g handles”). Note that here by “polyhedron” we mean the 2-dimensional manifold
P which is the boundary of the “solid polyhedron”. The quantity on the right-hand
side of (2) is usually called the Euler characteristic of that manifold and denoted
by x(P), so that (2) can be restated as
v—e+f=x(P). 3)
Equations (1), (2) and (3) relate the numbers of vertices, edges and faces of the
polyhedron to the topological properties of the polyhedron itself. As a picture
frame has just one hole (that is, g = 1), relation (2) holds for the polyhedron of
Figure 1(a). However, this simple solution is not applicable in all cases. The
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polyhedron shown in Ficure 1(b) also has g = 1, but v = 16, ¢ = 24 and f = 10,
so v — e + f = 2; hence relations (2) and (3) are no longer true. Also, how should
one deal with a polyhedron like the funnel-shaped one shown in FIGURE 2 (the
boundary of a cube with a pyramid attached to its base and with a pyramidal cavity
drilled into it until the apex of the cavity just meets the apex of the attached
pyramid)? Does this have a “hole” or not? In this case no integer g fits equation
(2)! How should the right side of (1) be modified to deal with this situation, or with
the polyhedra of Figure 3? What appeared at first sight to.be a simple numerical
identity is now seen to be hedged with additional conditions or exceptional cases.

Figure 2. A funnel-shaped polyhedron for which the elementary forms of Euler’s theorem are not valid.

The present paper gives the unexpectedly simple answers to these and related
questions. We begin by defining a large class of sets called “polyhedral sets” which
generalize familiar polyhedra; they may be closed, open, or neither, connected or
not, bounded or not, and their parts may have different dimensions. Examples are
shown in Ficures 1, 2, 3 and later diagrams. For each such polyhedral set P we
define an integer y(P) called the Euler characteristic of P, and show how this is
related to the geometric features of P. While this approach to the Euler character-
istic is not new (see references given in Section 6), it has the advantage of allowing
very easy determination of the Euler characteristic even for complicated and
unusual polyhedral sets. However, although—in the unmatchable words of Richard
Guy “this is well known to those who well know it“—the circle of those who know
it seems to be very small.

To obtain an analogue for polyhedral sets of relation (3) we shall define subsets
of P called k-scaffolds (for k = 0, 1,2, 3) and use these to calculate integers V, E,
F and C which, in simple cases, correspond to numbers of vertices, edges, faces
and cells of P. We then show that

V—E+F—C=x(P) (4)
for every polyhedral set P. Clearly, relation (4) is a true generalization of (1), (2)

and (3) to polyhedral sets.
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Figure 3. Examples of somewhat unusual polyhedra, after Hajos [8]; we interpret all these solids as
closed sets. The single integer in the first line of the caption to each part is the Euler characteristic
x(P) of the solid P; it can be determined by the methods of Section 3. The second line of each caption
lists (V, E, F, C); the meaning of these numbers will be explained in Section 4. The Euler characteristic
of the boundary of each polyhedron P is C + x(P).

The present approach is simple and elementary; for clarity we shall restrict
attention to sets in three-dimensional Euclidean space E3, though generalizations
to higher dimensions present no difficulties. As defined below, the Euler charac-
teristic is fully additive, and may be positive, negative or zero. Sums (rather than
alternating sums), are used in its definition. Notice also that we regard the faces of
polyhedral sets as relatively open, in contrast to the traditional approach in which
they are considered to be closed sets.

The paper is organized as follows. In Section 2, after some preliminary defini-
tions which may already be familiar to the reader, and are included here in order
to avoid any ambiguities, we define polyhedral sets and their dissections. In
Section 3 we define the Euler characteristic and establish its fundamental proper-
ties. In Section 4 we define the k-scaffolds, establish the Euler relation in the form
(4), and present the definition of j-faces. Extensions of these results to unbounded
polyhedral sets are presented in Section 5. Section 6 includes a short synopsis of
the historical development of the Euler characteristic and related concepts, as well
as references to the literature.
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2. DEFINITIONS AND TERMINOLOGY. As usual, we shall use N(x, §) for the
8-neighborhood of a point x in E3. A set is bounded if it is contained in some
neighborhood of a point. The interior of a set S is denoted by int S, and the
boundary of S by bd S. A set S is closed if it contains bd S and is open if it
contains no point of bd S, that is, if § = int S.

By a flat, or affine subspace, we mean any translate of a linear subspace; if the
dimension k of a flat is specified, we shall say that it is a k-flat. For any S, we
denote by aff S the affine hull of S, that is, the smallest flat that contains S. A set
S is said to be k-dimensional if aff S is k-dimensional. Hence a single point is
0-dimensional, a line segment is 1-dimensional, etc. The dimension of a flat L is
denoted by dim L.

The above definitions of interior and boundary apply to sets of any dimension,
but for our purposes, relative properties are more important. If E is a k-flat and if
N(x, 8) is a neighborhood of a point x € E, then the intersection N(x,8) N E is
called a k-neighborhood of x. Thus a 2-neighborhood of a point x is a small open
circular disk of radius & centered at x, and a 1-neighborhood of x is an open line
segment (that is, a segment without its endpoints) of length 28 centered at x. The
0-neighborhood of a point x is just the point x itself.

