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Pick’s Theorem

Branko Griinbaum and G. C. Shephard

Some years ago, the Northwest Mathematics Conference was held in Eugene,
Oregon. To add a bit of local flavor, a forester was included on the program,
and those who attended his session were introduced to a variety of nice
examples which illustrated the important role that mathematics plays in the
forest industry. One of his problems was concerned with the calculation of
the area inside a polygonal region drawn to scale from field data obtained for
a stand of timber by a timber cruiser. The standard method is to overlay a
scale drawing with a transparency on which a square dot pattern is printed.
Except for a factor dependent on the relative sizes of the drawing and the
square grid, the area inside the polygon is computed by counting all of the
dots fully inside the polygon, and then adding half of the number of dots
which fall on the bounding edges of the polygon. Although the speaker was
not aware that he was essentially using Pick’s formula, I was delighted to see
that one of my favorite mathematical results was not only beautiful, but even
useful. (From DeTemple [1989].)

The discoverer of the theorem in question, Georg Alexander Pick, was born in
1859 in Vienna, and died around 1943 in the Theresienstadt concentration camp.
He made significant contributions to analysis and differential geometry. The
theorem we are concerned with was first published in 1899 [15]. It became widely
known through Steinhaus’ delightful book [18].

Pick’s theorem concerns lattice polygons (“geoboard polygons™), that is, poly-
gons with all vertices at points of the square unit lattice L, see Figure 1. The
original form of the theorem concerns simple polygons, whose edges do not cross
one another. (More formally, a polygon is simple if its edges have no mutual
intersections other than those of adjacent edges at the common vertices.) The
theorem asserts that the area of a simple lattice polygon P is given by the
expression

i+b/2—1,

where i is the number of lattice points in the interior of P, and b is the number of
lattice points on the boundary of P, that is, points which are either vertices of P or
relatively interior points of edges of P. Many proofs of Pick’s Theorem are known,
see, for example, [1], [2], [3], [6], [7], [10], [11], [12], [14]; there are various
generalizations: to more general polygons [9], [15], [19], to lattices other than the
square lattice [4], [5], and to higher-dimensional polyhedra [13], [16], [17], [20].

In this paper we shall extend Pick’s theorem to more general lattice polygons,
by allowing multiple intersections, and even overlapping, of the edges. We shall
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Figure 1. A simple lattice 8-gon P illustrating the classical form of Pick’s Theorem. Here i = 4 is the
number of lattice points in the interior of P, b = 9 is the number of lattice points on the boundary of
P, and

15

b
Py=i+—-—1=—
AP) =i+ 3

is the area of P.

make use of results on rotation numbers, winding numbers and tangent numbers of
such polygons P; a brief account of the necessary definitions and facts concerning
these numbers will be given here, but for more details, examples, and proofs of
some of our assertions, the reader should consult [8].

1. BASIC DEFINITIONS. By an abstract polygon or n-gon Q we mean an ordered
sequence (V],...,V,) of n distinct symbols V,,...,V,, called the vertices of Q.
Adjacent pairs (Vy, V), (V,, V3), ..., (V,, V) (where the subscripts are taken mod n)
are called the edges of Q, and two sequences which differ only by a cyclic
permutation of the symbols are regarded as identical. Thus Q has a definite
orientation and the edge (V;,V,, ;) is said to be oriented or directed from V; to V, ;.

A lattice polygon is any embedding of an abstract polygon and its edges in the
plane, such that the following conditions hold:

(1) The image of each V; is a point of the square unit lattice L. Without
confusion we may continue to denote the image of V; by the same symbol, and to
call it a vertex of the polygon.

(ii) Each edge (V,,V;,,) (mod n) is represented by a straight line segment
connecting the image points V,, V;,; in the plane. In the diagrams it is convenient
to denote the direction of the edge by an arrow.

