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Résumé. — On définit certaines structures particllement ordonnées appelées polystromes. Les
polystromes constituent un cadre commode pour |'é¢tude de nombreux problémes sur les graphes,
cartes, complexes et configurations, concernant en particulier leurs propriétés de régularité.

Abstract. — A type of partially ordered structurcs called polystromas is defined. Polystromas
provide a convenient tramework for the consideration of many questions about graphs, maps,
complexes and designs, and, in particular, their regularity properties.

The family of simplicial complexes has the following
remarkable structure : There are « building blocks »
called simplices ; putting together sets of k-simplices,
where k < n. we obtain n-complexes. A special way of
doing so yields a particular n-complex called the
minimally triangulated n-sphere §". Adjoining to &"
a single (n + 1)-dimensional element we obtain an
(n + 1)-simplex.

A completely analogous structure is exhibited by
the so-called cubical complexes, and hy geometric cell
complexes the elements of which are convex polytopes.
Very similar descriptions may be given to the structure
of the collection of flats (subspaces) of a projective of
affine space (finite or not), and in many other instances.

These examples serve as motivations and models
for the definition of structures we shall call polystromas
(otpwux is Greek for layer or stratum). Various
properties of polystromas will be seen to lead to
several remarkable classes of objects, and to very
interesting types of unsolved problems.

I hope that the following pages will manage to
convey to the reader my conviction that intuitive
geometry is still the source of meaningful new combi-
natorial problems and constructions. Most of the
terminology is patterned after that of the examples
mentioned above and the theory of convex polytopes.

A polystroma C 1s any partially ordered set with a
single least element 0 = 0, or any collection of objects,
with some relation among them, that is isomorphic
to such a partially ordered sct. In the latter case we
shall say that the collection of objects is a realization
ol the partially ordered set.

We shall use the equality sign = to denote isomor-
phism of polystromas. A polystroma C* is a dual

(*) Research supported by the National Science Foundation
through Grant MPS74-07547 AO01.

of a polystroma € if there exists a one-to-one order-
reversing correspondence between the non-zero ele-
ments of € and the non-zero elements of C*. As all
duals of € are clearly isomorphic, we may speak about
the dual of G ; obviously (C*)* = C. We shall denote
by € the polystroma obtained from the polystroma C
by adjoining to it a singlc clement 1 = 1, that majo-
rizes all the elements ot C.

In many of the examples of polystromas € we shall
encounter either € is a lattice. or at least C is a lattice.

An atom or vertex of a polystroma C is any element
of @ that is minimal in G X\ {0 }. A facet of C is any
maximal element of C. If Vis a vertex of C, the vertex-
Sigure V(V, @) of at Vis the polystroma consisting of ¥
and ol all the elements of € thal majorize V', hence
V = Oy ¢ If Fis a facet of € the facet-figure 5(F, C)
of C at F is the polystroma consisting of F and of all
the elements of C that are majorized by F': hence F is
the only facet of F(F, €). Vertices and facets of dual
polystromas clearly correspond to each other, and
their vertex-figures and facet-figures are duals of
each other.

A 0-polystroma is a polystroma in which each atom
is a facet. It is obvious that for each natural k > 1
there is precisely one 0-polystroma G, with &£ atoms.
It may be realized by any k-tuple of objects. Each
finite 0-polystroma is isomorphic to G, for some k.

Let {C;|icI} be any family of polystromas.
It € 15 a polystroma with facets £, ie I, such that
F(F,, @) = G, for cach ie I, and if each G; is an n;-
polystroma tor some #; < n, with equality for at
least one i, then € is an (7 + 1)-polystroma.

If C and + are polystromas we say that C is unifacered
with + provided (I, G) = for every facet F of C.

[Jsing these definitions we see that graphs may be
identified as 1-polystromas unifaceted with G,. Each
simplicial n-complex is an n-polystroma. The mini-
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mally triangulated n-sphere 8" (and every triangulated
n-manifold) is unifaceted with §”~ Y. The n-simplex
e —

T™ is the only facet in the a-polystroma S®~ . It is
easily verified that for every vertex I of §" we have
V(V, 8" = 8" ', and that (§"* = §” is selfdual.