The relative interior of S is the set of those points x € S for which there exists a
k-neighborhood of x, that is contained in S, but for no point y is any (k + 1)-
neighborhood of y contained entirely in S; clearly, there is a unique value of k&
with this property. Sometimes the relative interior of S will be called its k-interior.
The 3-interior is the same as the interior for any set in E3. If the k-interior of a set
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Figure 4. Examples of bounded polyhedral sets P. For simplicity of description and graphical represen-
tation, these sets are all in the plane, and all polygonal regions and segments are taken as relatively
open. The polygonal regions are shaded. Solid lines and solid dots indicate segments and points
included in the set, dashed lines and hollow dots indicate segments and points that are not included.
The data in the caption to each part are as in Figure 3, except that C is not listed since it is 0 in all
cases. The Euler characteristic of P N relbd P is y(P) — F.
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S is nonempty, we define the relative boundary of S as the set of all points of bd S
which do not belong to the relative interior of S. The relative interior and relative
boundary of S are denoted by relint S and relbd S, respectively. The set S is said
to be relatively open if S = relint S.

A single point, an open ray or segment, a straight line, a plane, or the whole
space E> are examples of relatively open sets. If Q is a square region in E* (so
aff Q is a plane, and Q is 2-dimensional) then relbd Q consists of the union of four
open segments (each of which is the relative interior of one of the sides of the
square) together with the four vertices of the square. Further, relint Q is the part
of aff Q that lies inside relbd Q. If S is the boundary of a cube then S contains no
points whose 3-neighborhoods lie in S, hence int S is the empty set. The points
whose 2-neighborhoods lie in S are the points in the faces of the cube, that is, the
points of S apart from the edges and vertices. This set is therefore the 2-interior of
S. Moreover, since int S is empty, the 2-interior of § is, by definition, the relative
interior of S. Thus relint S is the union of the relative interiors of the six square

< >
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Figure 5. Examples of unbounded polyhedral sets it the plane. The conventions are the same as in
Figure 4; in addition, arrowheads are used to distinguish halflines and lines from segments. (a) shows a
line-free closed convex set, and the set in (b) is closed and convex, but not line-free (L is a line and
k = 1 in the notation of Section 5).
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(a) (b)

Figure 6. An illustration of the dependence of the relative interior of a set on the mutual position of its
parts. In (a), the set T =S U Q, where S is the boundary of a cube and Q is a closed square not
coplanar with any face of the cube. Hence relint T = relint S U relint Q. In (b), for the set U =S U Q,
in which Q is coplanar with the top face of the cube, meeting it along the edge E, we have relint
U = relint S U relint Q U relint E. The Euler characteristic is 2 in both cases, as can be verified using
the definition given in Section 3. In the notation introduced in Section 4, scaf,T consists of seven open
squares, scaf; T consists of 15 open segments, and scaf,T of 10 vertices; hence V' = 10, E = 15, and
F = 7. On the other hand, scaf, U consists of five open squares and one open rectangle, scaf; U of 12
open segments, and scaf, U of eight points.

faces of the cube. If T consists of the set S just considered together with a square
Q which is not coplanar with any face of the cube (see FIGURE 6(a)) attached to S
along a common edge E, then relint T = relint S U relint Q; but for a set U (see
Ficure 6(b)) in which Q is coplanar with a face of S we have relint U = relint S U
relint Q U relint E. A more complicated example is shown in FiGure 7 and
explained in the caption.

A set § is called convex if, given any two distinct points x, y € S, the closed
line segment with endpoints x and y lies entirely in S. Thus a line segment is
necessarily convex; a single point and the empty set are also convex, since the
definition is vacuous in this case. A closed half-space is the (unbounded convex) set
of points that lie to one side of, or on, a plane in E3. Any set which is the
intersection of a finite number of closed half-spaces is called a closed convex
polyhedron. Familiar examples of closed convex polyhedra are (closed) cubes,
(closed) squares, (closed) line segments, and single points. These are of three, two,
one and zero dimensions respectively. But our definition includes also unbounded
convex polyhedra, such as the examples in FiGUrEs 5(a) and 5(b); their edges can
be rays (halflines) or straight lines, and faces and cells can be unbounded as well.

Euler’s Theorem in its basic form (1) holds for the boundary of 3-dimensional
closed and bounded convex polyhedra. Many elementary proofs of this fact are
known, see Section 6. The case of unbounded polyhedra will be considered in
Section 5.

