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TILINGS WITH CONGRUENT TILES 

BY BRANKO GRÜNBAUM1 AND G. C. SHEPHARD 

Introduction. The purpose of this paper is to survey recent results related to 
the second part of Hubert's eighteenth problem (see Hilbert [1900]). This 
problem, which is concerned with tilings of Euclidean space by congruent 
polyhedra, will be stated below after the necessary terminology has been 
introduced. Although Hubert's original question was answered by one of his 
assistants (Karl Reinhardt) more than fifty years ago, there remain many 
unsolved problems in this area of mathematics; a description of recent results 
therefore seems to us to be of considerable interest. 

Three surveys of developments related to Hilbert's problems (Aleksandrov 
[1969], Browder [1976], Kaplansky [1977]) have been published in recent 
years, but they contain no mention of the remarkable advances made during 
the last decades in connection with the problem that concerns us. An even 
more cogent reason for publishing this survey is that much of the material 
results from the work of crystallographers, and no mention of it appears in 
the recognized mathematical literature. Reasons for this disregard are easy to 
find. Current fashions in mathematics applaud abstraction for its own sake, 
regarding it as the highest intellectual activity-whether or not it is, in any 
sense, useful or related to other endeavors. Mathematicians frequently regard 
it as demeaning to work on problems related to "elementary geometry" in 
Euclidean space of two or three dimensions. In fact, we believe that many are 
unable, both by inclination and training, to make meaningful contributions to 
this more "concrete" type of mathematics; yet it is precisely these and similar 
considerations that include the results and techniques needed by workers in 
other disciplines. Moreover, throughout the history of mathematics, funda
mental ideas for other branches of mathematics have been motivated by 
"intuitive" geometric questions; irrational numbers, calculus, axiomatics and 
topology are only a few of the most obvious "inventions" that originated in 
this manner. It seems to us to be foolish and presumptuous to believe that 
ours is the first generation which needs no more the inspiration that can be 
found in studying simple geometric objects and their mutual relations. By 
showing that there are still many open and difficult (yet interesting and easily 
understood) problems, we hope to persuade some readers that this is an area 
of mathematics worthy of their attention. 
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In this connection we strongly approve of the recent policy of Mathemati
cal Reviews to include papers from crystallographic journals. By ignoring this 
material in the past several decades, the mathematical community has 
suffered a great loss of information. 

Background. There exists a vast literature on the subject of tiling, and 
almost every imaginable variant of the question "How can a space be tiled by 
replicas of a set?" has been discussed in some form or another. The sort of 
spaces considered have included elliptic, Euclidean and hyperbolic planes, 
spaces of higher dimensions, manifolds such as tori, and even algebraic 
structures such as groups. The sets (tiles) considered have ranged from 
convex polyhedra (the best behaved of all) to fractals and related sets 
(Mandelbrot [1977], Giles [1979]) or even to non-measurable sets with bizarre 
properties such as those which occur in the Hausdorff paradox. Even the 
word "tiling" has been used in at least two different interpretations: it means 
either a partition of the space into pairwise disjoint sets, or, for topological 
spaces, a covering of the space such that the interiors of the tiles are pairwise 
disjoint. 

It is clearly impossible to consider all these variants here; we shall restrict 
ourselves to monohedral tilings of Euclidean d-space Ed by tiles which are 
closed topological cells. The word "monohedral" means that each tile is 
congruent (that is, isometric) to a fixed set S, called the prototile of the tiling, 
and a "closed topological cell" is any homeomorphic image of the unit 
rf-dimensional ball { ( * , , . . . , xd)\2 xf < 1}. The word "tiling" is used in the 
second of the two senses mentioned above. Our motivation in restricting 
attention to this case is that it is clearly what Hubert had in mind when he 
formulated his eighteenth problem. If S is the prototile of a monohedral tiling 
?T then we say that S admits the tiling ?T. 

