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A k-coloritlg of a tiling ls B partition of the se1 of tilts into k subsets (color.~). A coloring is 
called parfcct if each symmetry of the tiling induces a permutation of the colors. The 
checkerboard is a familiar example of a pcrfcct t-coloring of the square tiling. The se! of values k 
for which there exists a perfect k-coloring is Qetcrfminad for each d the three regular tilings of the 
plane (by squares, by regular hexagons, or by equilateral triangles). It is also shown that the set of 
such k is infinite for every tile-transitive tiling of the plane. 

1. introduction 

If the regular tiling of the plane by squares is colored in the familiar checker- 
board pattern, then it is easy to verify that it has the failowing property. Every 
symmetry s of the tiling by (uncolored) square3 can be turned into a “colwcd 

symmetry” by associating with s a suitable permutation of the colors. In other 
words, s will map the checkerboard onto itself if, at the same time, we either 
interchange the two colors, or leave them unchanged. A similar situation holds in 
the ca~ of the coloring of the regular tiling by hexagons with three colors shown in 
Fig. 1. With the symmetry which may be described as “a translat%m to the right by 
one tihz’” is associated the permutatian (123) af the calors, with a eounterclockwlse 
ratatian by 120” abaurt the marked vertex is ass:lciated the permutation (132). and 
M) on. It is easy to see that with curry symmetry a permutation of colors is 
associated in a similar manner. 

Max generally, fct 9 be nny titing of the plane with the property that its 
symmetry group is transitive on the tiles. If .T is colored in such a way that every 
symmetrgt of 9 can ba extended, in this manner, to a “colored symmetry”, then the 
ztllorhtg ile, calbd perfect. 
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Fig. 1. A perfect 3-coloring of the regular tiling by hexagons. 

Fig. 2. A 3-coloring of the regular tiling hy triangles that is very symmetric but not perfect. 

Moot of the welLknown drawings by Escher [3,7] that represent transitive tilings 
r:r~lorcd with k 3 2 colors are perfectly colored. Perfect colorings can also be found 
tn the textile ornaments of the pre-Inca cultures (see, for example [S]), and in many 
other art forms, T%is is probably a consequence of the S&Z&C qp& & sucz) 
colorings. Also, many of the tilings and patterns used to illustrate the crystailog- 
rapbic color groups 16, 9, IO, 121 are perfectly colored. On the other hand, the 
kO>Dr:3ng d rbe regular ,irangular MJJJg simvn >, F&T 2 &?dapJd Prom lb)) is nut 

perfect, since a 180” rotation about the marked midpoint of an edge may not be 
extended to a color symmetry by associating with it any permutation of the colors: 

The aims. of the present paper are as follows: 
( I) to dclermine all perfect colorings of the three regular tilings of the plane, and 
(2) to prove the existence of a denumerable infinity of perfect colorings for any 

t ria99j63-e S&q i-3 335~ ~~BXU+ X& ~BFE ~EWX&$J, &X ;aay ~YZM&GW p&%47 ga2;zcnr. 
These results show that restrictions on the nurmber of cof~~s (as are usually 

imposed i,n the crystallographic literature; see, for example f6, l,OJ} are ad&wy 
and lead to fhe exclusion of many interesiing examples. 

fn Section 2 we shall explain the necessary terminokjgy, and formufate precisely 
c ~e~~~t~ to be proved. The proofs will appear in Sections ~3 and 4, while Secticcpn 5 



will be devoted to a number of remarks and problems related to the results of this 

paper. 
It may be noted that the concept of “color symmetry” used in the definition of 

perfect colorings has already been introduced by van der Waerden and Rurckhardt 

as early as l%I [ 11, l] but only recently (see, for exsnlple [8, 91) has it started 
receiving the attention of other crystallogra,.hers and mathematicians. 