A relatively open convex polyhedron is the relative interior of a closed convex
polyhedron. It should be noted that whereas an open convex polyhedron (which is
necessarily 3-dimensional) is the intersection of a finite number of open half-spaces,
the same is not true for relatively open convex polyhedra of dimension less than
three. On the other hand, if P is a relatively open convex polyhedron lying in a
d-flat E = aff P (where d = 1 or 2) then P can be written as the intersection of
finitely many open half d-flats (each of which is a relatively open set) lying in E.
Alternatively, P is the intersection of E with a family of open halfspaces. As we
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Figure 7. A polyhedral set P (assumed closed, to simplify the discussion) consisting of two solid cubes
joined by two triangles and a segment, and of two squares attached to segments which touch the cubes;
clearly int P = scaf, P consists of the two open cubes, so C = 2. The polyhedral set Q = bd P consists
of the 14 squares shown, together with the two triangles and three segments. Its relative interior
relint Q = scaf,Q = scaf, P consists of the relative interiors of the squares and the triangles, together
with the open segment IJ along which the upper triangle is joined to the cube; hence F = 15. The set
R = relbd Q consists of the following open segments: all the edges of the two cubes except HJ, the four
edges of one of the squares and three of the other, and the segments GY, HI, IK, JK, LM, LN, NT, WX;
moreover, R also contains all the vertices of the cubes and squares, and the point W (but not the points
G and L). It follows that relint R = scaf; R = scaf; Q = scaf, P consists of the following open
segments: AB, GY, HI, WZ, twenty edges of the two cubes, seven edges of the two squares, and four
edges of the two triangles; hence E = 35. Finally, relbd R = scaf R = scaf,Q = scaf, P consists of all
the vertices of the two cubes except N, T, X, as well as of the four vertices of one of the squares and
two of the other, and the points / and W; hence V = 21. It follows that y(R) = —1, y(Q) = 1, and
x(P) = —1. These values can easily be verified by directly using the definition of the Euler characteris-
tic.

shall see, relatively open convex polyhedra play a central réle in our treatment of
the Euler characteristic.

From the definition it is clear that the intersection of any two closed convex
polyhedra is a closed convex polyhedron. Analogously, though this requires some
additional reasoning, it may be verified that regardless of their dimensions the
intersection of any two relatively open convex polyhedra is a relatively open convex
polyhedron. Following convention, we shall sometimes refer to a bounded convex
polyhedron of two dimensions as a polygon, and a bounded convex polyhedron of
one dimension as a line segment or simply segment; in each case we must, of
course, specify whether the polyhedron is closed, relatively open, or neither.

If a set P is the union of members a finite family ¢ = {C,,C,,...,C,} of
pairwise disjoint sets Cy,C,,...,C,, we say that € is a dissection of P and we
write P = J ¢, where the dot in the union symbol indicates that the sets C; are
pairwise disjoint. If P is a set that admits a dissection ¢ all elements of which are
relatively open convex polyhedra we shall say that P is a polyhedral set, and
express this by writing

P= ¢ (5)
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where the subscript ¢ is to remind us that each element of & is a relatively open
convex polyhedron. Such a family ¢ is called a relatively open convex dissection of
P and each element of ¢ is called an element of the relatively open convex
dissection. All the sets shown in FiGUREs 1 to 9 are polyhedral sets in this sense. It
will be observed that the definition is very general in that it does not require P to
be open or closed, connected, simply connected or even homogeneous in the sense
that neighborhoods of all points of P are of the same dimension. Nor are there
any restrictions on the incidences of the closures of the elements. On the other
hand, a bounded and closed polyhedral set is necessarily compact. The collection
of all polyhedral sets will be denoted by P. These polyhedral sets are the sets to
which relation (4) will apply.

It is clear that except when P consists of a finite number of points, its
expression (5) as a disjoint union of relatively open convex polyhedra is not unique.
In fact, every relatively open convex polyhedron of dimension greater than 0
admits infinitely many open dissections.

Let P= UU,€ and P = U, F be two dissections of P; we shall say that the
latter is a refinement of the former if each element of € is a disjoint union of
elements of . If we are given any two dissections P = J.€ and P = |, Z of P
then it is possible to find another dissection P = |J. % which is a refinement of
each; any such & will be called a common refinement of the dissections ¢ and 2.
In fact it suffices to take, as elements of &, all non-empty sets of the form C N D,

(a)

(b)

Figure 8. (a) A polyhedral set P consisting of an open cube S and a relatively open square Q. This
dissection of P is not complex-like. (b) A relatively open convex dissection of P which is complex-like.
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where C € €, and D € 9. From the properties of relatively open convex sets it is
immediate that if the dissections € and Z are relatively open convex dissections,
then the common refinement & is another dissection of the same kind. Moreover,
among such common refinements of the relatively open convex dissections < and
9 of a polyhedral set P it is possible to find a common refinement % which is
complex-like. By this we mean that whenever an element of % meets the relative
boundary of another element of %, it is contained in that boundary, see FIGURE 8.
These simple observations are basic for all that follows.

3. THE EULER CHARACTERISTIC. Throughout this section we shall restrict
attention to bounded polyhedral sets; the extension of these results to unbounded
sets will be given in Section 5.

For any polyhedral set P € P we define an integer y(P) in the following way:

(@) x(@) =0.

(b) If P is a relatively open convex polyhedron of dimension d, then y(P) =
(-

(© If P= . ¢ is a relatively open convex dissection of P then y(P) =
ECG{X (C)

This integer y(P) is called the Euler characteristic of P. Part (c) of the
definition appears to imply that the definition of y(P) depends on the dissection €
that is used. However, this dependence is only apparent. This, and other important
properties of y(P) are given by the following theorems:

Theorem 1. The Euler characteristic x(P) is well-defined in the sense that its value,
as given by (c) above is independent of the relatively open convex dissection € of P
used in the computation.