Even with the restrictions just stated, there are many different kinds of 
tilings; we shall now discuss these, and introduce the terminology needed to 
make our statements precise. Some of the terms used are now in reasonably 
widespread use-others are introduced here for the first time, in the hope that 
precise and convenient terminology will contribute to clear thinking. 

To begin with we discuss variants that arise if we place restrictions on the 
mutual positions of the tiles. A tiling 9* is isohedral if the symmetry group of 
?T is transitive on the tiles-in other words, the tiles belong to one transitivity 
class. In this case we shall also say that the prototile is isohedral. Clearly 
every isohedral tiling is monohedral. If a prototile admits a monohedral tiling 
but no isohedral tiling, then it is called anisohedral. An isohedral convex 
polyhedron is called a stereohedron. If a stereohedron admits a tiling in which 
the translational symmetries act transitively on the tiles, it is called a paral-
lelohedron. As we shall see later, a powerful method of constructing stereo-
hedra is by taking the Dirichlet regions of a dot pattern,-ihat is, of a discrete 
system of points in Ed on which the symmetries of the system act transitively. 
In crystallographic literature such stereohedra are known as "Dirichlet do
mains" or "Wirkungsbereiche'Vwe shall call themplesiohedra. 

Some tilings by convex polyhedra have the property of being face-to-face 
(edge-to-edge in the 2-dimensional case). This simply means that the intersec-
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a + 0 + Ô = 2ir a = 2? 0 + 2e = 2*r = 7 + 26 

( 0 (g) 
FIGURE 1. Examples of anisohedral tiles. The one shown in (a) is the first such tile discovered 
(Heesch [1935]); the tiles in (b), (c), (d) are from Heesch, Heesch and Loef [1944], Heesch [1968a] 
and Milnor [1976], respectively; the tile in (e) was communicated to us by Ludwig Danzer, who 
attributed it to Martin Kneser. A more detailed discussion of such tiles is given in Heesch [1976b, 
Chapter 4]. The tile in (f) was found by Kershner [1968], that in (g) by Marjorie Rice (see 
Schattschneider [1978]); these two are prototiles of monohedral edge-to-edge tilings, and the first 
uses only directly congruent tiles. The reader may amuse himself establising that each of these 
prototiles is anisohedral; the discovery of tilings will probably be experienced as an easier task 
than proving that no isohedral tiling is possible. 

tion of any two tiles is either empty or is a face (of any dimension) of each. 
The three regular tilings of the plane are familiar examples of edge-to-edge 
tilings. (Some authors include in the definition of stereohedra the requirement 
that the tiling is face-to-face; we do not make this assumption.) 

The second part of Hubert's eighteenth problem can now be formulated as 
follows: 

(A) Does there exist an anisohedral polyhedron in Euclidean S-spacel 
From the phrasing of the problem as well as from other evidence (see 

Grûnbaum and Shephard [1978]) it seems likely that Hubert believed that 
there exist no anisohedral tiles in the plane. If so, he was mistaken. After 
Reinhardt [1928] found the affirmative solution to Problem (A), Heesch 
[1935] discovered the anisohedral planar prototile shown in Figure 1(a). In 
Figures 1(b), (c), (d), (e) we show anisohedral prototiles of a similar nature. 
But "stronger" examples exist; Kershner [1978] discovered three kinds of 
anisohedral convex pentagons which admit edge-to-edge tilings of the plane 
(one is shown in Figure 1(f)). A different kind of such pentagons was found 
by M. Rice (see Figure 1(g)). Of course, by taking prisms based on aniso
hedral polygons it is easy to see that the ^-dimensional version of Problem 
(A) has an affirmative solution for all d > 2. The three recent surveys of 
developments related to Hubert's problems (Aleksandrov [1969], Browder 
[1976], Kaplansky [1977]) are singularly unhelpful in their discussion of 

VJ 
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Problem (A). In the first, Delone [1969] stops with the mention of Reinhardt 
[1928]. In the second, Milnor [1976] mentions Heesch's work but not 
Kershner's, and existence of anisohedral convex polygons is stated to be an 
open problem. In the third, in which the appropriate chapter is entitled 
"Building up of space from congruent polyhedra", the discussion deals 
exclusively with crystallographic groups, and not a single sentence reports 
results on polyhedra or tilings! 