A riling of i ig.r plane is a collection Y =. {T, : i E I = (1,2,3.. . .)} of closed 

topological dis.:* (riles) which covers the Euclidean plane EZ and is such that the 

interiors of the tiles are disjoint. A tiling Y is called transitive if the symmerry group 

S(<TT) (that is, the group of isometries which leave .3i’ invariant) acts transitively on 

the tiles. Such tilings are sometimes called “tile-transitive” or “isohedral”. but the 
simpler terminology is adequate here. In 14) it was shown that there exist precisely 
8I Jypes of transitive tilings. Two transitive tilings Y, and T’2 are said to be of the 
same “type” if there exists a (combinatorial) isomorphism between them such that 
the induced one-one correspondence between the tiles commutes with every 
element of S(YJ = S(Y& Thus two tilings of the same type are (combinatorially) 
indistinguishable. 

A k-c&ring of a tiling Y is a partition of Y into k c&r-classes Y,, i = 1,2, . . ., k, 

whereY,={T,:iEI,}andl,,..., L is a partition of the index set I into non-empty 

sets. In a::cordance with the obvious interpretation, we shall say that each tile of 3, 
has color i. 

Let Y be a transitive tiling and s E S(Y) be a symmetry of 5. A k -coloring of .F 

is said to be cumpatitrk with s if Y preserves the partition of 5 int<> the color-classes 

9- ‘1,. . ., Tk+ In other words, the k-coloring is compatible if there exists a permuta- 
tion CF of the colors 2,2,. . ., k such that s maps each tile of color j into a tile of color 

O$ A k -ccdoring of a transitive tiling Y is called perfecr if it is compatible with every 
symmetry s E S(.?F). 

A pattern in the plane consists of a r*tsfif M together with all the images of M 
under the operations of one of the plane crystallographic groups. The only 

restrictions we must impose are that M be a connected set, and that M and all its 

images be pairwise disjoint. In [C] it was proved that there are precisely 03 types of 

patterns in the plane, and that each type can be represented by a “marked tiling”. 
that is to say, by a transitive tiling. each tile of which bears a “marking” or “motif”. 
Clearly coloring, k-caloring and perfect coloring can be defined for p.ltterns in 

complete analogy with the definitions for transitive tilings. 
The terminology we have introduced enables us to formulate our results in a 

precise manner: 

Thre#~~ 2.h ?%e regular square filireg of the yhe admits a perfect k -coloring if and 
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only if k =n’otk = 2nZ for some positive integer n. The regular hexagonal tiling 
admits a perfect k-coloring if and only if k = n2 or k = 3n2. The regular triangular 
tiling admits a perfect k -coloring if and only if PC k 2n 2, k = 6n 2, k = (3n -. 2)* or 
k = (3n s- 1)2. in each case, for a given k, the perfect k-c&ring is unique. 

Tbewena 2.2. Every transitive tiC?g and euery p&tern in the plane may be perfectly 
k-colored for infinitely many entei.ers k. 

9. bf of Theorem 2.1. 

For each of the three .-egular tilings the arguments are similar, so we shall present 
the proof in detail only for the regular square tiling T. We begin by showing that if a 
k-coloring of T is perfect then k has one of the two stated forms. 

For a given perfect coloring of T we can see that each of the color-classes 9, 
must be congruent to every other color-class T, of T in the sense that T, can be 
brought into coincidence with Si by a symmetry of T. Left m be the smallest 
positive integer such that a horizontal translation by m squares brings a square of 
color 1 into coincidence with another square of color 1. By the congruence of the 
color-classes we can deduce the following: etrery square obtainable from a square of 
color j by a horizontal translation of m squares also has; color j. Further, by 
cortsidering rotation about the center of a tile through 90” we see that exactly the 
same assertion follows for vertical translations also. Thus, for each j, color j is 
assigned trl?, at least, all tiles that form a square lattice of “mesh” m. 

Consider now the color-class T,. Two possibilities arise (see Fig. 3): 



Perfect colorings of rransitiw rilings 239 

(i) either all the tiles of color I lie on a lattice of mesh m, or 

(ii) some other tile has c&r I. 
In case (i) we see that ali mz tiles in the mesh must have different colors. and that 

these same colors are repeated in thk same way in every mesh. Hence k = M 2. III 
Fig. 3(a), m = 5 and only tiles of one color are indicated. 