An example of a lattice polygon is shown in Figure 2(a). If we impose two
additional restrictions, namely
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Figure 2. (a) An example of a lattice polygon (29-gon) with multiple vertices W=V, V, =V,
Vio = Vis, Via = Vigs Vao = Vg, Vg = Vg = Vo) and whiskers (Vo, Vig, Vig; Vig, Viz, Vigs Vias Viss Vi
V3, Vy, Vg also becomes a whisker after the multiple vertex V, = V5 has been removed, and V5, V14, Vy7
becomes a whisker after the removal of whiskers Vy,, Vy3, Vi, and Vi, Vis, Vie). (b) The polygon that
results from shaving that shown in (a); it is a 17-gon.

(iii) no two consecutive vertices V;,V;,; (mod n) map onto the same lattice
point, and

(iv) two edges with a common vertex do not overlap (that is, the polygon has no
“whisker”),
then we say that the polygon is shaven. Examples of shaven polygons appear in
Figures 2(b) and 3. (The numbers attached to the lattice points in the latter figure
will be explained in the next section.) Figure 3 shows some of the possibilities for
multiple intersections and overlaps of edges that are not excluded by conditions (i)
to (iv).

. . 1 @ ; .
. . V16 . .
Y
. * 1/2 .
@
. . VZ > 0
1727 1/2 J
VIS N
12 1.11/2 .
1N .

0 . . . . . . 0 . o0

Figure 3. A general lattice polygon P with 22 vertices. The winding numbers of the various cells are
shown by circled numbers. The rotation number of P is 2, and the indices of the lattice points are
indicated. (The index of every point in the exterior is 0, and is not marked.) The area of P is 18 and the
sum of all the indices is i(P) = 20, in agreement with the assertion of Theorem 1 that A(P) =
i(P) — r(P).
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We shall usually denote a lattice polygon (shaven or otherwise) by the letter P.
The complement E2\ P of P in the plane consists of a finite number of connected
open regions called the cells of P. All are bounded except for one, which is called
the exterior of P.

Now let X be a given point of the plane, which does not belong to P, and let
R(X) be a ray (a closed half-line) with endpoint X which does not pass through
any vertex of P. Then for each edge E; we define

0 if R(X') does not intersect E;,

1 if E; crosses R(X) in a counterclockwise

@ (R(X )s Ef) = direction as viewed from X,

—1 if E; crosses R(X) in a clockwise direction.

The winding number w(P, R(X)) of P with respect to R(X) is defined as
L, w(R(X), E;) summed over all the edges of P. It can be shown that w(P, R(X))
depends only on the endpoint X of R(X), and not on the particular ray R(X)
that was used. In fact, this even applies to rays that pass through vertices of P if
the definition is suitably modified. In view of this we may use the notation w(P, X)
unambiguously. Further, it can also be shown that if X and Y belong to the same
cell of P, then w(P, X) = w(P,Y). Hence we can define the winding number
w(P,C) of a cell C with respect to P as the winding number of any point in the
cell. In Figure 3 the winding numbers of the cells are indicated. These are
the same winding numbers which are well known from calculus for their rdle in
defining the area enclosed by curves with selfintersections.

The area A(P) of P is defined as X;w(P, C;)|A(C;)| summed over all the cells
C; of P. Here A(C)) is the (usual) elementary area of the polygonal region C;.
Figure 3 serves to illustrate the calculation of the area of the polygon P. The area
of a polygon can be positive, negative or zero. Since the winding number w(P, C )
of a cell changes its sign if we reverse the orientation of P (that is, reverse the
order of the vertices in the definition of the polygon), the same is true for the area
of P.

Next, we need the concept of “rotation number” (sometimes called “tangent
winding number”) of a polygon. Throughout we shall use the absolute system of
angle measure, in which a complete counterclockwise turn of 27 radians has value
1. At a vertex V; of a shaven polygon P let W lie on the extension of W b, V)
beyond V. Then the signed angle ZWV,V;,, (which necessarily satisfies — 1<
LWVV;,, < 3) is called the deflection d(V) of P at V. It is easy to show that
r(P) = Z‘, d(V}), with summation over all the vertices of P, is necessarily an
integer, called the rotation number of P. For the polygon P of Figure 3 we have
r(P) = 2, as indicated in ‘the caption. It should be observed that the rotation
number is only defined for shaven polygons, since the definition of deflection is not
applicable at multiple vertices or whiskers.