FIGURE 2. A monohedral tiling of E3 by parallelepipeds. Each face of the prototile is a rhomb 
with angles 60°, 120°, 60°, 120°, and the tiles occur in four aspects. First four tiles (one of each 
aspect) are assembled as shown in the diagram; then this "shape" will tile E3 using translations 
only. As an indication how to do this we have labelled each vertex Af B, C or D; vertices which 
meet must bear the same label. This tiling occurs in two enantiomorphous forms and has the 
remarkable property that the intersection of any two adjacent tiles is not a two-dimensional face 
of either. The tiling was discovered independently by Ludwig Danzer and the authors in 1975. 

Tilings by congruent cubes. A classical result of Minkowski [1907, p. 74] 
establishes that (for d = 2 and d = 3) in every monohedral tiling of Ed by 
congruent ^/-dimensional cubes in which a group of translations acts transi
tively, there exists a "stack'* of cubes in which each two adjacent cubes 
intersect in a whole (d — l)-dimensional face; Minkowski conjectured that 
this statement remains valid for all d. Proofs of the Minkowski conjecture for 
d - 4, 5, 6 were given by Jansen [1909], for d < 9 by Perron [1940b], [1941], 
and in all generality by Hajós [1942]. The following generalization of the 
problem was proposed by Keller [1930]: 

(B) Does there exist, in every monohedral tiling of Ed by congruent d-dimen-
sional cubes, a tile which shares a complete (d — lydimensional face with 
another tile*! 

Perron [1940a] established that the answer to Problem (B) is affirmative for 
d < 6; there seem to have been very few new results concerning Problem (B) 
in the intervening forty years. For a discussion of these problems and results 
see Stein [1974], Seitz [1975], as well as the papers of Robinson [1979], [1980] 
in which the analogues of the Minkowski conjecture and of Problem (B) for 
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tilings of multiplicity exceeding 1 are considered. For a graph-theoretic 
reformulation of Problem (B) see Lawrence [1980]. 

If in Problem (B) "congruent rf-cubes" are replaced by "congruent rf-paral-
lelepipeds" (that is, affine images of a rf-cube) the situation changes thor
oughly. It is not hard to verify that the answer is still affirmative for d — 2, 
but for d = 3 it is negative! This is shown by the tiling in Figure 2, in which 
the prototile has as faces six congruent rhombs. It illustrates also the fact that 
even in such a relatively simple case, tilings of E3 are difficult to visualize, 
and even harder to depict diagrammatically. 

The great variety of tilings using parallelepipeds is illustrated by the 
observation of Heesch [1934] (see also Zamorzaev [1965]) to the effect that in 
E3 there exist infinitely many topologically inequivalent isohedral tilings of 
this kind (see Figure 3). 

FIGURE 3. A method of constructing an infinite number of topologically inequivalent isohedral 
tilings with prototile combinatorially equivalent to the cube; it is due to Heesch [1934]. Staggered 
horizontal stacks of boxes of size k X 1 X 1 form layers, which are placed on top of each other 
with the long sides alternating in two mutually perpendicular directions. Since each tile in such a 
tiling is adjacent to 2k + 6 other tiles along two-dimensional common boundaries, different 
values of k correspond to distinct topological types of tilings. 

Aperiodic tilings. The following problem is undecided even for d — 2. 
(C) Does there exist a prototile P which admits monohedral tilings of Ed, but 

no such tiling possesses a translation as a symmetry*! 
It seems likely that the answer to this question for d = 2 is in the negative, 

though the corresponding problem for dihedral tilings (that is, tilings in which 
the tiles are of two different kinds) has an affirmative answer. These results 
are related to the well-known "Penrose tiles" (see Gardner [1977], Penrose 
[1978]; a detailed account of "aperiodic tilings" appears in Griinbaum and 
Shephard [1980a, Chapter 10]). Problem (C) is unsolved even in the very 
special case in which d = 2, the prototile P is a convex polygon, and the tiling 
is required to be edge-to-edge and to use only directly congruent copies of P. 