Theorem 2. If P is a closed and bounded convex polyhedron then x(P) = 1.

Theorem 3. The Euler characteristic x(P) satisfies the valuation property: if P, € P
and P, € P, then

X(P1) + x(Py) =x(PyNPy) +x(PUP,). (6)

It should be noted that Theorem 2 refers to the Euler characteristic of the
(bounded and closed) convex polyhedron itself, and not—as in the discussion in
Section 1—to the Euler characteristic of its boundary.

In some treatments of the Euler characteristic Theorems 2 and 3 are used to
define y(P) for closed convex sets and for those sets which can be obtained from
them by taking finite unions. Thus the definition of x(P) given here may be
regarded as an extension of the traditional approach to sets which need not be
closed. On the other hand, our definition is restricted to polyhedral sets, hence not
applicable to non-polyhedral sets even if they are convex.

The proofs of Theorems 1, 2 and 3 are omitted since they follow the usual
techniques. We note only that for Theorem 1 we rely on the fact mentioned earlier
that two convex dissections € and & of a polyhedral set P have a complex-like
common refinement &,
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Immediate consequences of these theorems include the following:

Corollary 1. If € is any dissection of the polyhedral set P such that each C € € is a
polyhedral set, then

x(P) = 3% x(C).
ced

Corollary 2. (Inclusion-exclusion property). If € is any family of polyhedral sets
such that P = U €, then

x(P) =2 x(C) = Xx(C;NGCy) + Xx(C;iNnCyNnCy) — -

where the first sum is over all C € €, the second sum is over all sets C,,C, € € of
two distinct elements of €, the third sum is over all sets of three distinct elements of
€, etc.

Corollary 3. For any polyhedral set P € P,
x(P Nrelbd P) = x(P) — x(relint P);

hence, if P is closed, x(relbd P) = y(P) — x(relint P).
Using the above results and suitable dissections, it is easy to verify that each of
the polyhedral sets in FIGUREsS 3, 4 and 5 has the Euler characteristic indicated.

4. EULER’S THEOREM FOR BOUNDED POLYHEDRAL SETS. We now show
how the Euler characteristic, as introduced in Section 3, can be used to derive
analogues of the traditional Euler equations (1) and (2) which are valid for
bounded but otherwise general polyhedral sets. The basic approach is to express
each such polyhedral set P € P as the disjoint union of four well-determined sets,
called k-scaffolds of P and denoted scaf, P for k = 0,1,2,3.

The 3-scaffold scaf, P is simply int P, the set of all interior points of P. We
delete scaf; P from P, leaving P, = P \ scaf,P; clearly, P, C bd P. The 2-scaffold
scaf, P is the set of all 2-interior points of the set P,. (Equivalently, scaf, P is the
relative interior of the set P N bd P.) Similarly, scaf, P is the set of all 1-interior
points of P, = P, \ scaf, P, and scaf, P is the finite set of points P, = P, \ scaf,P.

Each k-scaffold of P is a relatively open set; in fact, it is a relatively open
polyhedral set, and S = {scaf,, P, scaf, P, scaf, P, scaf, P} is a relatively open dissec-
tion of P into polyhedral sets. To verify this claim, we only have to show that each
scaf, P is a polyhedral set. This follows at once from the observations:

(1) the definition of scaf, P is independent on the relatively open convex
dissection € which establishes that P is a polyhedral set, and

(i) each relatively open convex dissection of P can be refined to one that is
complex-like. For such a refinement it is clear that each element is contained in
one and only one scaffold of P, and so defines a relatively open convex dissection
of each scaf, P.

As a consequence we have:

Corollary 4. If p is a bounded polyhedral set then
x(P) = x(scaf,P) + x(scaf,P) + x(scaf,P) + x(scaf;P).

We note that if P is a convex polyhedron, then scaf,P is the union of the
relative interiors of the faces of P, scaf;P is the union of the relative interiors of
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the edges of P, and scaf, P is the set of vertices of P. These remarks motivate the
following notation: V = y(scaf,P), E = —x(scaf,P), F = x(scaf,P), and C =
— x(scaf, P). Note that we use upper case symbols in order to stress the distinction
between the precisely defined entities and the somewhat vague quantities men-
tioned in the Introduction and Section 1. Corollary 4 implies:

Theorem 4. If P is a polyhedral set then
V—E+F-C=x(P).

Thus relation (4) has been established.

Theorem 4 will now be illustrated by means of examples.

Consider first the closed polyhedral set P of FIGURE 9(a); it is to be understood
as a solid, the interior of which is scaf;P. The 2-scaffold scaf,P consists of 12

(a)

(b) (©)

)

