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The idea of the net of a polyhedron is familiar to anyone who has tried
to make a model of a cube or a more complicated polyhedron out of
paper or thin cardboard. Less well known is the history of that idea.
In 1525, the famous painter Albrecht Diirer published an important
text on geometry for practical use (Diirer [1525]); it contained many
innovations compared to the traditional presentations of Euclidean
geometry that were available at that time, and was highly influential
and widely circulated. One of Diirer’s innovations was the concept of
a net for a polyhedron. Figure 1 shows one of the examples given by
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Figure 1. The net of a snub cubs, fom *The Painters Manual” by Albrecht DUrer.
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Figure 2. A snub cube.

Diirer, a net for the Archimedean "snub cube" shown in Figure 2. To
describe nets, we first note that we are concerned only with convex
polyhedra. A cardboard model of a polyhedron represents the
boundary of the polyhedron; the polyhedron (or "solid") itself consists
of that boundary together with the part of the 3-dimensional space
which is enclosed by the boundary. The net of a polyhedron consists
of a connected collection of polygons, congruent to the faces of the
polyhedron, arranged in one plane (the sheet of cardboard) without
overlaps, in such a way that some of the polygons share edges in pairs,
and that, if the net is cut out and folded along the shared edges, and
the remaining edges joined in pairs in a suitable manner, a model of
the polyhedron is obtained. This is illustrated in Figure 3, in which
several different nets of the cube are shown, and the paired edges of
the resulting cube are indicated in each case by heavy lines. The edges
of the polyhedron that are obtained by this pairing of edges of a net
form a tree (graph with no circuits) in the graph of the polyhedron (that
is, the graph formed by the vertices and edges of the polyhedron).
Conversely, starting from a cardboard model of the cube, for example,
one can obtain a net by slitting the model along edges which form a
tree that spans (that is, includes all vertices of) the graph of the
polyhedron.
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Figure 3. Several nats for the cube, and diagrams of the cubes oblained from these nets.

Countless books show nets that can be used to make models of the
more commonly encountered polyhedra, such as the "regular polyhe-
dra” (or "Platonic solids"), the "uniform” (or "Archimedean") solids,
etc. However, the following simple question seems to have been
explicitly formulaled first by Shephard [1975]:

(A) Does every convex polyhedron have a net? In other words, is it
always possible to choose such a spanning tree in the edge graph
of a convex polyhedron that it leads to a net in the above
manner?

Several related questions can be asked; for example:

(B) Does every spanning tree of an arbitrary polyhedron lead to a net
of the polyhedron?

(C) Does every polyhedron have a single-chain net?

Here a net is saic to be "single-chain" if each of the polygons in the
net shares an edge with just one or two other polygons. The nets (a)
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and (b) of the cube (Figure 3) are single-chain, the more familiar net
(c) is not, and neither is Diirer’s net in Figure 1.

Convex polyhedra P and Q are called "combinatorially equivalent” (or
*isomorphic") if their vertices can be put in a one-to-one correspon-
dence such that a set of vertices of P belongs to a face of P if and only
if the corresponding vertices of Q belong to a face of Q.

(D) Is it true that given any polyhedron P, there exists a polyhedron
Q combinatorially equivalent to P, which has a net?

(B) Is it true that given any polyhedron P, there exists a polyhedron
Q combinatorially equivalent to P, in which every spanning tree
leads to a net?

The readers are urged to try their hand at these questions in several
ways.

First, before even trving to answer any of the questions, determine the
logical dependence among them. In other words, if question (A) were,
for example, answered affirmatively, would that imply anything
regarding questions (B), (C), ...? What if (A) were decided in the
negative? Can you formulate some additional questions of the same
character, that are reasonable to ask?

Second, get down to specifics. Take a simple solid (such as the cube,
or some other Platonic solid) and try to answer the questions for it.
(For example, find all the distinct nets for the cube. This naturally
leads to the question when are two nets distinct — and you may enjoy
giving several reasonable definitions and seeing how the answer varies
from one to the other.) Then be more enterprising, and try some more
complicated solids (such as the snub cube; can you find a single-chain
net? If you think you found one, make a model and see whether it
really works! You may even wish to check out Diirer’s net experimen-
tally.

Finally, try answering all questions in general.
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Next time I will tell you what others have found out about these
problems — in particular, which have been solved and which are still

open.
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