In case (ii) consider reflections in the horizontal and vertical lines that pass 

through the centers of the tiles of color 1. Due to the minimality of mt, the only 

possible positions for the extra squares of color 1 are at the centers of the meshes, 
and so this situation can arise only if m = 2n is even. Hence each mesh of 
(2n)‘= 4n2 tiIes contains two tiles of color 1, ar;d the number of colors is 

k =$n ’ = 2n”. Fig. 3(b) iilrostrates the case m = 6; again only the tiles of one color 
are indicated. 

The conserve statements to the above atso hold. If we color an m by m square 
patch of tiles with k = m’ different colors. and cover the whole plane by translates 
of this patch, then the resulting k-coloring is perfect. Fig. 4(a) illustrates the case 
m = 5. Similarly, if a 2n by 2n square patch is colored by 2~2’ colors as described 
above, and the plane is covered by translates of this patch, then a perfect 
2n2-coloring is obtained. Fig. 4(b) shows the case n = 3. 

This completes the proof for the square tiling. 
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Fig. 4. 

(a) A perfect 25~oloring of tht: regular Ming by squares. 

(b) A perfect Ukdoring of the regular tiling by squares. 
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(a) k =4 (b)k=9 

(c) k = 12 

Fig. 5. Perfect k -colorings of the tiling by regular hexagons. 

For the hexqonal tiling we proceed in an analogous manner. Orienting the tiling 
as in Fig. 5 (‘XI that one third of tAe edges are vertical) we again let m be rhe 
smallest posirrlve integer such that a horizontal translation by m tiles brings a 
hexagon of color 1 into coincidence with another hexagon of color 1. Then we can 
deduce, as before, that the tiles of cc3lor 1 form, at least, a triangular mesh of side m. 
A fundamental region for the corresponding group of translations is rhomb-like 
(indicated in Zig. 5 by thickened lines) and hence, if there are no further tiles of 
color 1, we have k = m 2 (see Figs. S(a) a3d 5(b) for the cases n = 2 an+ n = 3). On 
the other h,and, if another tile has cotor 1, then, by considering ref!ec,iions in the 
altitudes of the triangles forming the me&es, we see that the only position it can 
~c~py is the center of one oi; the “triangles” of the mesh (see Fig. S(c)). This case 
49niy arises if m = 3rr for some positive integer n, and then k = 3n’. Fqr example, 
Fig. 1 represents the case n = 1, while Fig. 5(c) illustrates the arrangenrent of tiles 

e case n = 2. In Fig. 5 we bave indicated only tiles of one col:,r, but it is 
evident hgow, in each case, the tiling can be completed in a perfect manner by k 

ahxs when k has the stated forms. 
For %he tiling by equilateral triangles the situation is slightly more complicated. 

ly tiles of ‘one particuiar nspect (that is, translations of one another) 
ne m to be t’he smallest sitive integer such that a horizontal 

& (we’re s t%e leng~b of the side of a tile) brings 
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a triangle of color 1 into coincidence with another tile of color 1. Again we deduce 

that the Piles of one aspect of color li form, at least, a triangular mesh of side m. A 

fundamental iegion for the corresponding group of translations is a rholnh 

(indicate:d in Fig. 6 by thickened fines) and hence, if there are no further tiles of 

color 1, we have k = 2m * (see Figs. 6(a) and 6(b) for the cases m = 2 and m = 3). if 

there is another tile of color 1 then the only position it can occupy is tine center of 

one of the triangles of the mesh. Tiiree cases arise: 

(i) If m = 3n then the triangle in the left half of the rhomb has a ce:ntral tile of 

the same aspect as tile tiles forrkng the mesn. Hence we have k = 6~’ (see Figs. 

6(c) anld 6(d) for the cases p1 = 1 and n = 2). 
(ii) If m = 3pt - 2 ther, the triangle i,n the left half of the rhomb has :a central tile 

of the opposite aspect to the tiles forming the mesh. Hence k = (3n - 2)* (see Figs. 

6(e) and 4(f) for the cases n = 2 and n = 3). 

(iii) Finally, if m = 3n - I, then the triangle in the right haif of the rhomb has a 

central tile of the opposite aspect to the tiles forming the l.lesh. Hence k = (3n - 1)’ 

(see Figs. 6(g) md 6(h) for {the cases n = 1 and n = 2). 

In Fig. 6 we have indicated 

each case, the coloring can be 

has &he stated form. 

