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In order to avaid repetition, we use the terminology of the first part
(Geombinatorics, Vol. 1, No. 2, pp. 5 - 9).

The lead-off question (A), first posed by Shephard [1975], is still open.
In the wake of many failed attempts to find a counterexample, we
venture:

Conjecture 1. Every convex polyhedron has a net.

If this conjecture should turn out to be wrong, or too hard to decide —
here is a weaker version which would affirmatively answer question
D):

Conjecture 1*, Every convex polyhedron is combinatorially equiva-
lent to a polyhedron that has a net.

In contrast, the answer to question (B) (whether every spanning tree of
an arbitrary polyhedron leads to a net) is easily seen to be negative.
Even among the widely known Archimedean polyhedra (see, for
example, Cundy and Rollett [1961], Wenninger [1971], Ball and
Coxeter [1974]) there are many examples in which a spanning tree of
the polyhedron does not lead to a net; to simplify the language we shall
say that such a tree leads to a would-he met. In Figure 1 we show
(parts of) would-be nets of two Archimedean polyhedra that clearly
show overlaps. It is interesting o note that the same phenomenon can
occur even with such simple polyhedra as regular prisms. In Figure
2 we show a would-be net for the regular 28-sided prism. The smallest
regular prism with a would-be net seems to be the 26-sided one; it is
not shown since for it the overlap is so small that the diagram is not
very convincing.
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If one considers prisms that are not necessarily regular, much smaller
examples can be found which have would-be nets. The reader may
find it amusing to show that this happens even with 4-sided prisms.
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Figure 1. The partial would-be nets of the Archimedean polyhedra
(4.6.10) and (3.3.3.3.4) Figure 2. A would-be net of a regular 28-sided prism.
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More interesting is the observation that every polyhedron combinator-
ially equivalent to the 3-sided prism has no would-be nets; the
tetrahedron has the same property. The determination of all combina-
torial types of polyhedra such that every spanning tree in every
polyhedron of that combinatorial type leads to a net seems to be quite
hard, and even a conjecture regarding their characterization appears
elusive,

The answer to question (E) is probably negative. We believe that
every polyhedron combinatorially equivalent to the r-sided prism,
where n is sufficiently large (say n = 100) has some would-be nets,
However, there seems to be no easy way to establish this.

On the other hand it is easy fo see that question (C) has a negative
answer: several well known Archimedean polyhedra (among them the
truncated cube and the cuboctahedron, see Figure 3) fail to have single-
chain nets. Moreover, all polyhedra combinatorially equivalent to
these have the same property. The reason lies not in geometry but in
combinatorics: it is not possible to arrange the faces of these polyhe-
dra in a single-chain sequence. Indeed, since in these polyhedra no
two triangular faces have a common edge, in any such sequence
between two triangular faces there would have to be a non-triangular
face; but since there are eight triangular faces and only six other faces,

this is clearly impossible.
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Figure 3. The truncated cube (3.8.8) and the cuboctahedron (3.4.3.4)
have no single-chain nets.
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We may note that the five Platonic solids (regular polyhedra) not only
do admit single-chain nets, but even have the property that every chain
of faces of the polyhedron which includes all the faces (but without
repeated use of any face, of course) can be flattened to yield a net (it
is clear that such chains of faces correspond to Hamiltonian paths in the
dual polyhedra). This results from the recent enumeration of all such
chains by Reggini [1991]. His enumeration showed that (not counting
mirror images as distinct) there are the following numbers of distinct
chains of this type:

1 for the tetrahedron
4  for the cube
3 for the octahedron
340  for the dodecahedron
18  for the icosahedron

Moreover, Reggini has sketches of all the corresponding single-chain
nets, thus establishing their existence (for the dodecahedron, only 30
of the nats are shown in Reggini [1991]).

We conclude by bringing up several other problems. If P is a convex
polyhedron, and if T is a spanning tree of P which determines a net N
of P, then in any polyhedron P* dual to P the net N corresponds to a
tree N* of P* which determines a net or would-be net T* of P*. To
simplify the terminology, we shall say that N and 7* are dual to each
other. (For explanations of "dual" and "polar® see, for example,
Griinbaum [1967], Section 3.4.)

Problem 1. If P has a net N, and if P* is a polar of P, is T*
necessarily a net or can it happen to be a would-be net?

Barnette [1966] proved that every convex polyhedron has a spanning
tree of maximal valence 3. (A tree is said to have maximal valence k
if each vertex has at most k neighbors.) This leads to a question
analogous to (C) from the first part:

Problem 2. Does every polyhedron P have a net in which each face
has at most three neighbors?

Finally, an old question (Grinbaum [1970], p. 1148; Rosenfeld

[1990]), an affirmative answer to which would strengthen Bamnette's
theorem:
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Conjecture 2. Does every polyhedron P have a spanning tree T of
maximal valence 3 such that the tree N* of the dual polyhedron also
has maximal valence 3?
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