The fundamental problem underlying all these questions is, of course, to 
determine all prototiles of monohedral tilings in Ed. Stated in this generality 
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it is obvious that there is no reasonable expectation of a solution. For this 
reason we shall mostly restrict our discussion in the following pages to the 
case in which the prototile is convex: 

(D) Determine all convex polyhedra which are prototiles of monohedral tilings 

FIGURE 4 (first part). 
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a = e = b + d 2 / 3 - 6 = T T 27 + Ô = 27r e = 7r/2 

/3 + 2e = 27r a = rr/2 y + e = it <* = n/2 y + e = ir 0 = e = TT - Ô/2 
7 + 26 = 27T 2/5 + y = 2TT 2/3 + y = 2TT a = y = ir/2 

(e) 

FIGURE 4 (second part). 
FIGURE 4. The known types of convex prototilcs of monohedral planar tilings. All triangles and 
all quadrangles are stereohedra, and all convex hexagonal tiles are of one of the three types 
indicated in (a); these, and the five types of pentagons in (b), have been known since Reinhardt 
[1918]. (It should be noted that the types here, as well as the ones below, are not mutually 
exclusive.) All the known convex pentagonal prototiles are shown in (b), (c), (d) and (e), but the 
question whether or not other such tiles exist is still undecided. The three types in (c) are due to 
Kershner [1968], that in (d) to Richard James, and the four in (e) to Marjorie Rice (see 
Schattschneider [1978]). Near each tile the conditions characterizing the type have been indi
cated; Greek letters indicate angles, lower case characters lengths of sides. For vigorous mental 
exercise the reader is urged to verify that each of the polygons shown admits a monohedral tiling. 

Tilings of the plane. Reinhardt [1918] thought that he had completely 
solved Problem (D) for d •• 2, although he stopped short of flatly asserting 
this as a fact. However, his vaguely formulated reservations were mostly 
overlooked, and for a long time it was "known" that all types of convex 
prototiles of monohedral tilings of the plane had been determined by Rein
hardt. But Kershner [1968] showed that Reinhardt's list of types was incom
plete, and he produced an enlarged list for which he claimed completeness; 
three of his types are examples of anisohedral planar tiles. (Many other 
publications deal with special cases of Problem (D) in the plane or with 
related matters; references to them can be found in Schattschneider [1978] or 
in Grünbaum and Shephard [1978], [1980a, Chapter 9].) Following an exposi
tion of Kershner's enumeration of types by Gardner [1975a], the incomplete
ness of Kershner's solution was pointed out by a reader (see Gardner 
[1975b]). Detailed accounts of the "new" types of planar prototiles are given 
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in Schattschneider [1978] and in Griinbaum and Shephard [1980a]; they are 
illustrated in Figure 4. After two false claims, nobody seems to be claiming 
now that Problem (D) has been completely solved in any number of dimen
sions exceeding 1; it would be nice to see this question settled, at least for 
</ = 2. 

The determination of all planar stereohedra is much easier; it is contained 
in a classification of isohedral tilings by convex polygons given in Griinbaum 
and Shephard [1978] (see also Griinbaum and Shephard [1980a, Chapter 9], 
where related questions are considered as well). 

O O 
(a) 

u 
(b) 

FIGURE 5. Planar parallelohedra ("parallelogons") are either quadrangles or hexagons; in each 
case a necessary and sufficient condition for the polygon to be a parallelogon is that opposite 
sides be parallel and equal in length. Hence the two tiles in (a) are representative of the most 
general parallelogons. If convexity is not required, there exist many other types of prototiles that 
admit monohedal tilings on which translational symmetries act transitively; two examples are 
shown in (b), a method for constructing all such tiles is illustrated by an example in Figure 6. 