This concludes the proof 

Theorem 2.1. 

only the tiles of one color, but it is evident how, in 

completed in a perfect manner by k colors, where k 

f, br the triangular tiling, and also the proof of 

(a) k = 8 (b) k = 111 

(c) k = 6 (d) k = 24 

Fig. A. Perfect k‘.~colorings af the regular tiling 3y trianglez3. 

. 
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(c) k = 16 

(g) k=4 

Fig. 6. Continued. 

4. Proof of Theorem 2.2 

It was shown in [4] that the combinatorial structure of each type of transitive 
~~f~~g or pattern jn the plane could be rr=presen~~I by taking If tilings (which we 

aH call the smriregdar tilings), one corresponding to each of thl;: Laves nets, and 



(e) [3.4.6.4] 

(gI [3.12’] 

Tktiee of the semiregular tilings are regular (with the Laves nets 14’1. [Y$, and 

@‘I, respectively) and the existc nce o,f ~~~~ite~~ many perfect colorists of 

already been established in ?lteorem 2.1. The re 

ig. 7. It will bc ~ti*~~~ that sorr?e of ts1ess 
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slightly different form from those illustrated in [4]. in fact, there is considerahhz 
arbitrariness in the shapes of the various tiles, and the reason for choosing the 
particular representatives of Fig. 7 will become apparent in the following discus- 

sion. 
Let US consider, to begin with, the tiling with Laves net [34.63, se+: Fig. 7(a). The 

unions of sets of three tiles (one such triple is shaded in the figure) ,c!ear!y leads to 
the regular tilings by equilateral triangles. Hence a perfect coloring of this net can 
be obtained by taking any perfect coloring of the triangular tiling and either 
assigning the same color to each of the three tiles that form a triangle, or giving 
thc,m, systematically, three distinct colors. We deduce from Theorem 2.1 that this 
construction will lead to perfect colorings of any tiling with net [34.6J by 2n2, 6n”, 
(St1 - 29t, (3n - I)*, 3(3n - 2)2 or 3(3n - l)* colors. We are not asserting, of course, 
that perfect colorings b9 other numbers of colors are impossible. 

The same technique can be applied to six of the other seven nets. For [3.12*] and 
f4.6.121 we consider unions of three or six tiles, as illustrated in Figs. 7(g) and 7(h), 
and deduce in this way perfect colorings from those of tile reguIar tiling by 
triangles. For 132.4.3.4] and f4.J3”] we consider unions of two or four tiles as in Figs. 
7(c) and 7(f), and perfect colorings can then be deduced from those of the regular 
tiling by squares. For [Y.4’] ‘and 13.4.6.41 we consider unions of two, or six, tiles, as 
in Figs. 7(b) and 7(e), and perfect colorings can then be deduced from those of the 
regular tiling by hexagons. 

This leaves only the net [3.6.3.6] to be considered. Here a simple construction 
(for which we are indebted to Stephen Wilson) shows that perfect colorings by 
k = Sn colors are possible, for al! positive integers n. The rhombs of the 
semireguiar tiling lie in three different aspects, and all the tiles of one aspect lie in a 
sequence of parallel rows touching vertex to vertex. Assigning the same color to a!! 
rhombs in a row, and using n colors periodically repeating in each of the three 
directions of rows, leads to a coloring by 3n colors, ltt i.s easy to verify that each such 
coloring is perfect. 

This concludes the proof of Theorem 2.2. It is interesting to note that in this last 
we the number of colors is proportionai to II, whereas in the other seven cases it is 
proportional to R~. Whether this shows that the colorability of ti!ings with net 
l3.6.3.61 is rather special, or whether it is just a consequence of the constructions we 
have used, is an open problem. 