Figure 9. (a) A (closed) polyhedral set; if interpreted as a solid P, it has V' =24, E = 36, F = 10,
C= -1, and y(P) = —1. If P is interpreted as a 2-manifold then y(P) = —2. (b) One of the
polygons B which occurs as the upper or lower face of the polyhedral set P shown in (a), and (c) a
dissection of B. Interpreting B as a relatively open set, this shows that y(B) = —1. (d) A dissection of
int P, which shows that y(int P) = 1.
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relatively open rectangular faces (each of which has Euler characteristic equal to
1) and two other relatively open polygons, namely the top and bottom of P, each
of which is an open rectangle from which two closed squares have been removed.
(Ficure 9(b)). The Euler characteristic of each of these polygons (which we shall
denote by B) can be easily determined using the open dissection shown in FIGURE
9(c). This shows B expressed as the union of seven relatively open convex polygons
and eight open line segments, so y(B) =7 X1+ 8 X (—1) = —1. We deduce
that F =12 X 1 + 2 X (—1) = 10. As scaf, P consists of 36 open segments, each
with Euler characteristic —1, it follows that E = 36. The 24 vertices form scaf, P,
hence V = 24. To determine C, consider the open convex dissection of int P =
scaf; P indicated in FicUrRe 9(d); it consists of seven open 3-dimensional convex
polyhedra, and of 8 relatively open convex polygons, hence C = —y(scaf;P) =
—(7 X (—=1) + 8 X 1) = —1. Therefore
x(P)=V—-E+F—-C=24-36+10—-(—-1) = —1.

The value of y(P) can be verified by using the inclusion-exclusion principle
(Corollary 2). We represent P as the union of seven closed convex sets, all of
which are prisms (six on quadrangular bases, and one on an octagonal base—F1G-
URE 9(d) can also be interpreted as showing this representation). The intersections
by pairs are eight closed polygons (rectangles), and every set of three has empty
intersection. Hence y(P) =7 — 8 = —1, as before.

It should be noted that the flexibility built in into the approach followed here
enables one in many cases to avoid subdivisions when calculating y(P). For the
example in Ficure 9(a) we could argue that P, together with two open rectangular
boxes and four relatively open squares, forms a dissection of a closed rectangular
box. Therefore 1 = y(P) + 2(—1) + 4, leading to the same value y(P) = —1.

The numbers calculated above can also serve to illustrate Corollary 3, since

x(relbd P) =24 — 36 + 10 = —2.
which coincides with
x(P) — x(relint P) = =1 -1= -2,
since y(relint P) = —C = 1.

As a second example, consider the closed polyhedral set P in Ficure 2. Using a
plane through two opposite vertical edges of the cube, partition P into two parts,
each of which is a closed polyhedron and has Euler characteristic equal to 1. The
intersection of these parts is the union of two closed triangles with a vertex in
common, and again this has Euler characteristic 1. Hence, by the inclusion-exclu-
sion principle, y(P) =2 — 1 = 1. Considering scaffolds, we can verify V=9,
E = 20, F = 12, and so, from Corollary 4,

C= —x(scaf;P) = —x(intP)=1-12+20+9 = 0.

This can be verified using a dissection of int P analogous to that just used for P.
Each half of int P has Euler characteristic —1, but their intersection now has
characteristic 2, since it consists of two disjoint, relatively open triangles. Thus
x(int P) = 2 X (—=1) + 2 = 0, as before. For another verification we may consider
the dissection consisting of P, an open 4-sided pyramid, and an open square, from
which we have 1 = y(P) + (—1) + 1, hence y(P) = 1.

Additional examples illustrating our theorems and corollaries appear in FIGURE
3. The quantities V, E, F,C are indicated in the form of a vector (V, E, F,C)
below each part of the diagram. Each of the polyhedral sets is considered to be
solid, that is, to have non-empty interior, and to be equal to the closure of its
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interior. Other examples are shown in FiGures 4, 6, 7, 9 and described in the
captions.

Finally, we note that the use of scaffolds leads to a definition of j-faces
(j = 0,1,2,3) which is applicable to all polyhedral sets. We define a j-face of a
polyhedral set P to be a connected component of scaf;P. For each j, these
components are well determined. In the case of convex polyhedra—and many
others as well—these j-faces are the relative interiors of faces and edges in the
traditional approach to the subject. However, in more complicated situations
rather unusual sets can appear as faces. For example, in FIGURE 4, one 1-face of
the first polyhedral set in (a) consists of the union of three open segments, namely
the upper segment and the two contiguous sides of the deleted square. In FIGURE
4(g), one 1-face is the union of two open segments. In FIGURE 7, one 2-face
consists of the open segment IJ and the two open squares and one open triangle
that contain IJ in their boundary; another 2-face consists of the open square that
contains the point L, and the open triangle with vertex L, while one 1-face
consists of the open segment AB together with the five additional open segments
that have N or T as an endpoint. It remains to be seen whether this generalization
of the usual concept of “face” will lead to interesting mathematics.

5. UNBOUNDED POLYHEDRAL SETS. Now we shall extend the results of the
previous sections to unbounded polyhedral sets. As we pointed out in Section 2,
our definition of a closed polyhedron applies equally to the unbounded case. We
may also allow the elements in the definition of a polyhedral set (5) to be
unbounded, and thus extend the family P to include unbounded sets. From now
on, P will be used in this wider sense. We shall assume that the reader has some
familiarity with the structure of unbounded convex sets as explained, for example,
in Griinbaum [1967], Section 2.5 and the references in Section 2.7.