The determination of all planar parallelohedra (which are better known as 
"parallelogons") is even simpler; it was carried out by Fedorov [1885] (see 
Figure 5). Fedorov [1899] mentions also non-convex polygons as parallelo
gons; some other authors (see, for example, Subnikov and Kopcik [1972]) do 
not mention convexity in dealing with parallelogons, but seem to be tacitly 
assuming it. A complete hst of prototiles (polygonal or not), that admit 
monohedral tilings in which translational symmetries act transitively on the 
tiles, can be obtained from the classification of isohedral tilings of the plane 
given in Griinbaum and Shephard [1977]; it consists of the prototiles of the 
tilings described there as being of types IH 1, 8, 10, 11, 12, 14, 17, 18, 20, 41, 
57, 62, 64, 68, 72, 74, and 76 (see Figure 6). An analogous determination of all 
planar plesiohedra can be found in Delone, Dolbilin and Stogrin [1978]. 

Monohedral tilings of Ed by convex polyhedra. Since Problem (D) has not 
been solved in the plane, it seems quite hopeless to ask for a solution in d > 3 
dimensions. Consequently, more modest problems-such as the following-
have attracted considerable attention. 

(E) Determine all simplexes {or, indeed, n-faced polyhedra f or small values of 
n) which are prototiles of monohedral tilings of Ed. 
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(F) Determine all combinatorial types of convex pofyhedra which are proto
tiles of monohedral tilings of Ed. 

(G) Determine the least upper bound for the number of (d — lydimensional 
faces of convex pofyhedra which are prototiles of monohedral tilings of Ed. 

FIGURE 6. An example of the construction of prototiles of monohedral tilings that admit a 
tile-transitive group of translational symmetries ("generalized parallelogons"). Shown here is the 
case of prototiles P that admit tilings of type IH 17 in the notation of Grimbaum and Shephard 
[1977]. Each such P admits two mutually perpendicular lines of reflective symmetry (Lx and I^). 
The boundary of P is a simple curve which consists of six consecutive arcs A„ A2, A3> A^ A5, A6 

such that: (i) Ax and A4 are equal straight-line segments each with perpendicular bisector Lx\ (ii) 
A2 is a simple arc which has a center of symmetry C, does not meet L„ and has one endpoint at 
an endpoint of Ax, the other on L^; (iii) A3 is the reflection of A2 in L^ A6 its reflection in Lv 

and A5 its reflection in Lx and L^. Each of the other types of isohedral tilings listed in the text 
leads analogously to a family of prototiles with the desired properties. 

None of these problems has been completely solved for any value of d > 3. 
In connection with Problem (E), Goldberg [1972], [1974a], [1974b], [1976], 
[1977], [1978], [1979] has obtained many examples of tetrahedra, pentahedra 
and other polyhedra which admit tilings of E3

9 but there is no proof or claim 
that his lists are complete. From Goldberg's compilations it follows that each 
of the two combinatorial types of pentahedra in E3 has representatives which 
are stereohedra. Similarly, for six of the seven combinatorial types of hexa-
hedra in E3 it is not hard to find representatives which are stereohedra. 
However, it appears to be unknown whether there exists any stereohedron 
which is a pentagonal pyramid. It is not even known whether there is any 
(locally finite) tiling of E3 in which each tile is a pentagonal pyramid, without 
any requirement of congruence! Examples of monohedral tilings of higher-di
mensional spaces by simplices were given by Baumgartner [1968], [1971], 
Danzer [1968] and Debrunner [1980]. 

Parallelohedra. As a partial solution of Problem (F), Fedorov [1885] de
termined the five possible combinatorial types of three-dimensional paral-
lelohedra (see Figure 7). All five are vector sums of line segments 
(zonohedra), but the analogous assertion is not true for parallelohedra in 
d > 4 dimensions (Coxeter [1962]). In a later paper, Fedorov [1899] showed 
that according to a more refined classification scheme there are 37 distinct 
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types of 3-dimensional parallelohedra (compare Delone, Galiulin and Stogrin 
[1979]). Among Fedorov's parallelohedra there are 24 types which are plesio-
hedra (see Delone [1932], Delone, Padurov and Aleksandrov [1934, p. 179]). 