If a graph G is the union of a family §; of subgraphs,
we may choose to consider & as a 2-polystroma in
which thc facct-figures are the polystromas G;. A
well-known example of this procedure 1s the Mac
Lanc characterization of planar graphs by their face-
circuits. For a different example, let 95 be a path
of length 3; scc figurc 1 in which the 3-path 45 is

Fig. 1. — The 3-path .

shown together with the Hasse diagram of an isomor-
phic partially ordered set. It is not hard to show that
each 2-connccted 3-valent graph G may be interpreted
as a 2-polystroma G unitaceted with ', in several
ways

(i) So that the intersection of any two facet-figures
of § is either empty, or a O-polystroma; several
examples are shown in figure 2. Each vertex-figure is
isomorphic to thc I-polystroma J3; indicated in
figure 2e. Such an interpretation of G is equivalent
to the existence of a 1-factor of G, hence it is not
always possible if the 3-valent graph G is only con-
nected (*).

(ii) So that each edge of the graph G is in two facet-
figures : see the examples in figure 3. The representa-
tion may be chosen so that the vertex-figurc at cach
vertex is isomorphic to the 1-polystroma 3, = (#3)*
shown in figure 3e.

(iii) If G is planar and the map corresponding to G
is 4-colorable, then each edge of G may be taken to
belong to threc facet-figurces (sce examples in figure 4),
with the vertex-figure at each vertex isomorphic to the
1-polystroma 3; shown in figure 4¢. Conversely, it is
easily seen that if a 3-valent 2-connected planar
graph is unilaceted with 'y and all vertex figures are
isomorphic to 35, then the map that corresponds to
is 4-colorable.

The examples just considered make reasonahle
the following definition : If -t and % arc polystromas

(*) If the 3-valent, 2-connected graph G is, woicover, planar,
then it is possible to choose its facets as 3-paths that are parts of
Petrie-polygons of G (P. Kleinschmidt, private communication).

FiG. 2. — Some graphs represented as 2-polystromas unifaceted

with ;. Each vertex-figurc is a 1-polystroma isomorphic to 3.

the Hasse diagram of which is shown in (€). In (a) to (d) the different
facets are indicated by the labels.

FiG. 3... — Some graphs represented as Z-polystromas unifaceted
with 5. Each vertex-figure in (). (b). (¢ is isomorphic to 3, indi-
cated in (e).

we shall denote by < -t B » the collection (possibly
empty) of polystraomas € with the following properties :
C is unifaceted with #4 and each vertex figure of C
is isomorphic to B. Clearly, C e { 4, B > if and only if
Cre (B° A,

With this definition, the 2 polystromas just dis-
cussed belong to the following collections : Those
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FiG. 4. — Two graphs represented as 2-polystromas unifaceted

with @,. BEach vertex-figure is isomorphic to the l-polystroma 3,
the Hasse diagram of which is shown in (¢).

in (i) to < &5, 3; >, those in (ii) to { T3, 3, », and those
in (i) to (T, 35>,

The question for which 4, $ is { #, B > non-
empty, or contains members realizable by various
interesting classes of objects, appears Lo be very hard,
by even partial solutions will probably be rather
rewarding.

For a different type of examples we consider the
Kirkman-Steiner triple systems }8(n), where, as is
well known, #» = 1 or 3 mod 6. Each XS(n) may be
considered as a |-polystroma unifaceted with triplets
T 3. If we denote the atoms of JS8(7) by 0, 1,2, 3.4, 5, 6,
then the facets may be chosen as the triplets 0, 1, 3 ;
1. 2.0l 9.3 Se3 Ade =k 5000561 06 0.2 Asalos
gously we shall interpret the structure of each 1-
polystroma isomorphic to JL8(7). As is casily verified,
J8(7) belongs to ( Gi;. Gy » and, mere generally,
ecach X8(6n + 1) e { Bs, Bz, », while each

SSbn+ el B,

The finite geometry PG(3, 2) may be interpreted as a
2-polystroma unifaceted with Jt8§(7) — PG(2, 2) ;more
precisely. it belongs to ¢ XS8(7). X8(7) >. However,
it appears not to be known whether { X8(n), X8(n) >
is non-empty for any Kirkman-Steiner system KS(»n)
with n > 7.