For any non-empty convex polyhedron P in the d-dimensional space E¢, let L
represent a k-flat, contained in P, and chosen to have maximal possible dimension
k. Then P is called line-free if and only if k = 0. A bounded convex polyhedron is
necessarily line-free, as is also a set such as that shown in FiGure 5(a). For the
convex polyhedron in Ficure 5(b), k takes the value 1. It is known (see Griinbaum
[1967], page 24) that if P is a closed, convex polyhedron then it may be written as a
“direct product” or “vector sum”

P=LobP, (7

where L is the maximal k-flat defined above and P is a line-free polyhedron
whose dimension is k less than the dimension of P. The sign & means that every
point x € P can be written uniquely in the form x =y + z (vector addmon) where
yeL and z € P. We may take for P any set of the form P N L, where L is a
(d — k)-flat orthogonal to L in E? We shall refer to (7) as the standard linear
decomposition of P. In the example of FIGURE 5(b), L is a line and P is a segment.

For the boundary of a 3-dimensional unbounded line-free convex set P a
relation analogous to (1) holds, namely

v—e+f=1, (8)

where v, e, f are, respectively, the numbers of vertices, edges and faces of P (see
Griinbaum [1967], Section 8.5). If P is 2-dimensional, the corresponding result for
the relative boundary is

v—e=—1. (9)
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An example is provided by the line-free set in FiGURE 5(a), where v = 3 and
e = 4; two of the edges are line segments, and the other two are rays (unbounded
half-lines).

Just as the definition of the family P in Section 2 was formulated in such a way
as to apply also to unbounded sets, so were Theorems 1 and 3, together with the
three corollaries in Section 3 phrased in such a way as to apply also in the
unbounded case. The result analogous to Theorem 2 is as follows:

Theorem 2*. Let P be a closed convex polyhedron, and P = L &® P be a standard
linear decomposition of P with dimL = k, then

0 if P is unbounded

P) = _
X(P) =1 _1)% it B is bounded.

Proof of Theorem 2*. The case where P is bounded has been dealt with in Section
3, Theorem 2. Now let P be unbounded but line-free. If P is a closed half-line
(ray), then y(P) =1 — 1= 0. If P is 2-dimensional then, by (9),

X(P)=v—-e+1=0,
and if P is 3-dimensional then, by (8),
xX(P)=v—-e+f—-1=0.

If P is not line-free, then to each j-dimensional element of P there corre-
sponds a (j — k)-dimensional element of P (note that all elements of P have
dimensions > k). Hence x(P) = (- 1)*x(P) and equals (— 1) or 0 depending on
whether P is bounded or not. This completes the proof of the theorem.

The definitions of the scaffolds of a polyhedral set P, together with Theorem 4
and Corollary 4, hold with trivial modifications in the unbounded case. Examples
of the application of Theorem 4 to unbounded sets appear in FIGURE 5. Details
are given in the caption to the figure.

6. HISTORICAL REMARKS AND COMMENTS. The history of Euler’s Theorem
and concepts related to it are both interesting and voluminous. It involves many of
the ideas that led to modern algebraic topology, and also many of the errors which
were committed in that development. At least two books have been devoted to the
early history and attempts at clarification of Euler’s Theorem (Lakatos [13],
Federico [4]), and countless books and articles contain short accounts. Here only a
very brief survey will be given.

Euler first published his theorem in 1750, stating that he had no satisfactory
proof but was convinced of its general validity by a wealth of examples. (The
frequently encountered assertion that Euler’s Theorem was known to Descartes a
century before Euler is unsupported by any evidence, and based on erroneous
interpretation of some of Descartes’ writings. For a discussion of this and other
historical errors concerning Euler’s Theorem see Malkevitch [17] and the refer-
ences given there, and Federico [4].) Euler’s formulation was, essentially, that “for
every solid bounded by flat surfaces, the number of surfaces increased by the
number of vertices exceeds by two the number of edges.” Later, Euler presented a
proof of the theorem, as did several other mathematicians. Early in the nineteenth
century it was observed that the assertion cannot be true in the generality claimed
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(L’Huilier [16], Hessel [9]). In a masterpiece of understatement, Hessel remarks:

Other excellent mathematicians (Legendre, Cauchy, Gergonne, Rothe and Steiner) supplied
proofs for the general validity of the theorem. But in fact, it suffers from exceptions.

In order to illustrate such exceptions and the difficulties in removing them,
Hessel shows pairs of polyhedra such that “for each shape for which Euler’s rule is
not valid, a rather similar one can be found for which the rule is valid.” Hessel’s
examples are reproduced in FiGUre 10; we shall return to them shortly.

These developments led to a number of reformulations of the basic version of
Euler’s Theorem (given by relation (1)) through the introduction of various
parameters that replaced the value 2 of the right-hand side. All the discussions
were dogged by two difficulties.

On the one hand, no precise definitions were given for the polyhedra under
consideration or for their faces, edges and vertices. It was more or less generally
assumed that one is dealing with solids and considering features on their surfaces
—but how to determine faces (or edges) was illustrated by examples rather than
defined by unambiguous rules. A glance at the collection of examples of polyhedra
in FIGURE 3, taken from Hajés [8], should convince the reader that the concepts of
face, edge and vertex are not very straightforward to define even for those special
polyhedra which are compact and such that the boundary of the polyhedron
coincides with the boundary of its interior. This observation explains why, in the
later decades of the nineteenth century, Euler-type relations with more and more
complicated right-hand sides were appearing in the literature.