FIGURE 7. The five combinatorial types of parallelohedra in 2s3. 

The largest number of faces among three-dimensional parallelohedra is 14, 
and for a long time this was thought to be the maximal possible number of 
faces in any stereohedron (see, for example, Baily [1908] or its review Lampe 
[1911], or Smith [1978]). Minkowski [1897] estabUshed that parallelohedra in 
Ed have at most 2(2* — 1) faces of dimension d — 1. 

Stereohedra. Concerning Problem (G), the only general result available is 
due to Delone [1961] (see also Stogrin [1973]). To formulate this we recall that 
two congruent sets are said to have the same aspect if one is a translate of the 
other. Delone's theorem is as follows: 

The number of (d — 1)-dimensional faces of a stereohedron P in Ed is at most 
2d{\ + a) — 2, where a is the number of aspects of P in an isohedral tiling of 
Ed. 

In the case d * 3 the maximal number of aspects is 48, since this is the 
maximal number of inequivalent points in a translational fundamental do
main of any dot pattern in E3 (see Henry and Lonsdale [1965]). Consequently 
a stereohedron in E* has at most 390 two-dimensional faces. This estimate is 
almost certainly much too high; we now turn to survey in some detail the 
presently available results. Since we are concerned only with the case d •• 3, 
we shall simplify the wording by using "face" to mean 2-dimensional face" 
and "space-filler" to mean "convex polyhedron which admits a monohedral 
tiling of £3". 

We have already mentioned a 14-faced space-filler. A 16-faced space-filler 
was described by Föppl [1916]; it can be obtained from the "uniform tiling" 
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FIGURE 8. The 16-faccd space-filler discovered by Föppl [1914]. 

of E3 by regular tetrahedra and truncated tetrahedra by partitioning the 
tetrahedra equally among the neighboring truncated tetrahedra (see Figure 8). 
Even more simply it can be described as the plesiohedron obtained from the 
dot pattern usually called the "diamond lattice". It has been rediscovered 
several times and in many accounts it is presented as being the space-filler 
with the maximal possible number of faces (see, for example, Critchlow 
[1970], Williams [1972], Coxeter [1978], Goldberg [1979], Baracs [1979]). 

Plesiohedra with 17 and with 18 faces were described by Nowacki [1935]. A 
more detailed investigation of the same kinds of plesiohedra by Löckenhoff 
and Hellner [1971] corrected a number of errors and led to two different 
combinatorial types with 17 faces and one with 18 faces; these correspond to 
certain special dot patterns ("invariant cubic lattice complexes" in the crystal-
lographic terminology). The 18-faced plesiohedron is illustrated in Figure 
9(a). 

(a) 

FIGURE 9 (first part) 
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22 22 24 
(d) 

FIGURE 9 (second part) 

FIGURE 9. (a) A plesiohedron with 18 faces from Löckenhoff and Hellner [1971]; j » a 20-faced 
plesiohedron described by Smith [1965]; (c) five 20-faced plesiohedra found by Stogrin [1968], 
[1973]; (d) one 24-faced and two 22-faced plesiohedra, from Koch and Fischer [1972]. 
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A 20-faced plesiohedron was discovered by Smith [1965] (see Figure 9(b)); 
it corresponds to a "perturbed diamond lattice" and tiles using two aspects of 
the prototile. 

Stogrin [1968], [1973] found five (infinite families of metrically different) 
plesiohedra with 20 faces (see Figure 9(c)), as well as many other (families of, 
and individual) plesiohedra with 19, 18, 17 or fewer faces; they all tile with 
a = 2 aspects. 

It is interesting to observe that Delone's formula for d = 3 and a = 2 yields 
an upper bound of 22 faces; it is still undecided whether this bound is 
attained. 