On the other hand, an interesting 2-polystroma §
may be derived from a construction of J. E. Edmonds.
The 28 atoms of & may be denoted by unordered pairs
from the set {0,1,2,3,4,5,6,7}; & is unifaceted
with JS(7), formed with the following 8 sets of
atoms

Fy01 ¢ 020 B3 B4 05 06, 07
;e g ORI ool V2t S s Sl Sl
L 220, 27 25 240 9. 9% 96
30, 31, 36, 35, 32, 54 34
F,:40, 42, 47, 46, 43, 45, 41
Fooo0, 93; al, 87, &4, .56, 52
ool ed 67 6L 63 G871 63
.70, 75, J30 72 T6.. 1. G4
Then it is easily verified that each vertex-figure is

isomorphic to the 1-polystroma J, shown in figure 5 ;
hence & e ( X8(7), 3. >. It may be conjectured that

.

F1G. 5. — Hasse diagram of the 1-polystroma 3,.

similar 2-polystromas can be constructed with other
Kirkman-Steiner systems.

A flag in a polystroma C is any totally ordered
subsel of C that is maximal, i.e. not properly contained
in any other such chain. A very useful and versatile
definition of regularily ol a polystroma, much more
restrictive than the belonging to a family { 4, B, is
the following : A polystroma C is regular il the group
of self-isomorphisms of € acts transitively on the
flags of C. The set of all regular polystromas in { 4, B »
shall be denoted by R { 4, B >.

For example, it is easily seen that

HSDeR B3B3 ).

Another member of R { G; Gy > is the 1-polystroma
¢ with atoms 1, 2, 3.4. 5,6, 7. 8,9 and facets { 1.4,7 },
f LS00 e diniGe s o4 00D 5 8 FEEa6 TR,
{3.4,8},1{3.6.91}.{3.5.7}. In order to verily its
regularity it is convenient to realize § by the 9 points

10

\

—= O3

/ i
20
FiG. 6. — lhe Pappus configuration as realization of the l-poly-
stroma .
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and 9 lines of the Pappus configuration (see Fig. 6).
Using the obvious symmetries of this representation
of & and the self-isomorphisms induced by the permu

: ]23456789) (123456789
tations ar - .
789123456 123897645

the regularity of & is easily checked. It is also easy to
verify that both KAS(7) and i are selfdual.

It may be conjectured that R { T3, T3 . and more
generally each R { G,. G, ». contains mfinitely many
I-polystromas. No results in this dircction appear to
be known. except for the case n = 2. which we shall
consider next.

It is clear that { 5., Bs > coincides with the class
of 3-valent graphs. The members of R (G, G; »
(the reader should beware of the unfortunate habit of
some authors to call graphs in < G,, G » « regular »)
exhibit very remarkable symmetries. Indeed, in table 1
we bring all known graphs in R ¢ G,, B3 » with al
most 30 vertices. The list reads like a « Who is who »
of graph theory: the graphs are shown in figure 7.
Infinitely many members of R { G,, G5 > may be
obtained as the graphs of the toroidal maps denoted

) of vertices.