5. Remarks and open problems 

It would be of interest to determine, for each of the 93 types of transitive tiling or 
pattern in the plane, the set of all k for which a perfect k-coloring ,uf the tiling is 
possible. In Theorem 2.1 are have dane fhis for the three regulai tilings, and for 
some other types it is also easily possitik. For exampIe, tilings sf type ,IH 62, 
according to the classification of f4] (see Fig. 8), have a perfect k-coloring if and 



Fig. K. A transitive tik 3 of tpz IH 62. Fig. 9. A transitwe tiling of type IH 61 

onfy if k = a * + b’, where II and 6 are integers satisfying a > 0 and o z= h 3 (1. The 
coloring is uniquely determined by Q and b if b = 0 01. if 6 = Q, but there are two 

(enantiomorphic) colorings in all other cases. On the other hand, tilings of type IH 
61 (see Fig. 9) admit perfect k-colorings for all even values of k as well as for k of 

the form (2n + l)* (and possibly for some other values also). Tilings of types IH 61 
and IH 62 have the same crystallographic symmetry group p4, and the same net 

[4”1. We deduce from these examples that the set of values of k for which perfect 

k-colorings exist depends on the actual type of tilings, as defined in [4], and not 
only on its symmetry group and net. 

In Fig. IO we show a tiling of type IH 28 by Escher 171. This type of tiling also 
admits perfect colorings by k = a’ + 6” colors, and in Fig. 10 we have indicated a 

perfect 5-coloring. In [7] Escher shows a perfect 4-coloring of the same tiling. 

It is obvious that far a given tiling 3 and a fixed k the number of perfect 

k-colorings of 3 is finite. The remark made above concerning tilings of type IH 62 
shows that for some k certain tilings may have distinct perfect k-colorings. It is not 

known what types of tilings or rz)atterns share with the regular tilings the property of 
having at most one perfect k-coloring for each k. 

Every perfect coloring of a ,regular tiling 9 leads to a rqulur map ..& on the torus 

(that is, a map which is regular and reflexive in the terminollogy of [?I). T serves as, a 
universal covering surface of _& and each face of .& corresponds to a colog in 3 
(except in the third and fourth kinds of perfect colorings of the tiling by triangles. 
where each color in 9 corresponds to a pair of “antipodal” faces in A). It would Se 

interesting to investigate the relations between possible types of trafisitive tilings of 

the torus, and perfect colorings of transitive tilings of the plane. 
Another unexplored direction is the investigation of the analogues of our results 

for perfect colorings of transitive tilings of 3- or higher-dimensional spaces, or of 
maps; on compact 2-manifolds. Similar questions may be raised also for tilings in 
which the tiles form 2,3.. . transitivity classes with respect to the group of 
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fig. 10. A perfect S-coloring of a transitive tiling of M.C. Escher. 

symmetries of the tiiing. In srxh variants it would probably be advantageous to 
strengghen the deznition of perfect coloring by the reyuirement that all color- 
cIasse!j be mutually congrwnt. 

J.J. Burckharrtr, Die Bewegungsgruppen der KristallograpPie (Birktiuser, Base& 1966). 
H.S.M. Coxeter and vSr.0.J. Moser, Generzors and Relations for Discrete Groups, 3Fd ed. 
~S~~~g~r, Berlin t 1972:. 
MC. Escher, The Gr@ic Work of MC. Escher (Hawthorne, New York, 1WE); The World of 
M.C. Escher (Abram, New York, 297f). 

nd c;.C. hard, The e&h&one types of isbexltaf tifings d the pfane, Math. 
e FVib. 82 (1977) 177-1915. 

e rc-face Cuftures (San-&hi $hobo, Tokyo? 



Perfect colorings of transitbe tiling5 247 

[6f A.L. Loeb. Color and Symmetry (Wiley-Interscience, New York, 1~71) 
[7] C.H. Macgitlnvry, Symmetry Aspects of M.C. Escher’s Periodic Drawings (Oosthoek, Iltrecht, 

15165). 
[S] M. Sencchal. Point groups and color symmetry. Z. Kristallographie 142 (1975) l-23. 

[9] A.V. Shubnikov and V.A. Kpptsik, Symmetry in Science and Art (Plenum Press, New York. 
1974). 

IlO] A.V. Shubnikov, N.V. Belov and others, Colored Symmetry (Pergamon. Oxford. 1%4). 
[ 111 B.L. van der Waerden and LT. Burckhardz, Farbgruppen, 2. KristaHographie 115 (1%1) 23!-234. 
[12] L. Weber. Die Symmetrie homogener ebener Punktsysteme. Z. Kristallographie 70 (1929) 309-327. 