Extending the investigations of Löckenhoff and Hellner from "invariant 
cubic complexes" to "univariant" and "bivariant" ones, Koch [1972] found 
two families of plesiohedra with 23 faces (together with three families having 
22, two having 21, and many families of types with a smaller number of 
faces). Similar investigations of those "tetragonally distorted cubic diamond" 
dot patterns (with symmetry group P4, in the notation of the "International 
Tables" (Henry and Lonsdale [1965])) which correspond to sphere packings, 
by Koch and Fischer [1972], led to a 2-parameter family of 24-faced plesio
hedra (as well as to 33 other families of types of plesiohedra with 8 to 22 
faces). All the plesiohedra found by Koch and Fischer tile using only directly 
congruent copies of the prototiles. Examples of some of these plesiohedra are 
shown in Figure 9(d). 

FIGURE 10. Two views of a 38-faccd plesiohedron with 70 vertices, discovered by Engel [1980]; 
some of the vertices are numbered to simplify their recognition here and in Figure 11(a). 
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Surveying the known results, Brunner and Laves [1978] conjecturedIthat 26 
Surveymg tn n u m b e r o f f a c e s o f a s p a c e . f u ier in E 

7nl that 3 ' - 1 S i m i l a r bound in Ed). At a crystallographic conference 

i a 

FIGURE 11 (first part) 
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of Dr. Engel we reproduce in Figure 10 two sketches of one of the 38-faced 
plesiohedra, and in Figure 11(a) Schlegel diagrams of the two types of 
plesiohedra. (Dr. Engel has just informed us that he has discovered two 
additional types of plesiohedra with 38 faces, and two types with 37 faces; 
Schlegel diagrams of the 38-faced ones are shown in Figure 11(b).) 

We have been considering Problems (F) and (G) in the rather restricted 
class of plesiohedra. The reason for this is the total absence of methods 
usable in more general situations. There seems to be no grounds to assume 

FIGURE 11 (second part) 
FIGURE 11. (a) Schlegel diagrams of the two 38-faced plesiohedra of Engel [1980]; the first 
corresponds to the plesiohedron two views of which are shown in Figure 10. (b) Schlegel 
diagrams of two additional 38-faced plesiohedra found by Dr. P. Engel. 
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that all stereohedra are combinatorially equivalent to plesiohedra (though no 
example settling this question is known), and there seems to be no practical 
technique available which would be guaranteed to produce-if only carried 
out with sufficient perseverance-all combinatorial types of stereohedra. This 
should be contrasted with the fact, easily provable using Tarski's decidability 
theorem (see Tarski [1951], Seidenberg [1954], Cohen [1969]), that all d-
dimensional stereohedra can be "effectively" determined for each dimension 
d. 

There is even less hope for the determination of all space-fillers. As far as 
we know, it is possible that Problem (G) has no finite answer, even for d = 3. 

FIGURE 12. The "existence chart" of the types of plesiohedra considered by Koch and Fischer 
[1972]. The two parameters (denoted, as in the original, by x and c/a) have geometric meaning 
for the dot pattern used to generate the tiling, but this is largely irrelevant for the present 
discussion. The heavy solid line surrounds the region which contains the relevant pairs (x, c/a), 
the thin lines denote the boundaries of the regions of existence of the various combinatorial types 
of plesiohedra. The numbers in the regions indicate the numbers of faces of polyhedra corre
sponding to each region. To avoid cluttering up the diagram we have not indicated the types of 
polyhedra that correspond to the edges of the diagram, or to its vertices. The reader can find 
their full description, as well as the coordinates of the vertices and the equations of the curves 
separating the regions, in the original paper. 