TaBLE |

The known graphs (l-polystromas) in R { G,, Gz »
with at most 30 vertices

Number Part of figure 7
of in which the graph
vertices Description of the graph 1s shown
4 K, = tetrahedron a
6 Utilitics graph = Thomsen graph b
= Kuratowski graph = K ;
8 Cube ¢
10 Petersen graph d
12 Does not exist (*) ==
14 {6.3},; = 6-cage e
16 181+ {83} 3
18 {6,3};, = Pappus graph g
20 Dodecahedron it
20 {10} + {10/3} = Desargues i
graph
22 Existence not decided -
24 16,3}, — {12} +{12/3} i
26 {6,3 %3, o
28 Described by Tutte (1960). Biggs- /
Smith (1971)
30 Tutte’s 8-cage m

(*) Gomer Thomas. private communication.
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EiG. L The known graphs in R { G, Gy » with at most

30 vertices.
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{1 6.3 },. by Coxeter, with b, ¢ non-negative 1tegers ;
those graphs have 2(b% + bc + ¢?) vertices. However,
the numbers of vertices for which there exist graphs
in R { G,, B3 > have not been characterized ; possibly
every sufficiently large even number has that pro-
perty.

Similar results are known concerning ¢ G,. G4 »
and R G, By ).

Turning to a different type of questions, we note
that the traditional « regular » polyhedra — the five
Platonic or convex ones, and the four Kepler-Poinsot
or star-polyhedra — may best be described as special
geometric realizations of 2-polystromas that belong
to R { C,, C, ) for suitable p and ¢. Here C, is the
1-polystroma we usually call «n-circuit »; clearly
¢, R ¢ G,, G, »and it is the only connected member
with » vertices, n = 3. This point of view at once leads
to the question whether any other elements of suitable
R (€, C, > may have geometric realizations with
appropriate symmetries. ‘'The answer — very sur-
prising, because it was overlooked so long — is affir-
mative | Details are set out in a forthcoming paper
(« Regular polyhedra, old and ncw », to appear in
Aequationes Mathematicae), but the crucial point
is the following : A polygon with #n sides is a realiza-
tion of C,; when representing or imagining realiza-
tions of « regular polyhedra » people usually think
of their facets G, as « patches » of a surface, hounded
by the n-circuil G,. While this may be easily accepted
in case the realization of @, is by the honndary of a
convex polygon, il becomes much less natural in case
the realization of €, is by a star n-gon. or by a skew
n-gon, and it becomes quite meaningless if the polygon
is an infinite regular polygon. In the interpretation
of regular polygons as regular realizations of 1-
polystromas the tendency (or temptation) to span the
facets of the regular 2-polystromas by « membranes »
disappears, and hence the psychological block that
used to obscure the vision is not effective any more.
We note in passing that the completeness of the list
of « new » regular polyhedra has not been established,
and that the possibilitics of regular realizations of 2-
polystromas in Euclidean 4-space (or higher spaces)
has not been investigated cither.

Similarly deserving of study are various geometrical-
ly symmetric realizations of members of & ( C,, C >,
where C is a suitable regular graph (I-polystroma)
other than a circuit. For example, the squares of
unit side with vertices at the points of the integral
lattice in 3-space realize a member of R {Cy, Op >,
where O, R { G,, G, » is the graph of the octahe-
dron. Such structures have recently allracled the
attention of architects and chemists, but their mathe-
matical treatment is still at its beginning.

The final topic I would like to discuss deals with
problems related to the question which first brought
polystromas to my attention. As mentioned at the
beginning, simplices of various dimensions are related
by the fact that (i + 1)-dimcnsional oncs arc unifa-

ceted with n-dimensional ones. Similarly for cubes of
various dimensions. The sequences

point, segment  triangle, tetrahedron 4-simplex
and

puint, segment, square, cube, 4-cube, ...
suggest the quest for sequences

point, segment, pentagon, platonic dodecahedron,
regular 120-cell, ..., and

point, segment, hexagon, ...
cte.

However. the last two examples are usually thought
of as not cxtending beyond the terms just written.
The question that puzzled me 1s whether those
sequences can be extended in any sensible and mca-
ningful way. The answer is again affirmative — at
least in some cases of this general nature. Since the
question is rather imprecise there are different possible
interpretations ; many of them seem to lead to interest-
ing problems in geometry, topology, and combina-
torics.