To facilitate the formulation of the next definition, we note that if a vertex V; of
the lattice polygon lies on a ray R(X) with endpoint X, then the two edges
(V;_1,V}) and (V}, ¥, ;) which meet at V; can lie in six different configurations with
respect to the ray, see Figure 4. If the edges lie on different sides of R(X) (cases
(a) and (b)) we say that R(X) cuts the polygon P at V. In the four other cases we
say that P is tangent to R(X) at V. In (c) and (f) we say that the tangency is
concordant since the directions mduced on R(X) by the edges (V;_,V)), (V,,V; )
are consistent with that on R(X) oriented away from X. In (d) and (e) we say that
the tangency is not concordant.
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Figure 4. The possible positions of edges (V;_;,¥}) and (V},V;, ;) relative to ray R(X), and the
contributions to the tangent number (X, P).

Let now X be any point of the plane which does not lie on a line containing an
edge of a lattice polygon P, and consider a closed ray R(X) with endpoint X that
passes through a vertex V; of P. Then we define
0 if R(X) cuts P at V; (cases (a) and (b) of Figure 4),

1 if the edges (V}_y,V;) and (V},V}, ) lie to the left
of R(X) and the tangency is concordant (case (c)),
or they lie to the right of R(X') and the tangency is
not concordant (case (d)),

\

7(R(X),V}) =

—3 inall other cases ((e) and (f) in Figure 4).

For fixed X let t(P, X) = X,;7(R(X), V}), where the sum is over all the vertices
of P. It can be shown that (P, X) is necessarily an integer; it is known as the
tangent number of X with respect to P. (This definition differs slightly from the
one given in [8], but is equivalent to it.) We require the following important
property of (P, X) (see [8]):

If X lies in the exterior of P, then t(P, X) = r(P).
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For example, in Figure 3 the tangent number #(P, Q) of the point O with
respect to P is 2, which is the same as the rotation number of P.

2. INDICES OF LATTICE POINTS WITH RESPECT TO THE POLYGON P. An
essential ingredient in the main theorem will be the index i(P, X) of a lattice point
X with respect to P. In Figure 3 the indices of all the lattice points are indicated;
these are zero for all points in the exterior of P.

The definition of (P, X) is similar in many respects to both that of the winding
number and that of the tangent number. However, in this case we do not exclude
the possibility that X belongs to P. Let R(X) be a closed ray with endpoint X,
which intersects no edge of P in a line segment of positive length. Then for each
point Y € R(X) N P we define
1 if Y # X and P crosses R(X) in a counter-

clockwise direction viewed from X,
if Y = X and P crosses R(X) from right to left,

—1 if Y+ X and P crosses R(X) in a clockwise

direction,
if Y =X and P crosses R( X ) from left to right,
if Y+ X and P is tangent to R(X) at Y,
if Y = X, and either P is concordantly tangent to
(R(X), Y) = R(X) at Y and the two edges meeting at the point

of tangency lie on the left of R(X), or P is

tangent to R(X) at X but the tangency is not

concordant and the two edges lie to the right of

R(X), )
if Y = X and P is tangent to R( X) in the other

two cases, that is, the tangency is concordant and

the edges lie on the right, or the tangency is not

concordant and the edges lie on the left of R(X).

(ST

o
(SIS

N

D=

An example of the calculation of «(R(X),Y) is shown in Figure 5. Now let
i(P, X) = Lyu(R(X),Y), where summation is over all the intersections of P with

Vie1

Figure 5. The calculation of i(X, P), where X is a lattice point which coincides with vertices V}, V, and
V.. The ray R(X) also intersects the polygon three times (at V}, V,, and the edge (V,,,V}, ;) at points
distinct from X. According to the definition the contributions of these six intersections are, in order,
—1,4,4 at X and —1,0,1 at other points of R(X), so i(X, P) = 1.
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R(X). (In the case of multiple intersections, the contributions due to each arc of P
are added.) From the definition, it is clear that if X & P then i(P, X) = w(P, x).