On the other hand, in its original formulation and in the minds of many early
workers, it was the hallmark of Euler’s theorem that it involved only the numbers
of vertices, edges and faces—without any consideration of the nature of the faces.
Thus, in Hessel’s presentation, his even-numbered examples are “good” because
for them v — e + f = 2, and the odd-numbered polyhedra are “bad” because the
numbers to be inserted in the left-hand side do not yield 2. Remarkably, some of
this attitude survived even to our days: in Seydel [30, page 322] the same example
as in Hessel’s diagram labelled 2 (and our Ficure 1(b)) is given, with the comment
that this illustrates the validity of relation (1) for all polyhedra! We shall return to
the faces of polyhedra later in this discussion.

The second half of the nineteenth century saw the gradual clarification of the
difficulties; one step was the insight that relations such as (1) deal with the surface,
and not directly with the solid. The concept of genus of those special surfaces
which are called orientable manifolds helped to reach the relation (2). In particu-
lar, this led to the understanding that the original formulation of Euler’s theorem
applies to the boundary of 3-dimensional convex polyhedra and, more generally, to
maps on the sphere and other closed surfaces.

At the same time, Euler’s theorem was extended to higher dimensions as one of
the first results in the emerging discipline of algebraic topology. It was established
(or, at least, stated!) that the Euler characteristic equals to the alternating sum of
so-called “Betti numbers”. But again, there were more good intentions than
mathematically proved results. In the words of Dieudonné [3]:

...the mathematicians of the second half of the nineteenth century which were busy with
these questions [of algebraic topology] speak freely of curves, of surfaces, of deformations, ...,
without ever saying what they mean by these words.
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Figure 10. Plate taken from Hessel [9]. These diagrams illustrate the difficulties that early authors had
in extending the simple Euler relation (1) to more complicated polyhedra. Parts 2 to 5 show a cube with
a hole drilled through it, and parts 6 and 7 show a cube with an indentation. Part 10 shows a block with
two prismatic holes through it. n parts 3, 6 and 10 some faces have been subdivided.
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Starting with Poincaré [26] and completed, simplified and extended by others (in
particular, Alexander [1]) these concepts involved in the definition of Euler
characteristic acquired precise meaning for simplicial complexes and for more
general objects; see, for example, Hilton-Wylie [11], Singer-Thorpe [32], or any
other modern text on algebraic topology. However, this development led to a loss
of the connection to the origins of Euler’s theorem as a relation involving the
vertices, edges and faces of a polyhedral object. Apart from these developments, in
the comparatively simple case of convex polytopes of arbitrary dimensions, the
analogue of Euler’s theorem was discovered by Schlifli in 1850 (but not published
till 1901), and independently discovered and published in the 1880’s by several
mathematicians. But all these proofs—including the one in Sommerville [33]—were
grossly incomplete; as noted in Griinbaum [5, p. 141], to validate these proofs one
would have to show that the faces of the polytopes in question can be arranged in
a special order known as shelling. Although it was later shown that every convex
polytope can be shelled (Bruggesser-Mani [2]), the absence of this concept in the
proofs shows that they were invalid in an essential aspect. (For elementary proofs
of the Euler theorem for convex polytopes of all dimensions, which avoid the use
of shelling, see Griitnbaum [5, p. 134], McMullen-Shephard [19, p. 94].)

Returning to the situation dealing with polyhedra, a new direction opened up
with the work of Hadwiger [6]. Hadwiger observed that the Euler characteristic can
be defined consistently by assigning to each compact convex set C the value
x(C) = 1, and proceeding to extend this to the “Konvexring” (family of sets each
of which is a union of finitely many compact convex sets) by using the valuation
property. Later, Klee [12] simplified and generalized this approach by putting it in
a lattice setting, and observing that it also worked for unions of open convex sets
(of a fixed dimension) if one starts by assigning to all open convex sets the Euler
characteristic 1. Without mentioning Hadwiger or Klee, Shashkin [31] gave a
detailed elementary exposition of Hadwiger’s approach to the Euler characteristic,
restricted to closed and bounded polyhedral sets in the plane. However, Shashkin’s
assertion (on page 82) that certain types of such sets admit a unique decomposition
into “components” of a particularly “simple” type is incorrect.

In a later paper, Hadwiger [7] considered polyhedral sets, defined as those
admitting relatively open convex dissections, but—due to his insistence on defining
x(C) = 1 for every relatively open convex polyhedron—failed to obtain the gen-
eral version of Theorem 3.

The approach followed here, to assign to a relatively open convex set of
dimension d the Euler characteristic (—1)¢, is due to Lenz [15]. An account of the
relevant writings by Lenz, Groemer and others appears in McMullen-Schneider
[18]. Related developments, and in particular the relations between the Euler
characteristics and valuations on appropriate families of sets are presented in
Schneider [28], with extensive references to earlier literature. It should be stressed
that, in all these works, the definition of the Euler characteristic by a relation such
as (c) in Section 3 does not lead to any result of the nature of Theorem 4.
Although involving the relatively open convex elements of dissections, these
formulae apply equally to all such dissections of the given set (just as the
topological approach applies to all simplicial complexes that represent a given set);
as a consequence, they do not reflect in any way the particular facial structure of a
polyhedral set. In fact, it seems that objects like the k-scaffolds have not been
considered in the literature at all.