Practical computability. The methods used to obtain the plesiohedra with 
large numbers of faces, mentioned in the preceding section, are probably as 
interesting as the numbers themselves. In the investigations of Löckenhoff 
and Hellner, Koch, Koch and Fischer, and Engel (and in other publications) 
the plesiohedra are obtained from the corresponding dot patterns by the use 
of computers. This poses no difficulty of principal in the cases considered by 
Löckenhoff and Hellner [1971], since they restricted attention to dot patterns 
for which the points in question have well determined coordinates (forming 
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an "invariant complex"). However, in the papers of Koch, Fischer and Engel 
the dot patterns underlying the tilings have 1, 2 or 3 variable parameters, and 
neither the presentation of the results, nor the verification of their complete
ness, is trivial. 

The chief difficulty in presenting the results arises from the fact that the 
domain of variability of the parameters is subdivided into regions in a 
complicated manner, and each region corresponds to a different type of 
plesiohedron. As can be seen from Figures 12 and 13, a formal description of 
the regions by equations and inequalities would be rather cumbersome and 
quite useless. Hence diagrams like the "existence charts" given in these 
illustrations are necessary (or, at least, very helpful) if one is to understand 
the way in which the type of plesiohedron depends on the values of the 
parameters. The amount of complication in these charts convinces us that 
there is little likelihood of further progress in this direction without a very 
substantial reliance on well-programmed computers. And in those cases 
where there are three or more parameters, the investigation, and even the 
presentation of the results, appear to be extremely difficult. 

(a) 
FIGURE 13 (first part) 

FIGURE 13. The existence chart for the types of plesiohedra considered by Engel [1980]. 
Following preliminary investigations of the dependence of types on the parameters (x,y, z) of 
the dot pattern, Engel restricted attention to parameter values with z « 0.0158. In (a) the 
existence chart is presented for the parameter values 0.20 < x < 0.23 and 0.14 < y < 0.20, while 
in (b) the most interesting part is presented on a larger scale (0.214 < x < 0.220, 0.145 < y < 
0.150). In symbols m.n — p, associated with the regions of the chart, m indicates the number of 
faces, n the number of vertices, and p is a mark to distinguish different types with the same 
values of m and n. 



(b) 

FIGURE 13 (second part) 
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The inherent problem in these investigations stems from the fact that 
computers work in discrete steps, while the variability of the parameters is, of 
course, continuous. As described by Koch, Fischer and Engel, the determina
tion of the types proceeds along the following general lines. First, for a 
relatively coarse grid of parameters of the dot pattern, the types of the 
plesiohedra are determined. This gives a rough idea of the various regions of 
the parameter space that correspond to different types of plesiohedra. This 
knowledge, and the underlying geometry, are then used to find an equation 
for the curve (or surface) that forms the boundary between adjacent regions 
of the parameter values. Refined grids of points near and on this curve or 
surface, as well as other considerations, are used to check that no subregion 
corresponding to a different type has been missed. Admittedly, if reasonably 
fine grids are used it is very likely (or even overwhelmingly likely) that all 
regions have been found-but there is, in principle, no possibility of attaining 
absolute certainty without using some additional idea or technique. At the 
moment, these seem to be lacking. 

It should be noted that an "effective" algorithm for the determination of all 
types was described by Delone and Sandakova [1961]-but it appears not to 
be practically feasible. 

In the case of stereohedra which tile with a very simple group (PÏ), a 
practical method for the determination of all types was devised by Stogrin 
[1968], [1971]. But in other cases we are at present in the very unsatisfactory 
position of being "completely convinced" about the validity of certain results 
(such as the enumerations of types by Koch and Fischer [1972] or Engel 
[1980]) without being able to present a rigorous proof of these results, or even 
to indicate how such a proof can be obtained. 

Conclusions. In this short note we have only been able to mention a few of 
the many results available. For further information the reader should consult 
the lists of references in the papers already cited. A useful survey of higher-di
mensional results can be found in Ryskov and Baranovskii [1976], and an 
extensive treatment of tiling problems in the Euclidean plane appears in 
Griinbaum and Shephard [1980a]. 

One must surely feel humble when one realizes that after two millennia of 
continuous effort by mathematicians, there are so many simple open prob
lems and so much we do not know about the "familiar" three-dimensional 
space in which we live. 
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