Lemma. The value of i(P, X) depends only on the lattice point X and the polygon P
and not on the ray R(X) chosen to define it.

Proof: Consider changes in the value of i(P, X) that occur as R(X) is rotated in a
counterclockwise direction about X. Let Z be any point on R(X) such that the
open line segment ]X, Z[ lies entirely in some cell of P. Suppose the initial
position of the ray is R,(X) (see Figure 6) and Z is at Z,. It is clear that during
the rotation, so long as Z does not cross any edge of P, then the fact that w(P, Z)
remains constant shows that i(P, X) does so also.

Figure 6. Diagrams illustrating the proof of Lemma. The intersection of P with R(X) at points other
than X are shown schematically at right in each of the diagram.

Now let R(X) cross an edge directed towards X (see Figure 6(a)) to position
R,(X) with Z moving to Z,. The change in i(X, P) will be twofold:

(i) the contribution to i(P, X) from the intersections of P with R(X) at points
other than X (which equals the winding number of Z with respect to P) will
decrease by 1, and

(>ii) the contribution to i(X, P) from the intersections of P with R(X) at X will
increase by 1. (In the diagram the edges (V;_,,V}) and (V}, V. ) form a non-con-
cordant tangency to R,(X) at X and so contribute — 3. However, they cut R,(X)
from right to left and so in this new situation contribute 3. The total change in the
contribution is + 1. It is easy to check that in all other cases the same holds.)

On the other hand, if R(X) crosses an edge directed away from X (see Figure
6(b)) then the corresponding changes are +1 and —1 respectively. If pairs of
edges coincide, then their contributions are added.
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Thus it will be seen that in all cases the rotation of R(X) about X does not
alter the value of i(P, X) as we have defined it, and so the lemma is proved.

At first sight the definition of i(P, X) may appear somewhat artificial. In fact,
as will be seen from Figure 1, in the case of a simple polygon P oriented in a
positive (counterclockwise) direction, the index of each lattice point 1n the interior
of P is 1 and the index of each lattice point on the boundary of P is 2 Theorem 1,
stated at the beginning of the next section, reduces immediately to the classical
form of Pick’s Theorem in this case. The complications in the definition of i(X, P)
arise because of the need to deal with lattice points that occur at multiple
intersections and overlapping edges which may occur in the general lattice poly-
gons which we are considering here.

Finally, we write i(P) = Li(P, X), where summation is over all the lattice
points X of L. We note that this sum is finite since i(P, X) = 0 for all X in the
exterior of P.

3. SHAVEN POLYGONS. We begin with the basic theorem from which the more
general result (Theorem 2 of the next section) can be derived.

Theorem 1. Let P be any shaven lattice polygon. Then
A(P) =i(P) —r(P),

where A(P) is the area of P, r(P) is the rotation number, and i(P) is the sum of the
indices with respect to P of all the lattice points.

Proof: Let O be any point in the plane not belonging to P. We calculate the area
of P in the classical way, as follows. Let 7; be the triangle obtained by joining the
edge E; of P to O (that is, T; is the convex hull of E; and O with the orientation
1nduced by that of E;). Then A(P) = X, A(T), summatlon being over all the edges
of P, and areas belng counted with approprlate signs (A(T) is positive if T is
oriented in a counterclockwise direction, and negative if T is oriented clockwise.)