For example, we have already mentioned the
toroidal maps denoted {6, 3}, . They are 2-poly-
stromas. and it is easily seen that they belong to
{ BG4, C3 . Morcover, if ¢ = 0 or ¢ = b, then

£6,3}, =8 (C €,
Similarly. there exist toroidal maps
{4,4};,,€6(C,C > and {3,6},,6XC;,Cs >

for all non-negative integers b, ¢ they are regular if
¢ =0 orif ¢ = h Maps on 2-manifolds that realize
2-polystromas from ¢ C,, C, » have been investigated
for almost a century, and it is well known that
R {€,, €, » conlains, for each p, g with

1
b e
q

3

Y| =
| =

a member realizable as an infinite regular tiling of the
real hyperbolic plane. It may be conjectured that
R { €, €, > contains infinitely many finite members
for each such pair p. g. However, it 1s not known even
whether cvery ( €, G, » contains somc finitc mem-
bers. Investigations of the question which maps on
2-manifolds realize finite members of { C,. G, » were
started by G. Brunel in 1891 ; later work on this topic
was done by White, Errera, Brahana, Threlfall,
Kagno and many others. Very considerahle advances
concerning the regular members of those families were
obtained in the just completed thesis of S. E. Wilson
(« New lechnigques for the construction of regular

. maps », University of Washington, 1976).

The toroidal maps realizing the 2 polystromas
{ 6.3 },. may clearly be interpreted as the continua-
tions of the scquence « point, edge. hexagon ».
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But another step in this direction is possible. There
exist finite 3-polystromas in the family

QUL e

at least if b and ¢ satisfy 3 < b + ¢ < 4. Some data
on the known examples are given in table 2 ; details
are available on request. All the information avai-
lable at present is consistent with the following :

Conjecture. — For every toroidal map

{6!3}!!,:1 (E).,C)-‘,"’—'(l,].)., <{613}b,c:{333}>

contains finite 3-polystromas. In particular, the « natu-
rally generated » 3-polystroma JC, . is finite.

Here « naturally generated » means that the 3-poly-
stroma J¢,,. is built up. step by step, from disjoint

copies of {6,3},. identifying elements only as
dictated by the vertex figures.

The situation is similar in case of 3-polystromas in
the families ¢ {4.4 },..{4,3} >. The known cases
are summarized in table 3. The 3-polystroma denoted
there by £;, (with 30 vertices and 20 facets) was
independently discovered by H. S. M. Coxeter and
G. C. Shephard, who also found (in a forthcoming
paper in the Canadian J. Math.) a very symmetric
realization of £ ; in the Euclidcan 4-spacc.

At least in some cases, still another step in continu-
ing the sequence is possible. For example

<J€2,Os{39 393}>

contains a 4-polystroma with 6 facets (for each of
which the facet-figure is JC, o) and 12 vertices, while

TARIE 2

The known examples of 3-polystromas in the family {{6,3},.,{3,3} >

Number of 2-faces,

Number of facets, Type of edges, vertices

3-polystroma 2-faces. edges, vertices facet of each facet Remarks
3 5, 10 20) 10 16,3 %, 4,12, 8 {2.6)
J€s.0 12, 54, 108, 54 16,3 }30 9,27, 18 9
465 8 28 5p. 28 16,3 )., 7,21, 14 B .0)
s o 80, 640, 1 280, 640 16,3 }40 16, 48, 32 )
1€, 612 40, 320, 640, 320 {6,306 16, 48, 32 ()
FCy0/4 20, 160, 320, 160 16,3 }a0 16, 48, 32 (@)
Jeay 28,182, 364 182 {6,3}5, 13, 39, 26
¥y /2 14, 91, 182, &1 56,31 1339 26
1l 20, 120, 240, 120 {633 12, 36, 24 @)

() Regular 3-polystroma.