Neither McMullen and Schneider [18] nor Schneider [28] mention the work of
Nef [20-25], which our note parallels to some extent. Nef’s definition of polyhedral
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sets differs from ours, but is equivalent to it; his approach to the Euler characteris-
tic is the same as ours. However, we believe our definitions lead to simpler proofs,
and there is a significant difference between Nef’s treatment of the faces of
polyhedral sets and that given here. In view of its importance in the history of the
subject, it seems appropriate to devote a few lines to a discussion of this topic.

In the case of convex polyhedra it is generally accepted that the “faces” are the
intersections of the polyhedra with supporting planes. The only differences be-
tween the treatments of various authors is in deciding whether to regard the
intersections themselves, or their relative interiors, as “faces”, and whether the
convex set itself and /or the empty set should also be included. Whatever choices
are made, the faces of a convex polyhedron form a well-determined family; there is
a bijection between the family of relatively open faces, and the family of closed
faces. However, when more general polyhedra are considered there seems to be no
agreement at all! In fact, most writers seem content to avoid the topic all together.

One of the few writers devoting some attention to this question is Hajés [8]. His
“polyhedra” are closed, bounded, polyhedral sets which coincide with the closure
of their interiors. To find the “faces” of such a polyhedron P, he proceeds as
follows: If L is a plane that meets bd P in a set with non-empty relative interior,
then the closure of any connected component of the relative interior of L N bd P
is a face of P. A vertex of P is any point that belongs to some three different faces
such that their planes do not pass through one line. If the intersection S of two
non-coplanar faces of P contains a segment, then S contains two or more vertices
of P; segments determined by these vertices, contained in S and not containing
any vertices in their relative interior, are called edges of P. Hajés appears not to
realize that these definitions lead to such oddities as an edge that is in the relative
interior of every face that contains it, or a vertex that is a relatively interior point
of every face that contains it (see FIGURE 11(a)). Rather unsurprisingly, Hajés
reports no results concerning these definitions, and it is reasonable to expect that
there is little hope for establishing any connection between the Euler characteristic
of P and the vertices, edges and faces defined in this way. The calculation in the
caption to FiIGURE 11 bears out this interpretation.

Nef [1978] defines as faces of a polyhedral set P any family of disjoint, relatively
open convex sets that is a dissection of P; hence a relation analogous to Theorem
4 holds if V,E,F,C denote the numbers of “faces” of dimension 0,1,2,3,
respectively. However, these “faces” are, in general, not uniquely determined, and
have only a limited geometric significance due to the following fact. There exist
closed polyhedral sets homeomorphic to a closed ball, for which any convex
dissection must use as vertices points that cannot be regarded as vertices of P in
any reasonable sense. Such polyhedral sets were first described by Lennes [14]; the
simplest of these, shown in Ficure 11(b), is due to Schénhardt [29]. For this set P
our definitions yield six vertices, twelve edges and eight faces. In any of the
dissections of P used by Nef there are at least seven vertices (and correspondingly
larger numbers of edges and faces), hence at least one of them is devoid of
geometric meaning. The same polyhedron P is also a counterexample to Lemma 2
of Szabd [34], which asserts that each polyhedron (according to a definition that
includes P) has a simplicial decomposition in which all vertices of the tetrahedra
involved are also vertices of the polyhedron. For interesting results concerning
polyhedra that lack simplicial decompositions free of additional vertices see
Ruppert and Seidel [27].

The results concerning polyhedral sets presented here can be extended to more
general sets. For example, one could admit as ‘“basic constituents”;, besides
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(a) (b)

Figure 11. (a) A closed polyhedral set P, which is the union of four cubes. According to the definitions
of Hajos [8, p. 37), this P has 23 vertices, 42 edges and 15 faces, hence the Euler characteristic of its
boundary would be 23 — 42 + 15 = —4. According to the definitions adopted here, C = 4, V =16
(four vertices such as A4, and 12 like B), E = 30 (twelve edges like 4B, and six edges in the shape of
two crossing open segments such as those containing the point C, each of Euler characteristic —3), and
F = 19 (twelve faces are small squares, and one face, of Euler characteristic 7, consists of the three
large squares that contain the point D), hence y(bd P) =5, and x(P) = 1—in agreement with the
topological interpretation of the Euler characteristic. (b) A nonconvex octahedron P, which has
the property that in every relatively open convex dissection of P, some vertices of the polyhedra in the
dissection are not vertices of P.

relatively open convex polyhedra, also spheres, open balls, closed balls, and the
(unbounded) complements of closed balls. Extending property (b) by assigning to
these sets the Euler characteristic 2, —1, 1, and —2, respectively, and to circles
and open circular disks the values 0 and 1, and considering sets obtainable as finite
unions of intersections of ‘“basic constituents”, results analogous to Theorems 1 to
4 can be obtained. Various other generalizations are also possible; their investiga-
tion is left to the reader.

We hope that the present account will lead to a better understanding of Euler’s
Theorem, and possibly also to analogous results for other valuations on polyhedral
sets.
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