In the present context we take O as a lattice point in the exterior of P, and
apply the classical form of Pick’s Theorem to find the area of each triangle. All
that is needed for the proof is an investigation as to how the indices of the lattices
points and rotation numbers change when two triangles T} and T, corresponding
to adjacent edges (V;_,, V) and (V}, V., are welded together along their common
boundary [0, V], see Flgure 7. Con51der to begin with, the case where T and T,
are oriented posmvely (case (a)). The index of a lattice point in the relative interior
of T, is 1 and of a point on its boundary is 1. Also the rotation number is 1, and so
A(T) = i(T)) — 1 = i«T,) — 2i(T,, 0). Similarly A(T,) = i(T,) — 2i(T,, 0). After
welding the triangles together we obtain a quadrilateral Q with vertices
Vi_1,V;»Vi41, O and we note that the index of each lattice point with respect to Q
is the sum of the indices assigned to the point by con51derat10n of T, and T, except
for the points V; and O. Since i(T,,V)) = i(T,,V)) = Q,V}) = 1, we must subtract 3
from the indices of V; and O, and then

A(Q) =i(Q) —1=1i(Q) - 2i(Q,0).

The other cases (b) to (f) in Figure 7 are dealt with similarly. In case (c), for
example, i(T},V}) = — 3, l(TZ,V) i(Q,V;) = 7 and z(Tl,O) = — 1 iT,,0) =
i(Q,0) =13 Hence after summing the lndlCCS we must add 3 to those of V; and
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Figure 7. The possible configurations of oriented triangles OV;_;V], OV;V;,; with an edge OV] in
common. These are used in the proof of Theorem 1.

O. However, the relation

A(Q) =i(Q) — 1=i(Q) - 2i(Q,0)

continues to hold. It does so also in the other cases: for (b) (c) and (d) we must add
3 to the 1ndlces of V; and O after amalgamation of the triangles, and we must
subtract 3 5 in cases (a) (e) and ().

We build up P triangle by triangle, making the necessary modifications to the
indices at the ends of the common edges. By natural extension of the above, at
each stage X except the final one,

A(X) =i(X) - 2i(X,0).

When the triangle corresponding to the last edge of P is adjoined, and the
modifications to the indices are applied as described above, we obtain the indices
i(P, X) of all the lattice points X with respect to P, except that at O there will be
an index i* which is not equal to i(P,O). Thus the sum of all the indices will be
i(P) + i*, and the area will be given by

A(P) = (i(P) +i*) — 2i*.

To complete the proof we need only evaluate i*. Let t* and ¢~ be the num-
bers of positively and negatively oriented triangles which meet at O, and
Lastpsbes gy ey by D the numbers of vertices V; of P at which the adjacent edges lie
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in the configurations (a), (b), (c), (d), (e), (f) of Figure 7, respectively. Then the
above construction shows that

F= (Tt =ttt — )

=3((t7=t,) = (17— t,) +t 1,1, —tf).

Now t*—1t, is the number of connected chains of edges of P which are
oriented counterclockwise viewed from O, and ¢~ — ¢, is the number of connected
chains of edges of P which are oriented clockwise viewed from O. As O is exterior
to P these must be equal, and the first two terms cancel leaving

* =gt +ty—t,—tf).
Comparing Figures 7 and 4, we see that i* = (P, 0) = r(P) by the result quoted
above. Thus
A(P) =i(P) —r(P),
and the theorem is proved.

Now let P = {P,, P,,..., P,} be a family of shaven polygons, that is to say, a

finite set of such polygons. We define
n

(®) = Lr(B),  ACP) = LAP),

j=1
i(P,X) = éi(Pj,X), i(P) = gi(l’f)-

Then, by additivity, Theorem 1 immediately implies the following:

Corollary. If P is any family of shaven lattice polygons then
A(P) =i(P) — r(P).

4. GENERAL LATTICE POLYGONS. We began, in Section 1, by defining a
general lattice polygon, but our main result (Theorem 1) applies only to shaven
polygons. It is of some interest to consider whether this restriction is necessary.
For any lattice polygon P the indices of the lattice points are uniquely defined as
in Section 2, hence i(P) is well defined. The area A(P) is also uniquely deter-
mined, as already explained. However, the rotation number r(P) is indeterminate
if P has whiskers, or pairs of adjacent vertices which coincide; therefore to obtain
a result analogous to Theorem 1 which applies to general polygons we need to
obtain some number which plays a réle analogous to r(P).