(") The graph is bipartite, the automorphisms of 305 g that preserve the colors form the icosahedral group LI2, 5) of order 60.
(%) Il each lacet 1s realized by a solid torus, the set of the 3-polystroma is the 3-sphere.

(%) The dual €%, of JC, , was independently discovered by A. Altshuler (private communication).
(*) The graph is bipartite, the automorphisms of J€, ; that preserve the colors form the simple group LF(2, 7) of order 168.

TABLE 3

The known examples of 3-polystromas in the family ({ 4,4 },..{4.3} ).

Number of 2-faces,

Number of facets, Type of -edges, vertices
3-polystroma 2-faces, edges, vertices facet of each facet Remarks
ol S G TR {4,4},, 4.8 8
£54 6, 150 26, 3 {4,415, 5105
;5 12, 48, 64,16 (4,4}, 8, 16, 8
£10 20, 90, 120, 30 {4,411, S ARy “), ®,
£30/2 10, 45, 60,15 {4.4}5, 9,18, 9 ()
34 18, 90, 120, 30 {4.4 11,4 10, 20, 10
£i, 42, 273, 364, 91 {4,4};, 13, 26, 13

(") Regular 3-polystroma.

(?) If each facet is realized by a solid torns, the set of the 3-polystroma is the 3-sphere.
() Very symmetric realizations in Euclidean 4-space and 5-space were obtained by H. 8. M. Coxeter and G. C. Shephard.
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{¥5,,{3,3,3}> contains a 4-polystroma with
5 facets and 54 vertices, and another with 15 facets and
162 vertices. It is not known whether other such
4-polystromas exist, and whether any of them may
scrve as the only type of facet of some 5-polystroma
with all vertex-tigures { 3. 3, 3. 3 }. etc. Probably both
questions have affirmative answers.

Not only toroidal maps can serve as facets for 3-
polystromas. If §; dcnotcs thec map on A, the oricn-
table manifold of genus 2, described by Errera (1922)
and Grek (1963), that belongs to R { Cq, C; » (and
has 6 vertices, 12 edges, and 4 hexagonal faces) then
it may be verified that R {8, {4, 3} » contains at
least two members — one a 3-polystroma with
6 facets and 12 vertices, the other with 3 facets and
6 vertices. Another example may be constructed from
the map &, € R { Gy, C3 > on M, also described by
Errera and Grek; &, has 16 vertices, 24 edges, and
6 octagonal faces. R ( &,,{3,3} ) contains a 3-
polystroma with 4 facets and 16 vertices, and another
with 8 facets and 32 vertices. Denoting by .t the
regular map { 8, 3 }, (in Coxeter’s notation) on the
orientable manifold M, of genus 3 (A has 32 vertices,
48 cdges and 12 octagonal faces) it may be shown that
¢ M, { 3.3} ) contains a 3-polystroma with 8 facets

and 64 vertices, and another with 16 facets and
128 vertices. It is probable that many more such
examples exist.

‘I'wo other, rather remarkable, 3-polystromas ',
and &, shall be briefly described.

The hemidodecahedron D = {5.3 }/2 is a map
on the recal projective planc that rcalizes the member
of R {Cs,C;)> obtained by identifving antipodal
points on thc Platonic dodccahcdron. Denoting by
OeR (Cs C,y> the octahedron. the 3-polystroma
q; is an element of R <D, © »; it has 32 facets and
40 vertices. If 1= {3, 5}2eR (G5, Cs)> is the
hemiicosahedron, obtained by identifying the anti-
podal points on the regular icosahedron, then the
3-polystroma &, is 4 member of R <3, D », with
11 facets and 11 vertices. The graph of ¥, is the
complete graph K,,, its automorphism group is
LF(2, 11) of order 660, and T, is selfdual.

In the preceding pages we could only hint at many
aspects of the theory of polystromas. I hope that this
was sufficient to convince the reader that members of
the various families { 4, $ > and R { 4, B > exhibit
remarkable properties. Further study of their combi-
natorial, geometric, algebraic and topological pro-
perties will certainly lead to many new insights.