To do this, we obtain a shaven polygon P’ from the general polygon P by

(a) removing each whisker. More precisely, if Vi_1,V;, Vi1 is a whisker we

J

delete the vertex V; and replace the edges (V;_,,V;) and (V}, V], ) by either the

edge (V;_,,V}, ) or by the two coinciding adjacent vertices V;_; = V..

(b) removing coincident adjacent vertices. Thus if V=V, ;= -+ =V, we
remove V4, ...,V and replace the edge (V} ., Vj,s11) by (V, Vi)

Either operation can produce further whiskers, and operation (a) can produce
multiple vertices. However, it can be shown easily that repeated applications of the
operations lead eventually to a shaven polygon P’. Even though the polygon P’ is
in some cases not uniquely determined by P, the rotation number r(P’) is
independent of the particular P’ obtained, and we may therefore define r(P) to
have the value r(P’). With this convention we obtain the following form of Pick’s
theorem.
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Theorem 2. Let P be any lattice polygon, A(P) its area, i(P) the sum of the indices
at the lattice points, and r(P) the rotation number as defined above. Then

A(P) = i(P) — r(P).

Proof: This is immediate from the observation that A(P) = A(P"), i(P) = i(P'),
r(P) = r(P'), and from Theorem 1 applied to the shaven polygon P'.

5. FINAL REMARKS. A major difference between our treatment of Pick’s Theo-
rem and that of earlier papers is that oriented polygons are used here. If suitable
orientations are introduced our main theorem implies all known variants of Pick’s
Theorem as it relates to plane lattice polygons. It does not, of course, include the
three-dimensional version of [13], [16], [17], nor the results of [4], [5] concerning the
“hexagonal lattice” (which is not a lattice in the usual terminology) or Archimedean
tilings.

Since the index of a lattice point, the rotation number of a polygon, and the
area of a polygon are invariant under affine transformations of determinant 1, it
follows that our theorems are invariant under such transformations. Hence it
includes results relating to polygons whose vertices lie at lattice points of the
equilateral triangular lattice, see [5]. For “polygons of higher genus” such as those
of [14, Figures 5, 6, 7], after suitable orientations of the edges are introduced, the
results follow from our Theorem 1 and its corollary.

Many generalizations of Pick’s Theorem introduce, as one of the variables in
the formula for the area, the Euler characteristic of the polygon (or the polygonal
region). Since the area depends on the orientation of the polygon, whereas the
Euler characteristic does not, it is not an appropriate variable to use for polygons
or families of polygons that may have regions with winding numbers other than 0
or 1. If the only winding numbers are 1 or 0, then it is trivial to orient the polygons
and deduce the results in the literature from ours.

The same remark applies to the setting in [9]. Here a further simplification is
possible. Each of the “zweiseitige Randstrecken” (“two-sided boundary edges”)
corresponds to two overlapping edges with opposite orientations. Even if these are
not whiskers they may be removed in a manner exactly analogous to that described
in (a) above. This reduces the problem of determining the area, in the examples
given, to an application of the corollary to Theorem 1.

It was pointed out to us by Prof. Rolf Schneider that our results could be
reformulated in the following way: For each lattice point X in the plane assign an
index j(X, P) that equals the sum of the angular lengths of arcs of a small circle
centered at X that are contained in P, with the appropriate signs and multiplici-
ties. Then A(P) = Lj(X, P), where the summation is over all lattice points in the
plane.
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John Wiley & Sons recently published a volume entitled
“Theory and applications of finite groups,” consisting of three
parts. Part I, written by Professor G. A. Miller, consists of 192
pages and is entitled “Substitution and abstract groups”’; Part I1,
written by Professor H. F.-Blichfeldt, consists of 86 pages and is
entitled “Finite groups of linear homogeneous transformations”;
Part III, written by Professor L. E. Dickson, consists of 103
pages and is entitled “Applications of finite groups.” The work
is dedicated to Camille Jordan, and is the first treatise on group
theory written by American mathematicians.

— American Mathematical Monthly 23, (1916) p. 317.
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