Discrete Mathematics 20 (1977 235-247.
@ North-Holland Publishing Company

PERFECT COLORINGS OF TRANSITIVE TILINGS
AND PATTERNS IN THE PLANE*

Branko GRUNBAUM
University of Washington, Seattle, WA 98195, U.S.A.

G. C. SHEPHARD.

University of British Columbia, Vancouver, B.C., Canada

Received 22 July 1976
Revised 7 January 1977

A k-coloring of a tiling is a partition of the set of tiles into k subsets (color.). A coloring is
called perfect if each symmetry of the tiling induces a permutation of the colors. The
checkerboard is a familiar example of a perfect 2-coloring of the square tiling. The set of vatues k
for which there exists a perfect k -coloring is determined for each of the three regular tilings of the
plane (by squares, by regular hexagons, or by equilateral triangles). It is also shown that the set of
such k is infinite for every tile-transitive tiling of the plane.

1. Introduction

If the regular tiling of the plane by squares is colored in the familiar checker-
board pattern, then it is easy to verify that it has the following property. Every
symmetry s of the tiling by (uncolored) squares can be turned into a ‘“‘colored
symmetry” by associating with s a suitable permutation of the colors. In other
words, s will map the checkerboard onto itself if, at the same time, we either
interchange the two colors, or leave them unchanged. A similar situation holds in
the case of the coloring of the regular tiling by hexagons with three colors shown in
Fig. 1. With the symmetry which may be described as “*a translation to the right by
one tile” is associated the permutation (123) of the colors, with a counterclockwise
rotation by 120° about the marked vertex is associated the permutation (132), and
so on. [t is easy to see that with every syminetry a permutation of colors is
associated in a similar manner.

More generally, let & be any tiling of the plane with the property that its
symmetry group is transitive on the tiles. If .7 is colored in such a way that every
symmetry of 7 can be extended, in this manner, to a *“colored symmetry”, then the
coloring is called perfect.

* Research supported by National Science Foundation Grant MPS74-07547 A01 and National
Research Council of Canada Gramt A 7071,
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Fig. 1. A perfect 3-coloring of the regular tiling by hexagons.
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Fig. 2. A 3-coloring of the regular tiling by triangles that is very symmetric but not perfect.

Most of the well-known drawings by Escher [3, 7] that represent transitive tilings
colored with k 2 2 colors are perfectly colored. Perfect colorings can also be found
i the textile ornaments of the pre-Inca cultures (see, for example [5]), and in many
other art forms. This is probably a consequence of the aesthetic appea) of such
colorings. Also, many of the tilings and patterns used to illustrate the crystallog-
raphic color groups {6, 9, 10, 12] are perfectly colored. On the other hand, the
3-coloring of 1he regvdar yiangdar y3ng shown i Fig. 2 ladaped yrom )B)) is not
perfect, since & 180° rotation about the marked midpoint of an edge may not be
extended to a coior symmetry by associating with it any permutation of the colors.

The aims of the present paper are as follows:

(1) to determine all perfect colorings of the three regular tilings of the plane, and

(2) to prove the existence of a denumerable infinity of perfect colorings for any
trassisve B5Ssg 03 SHe ove, 208, ore genrrady, 3o 2any 3rapsiive planar pariern.

These results show that restrictions on the number of colors (as are usually
imposed in the crystallographic literature; see, for example [6, 10]) are arbitrary -
and lead to the exclusion of many interesting examples. ‘

In Section 2 we shall explain the necessary terminolugy, and formulate precisely
the results to be proved. The proofs will appear in Sections 3 and 4, while Section §
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will be devoted to a number of remarks and problems related to the results of this
paper.

It may be noted that the concept of “‘color symmetry” used in the definition of
perfect colorings has already been introduced by van der Waerden and Burckhardt
as early as 1961 [11, 1] but only recently (see, for example [8, 9]) has it started
receiving the attention of other crystallogra,hers and mathematicians.

2. Definitions and results

A diling of i plane is a collection F ={T,: i€ ={1,2,3....}} of closed
topological dis. - (tiles) which covers the Euclidean plane E? and is such that the
interiors of the tiles are disjoint. A tiling 7 is called fransitive if the symmetry group
S(J) (that is, the group of isometries which leave J invariant) acts transitively on
the tiles. Such tilings are sometimes called *‘tile-transitive” or “‘isohedral”, but the
simpler terminology is adequate here. In [4] it was shown that there exist precisely
81 .rypes of transitive tilings. Two transitive tilings 9, and 7, are said to be of the
same “‘type” if there exists a (combinatorial) isomorphism between them such that
the induced one-one correspondence between the tiles commutes with every
element of $(7,) = §(7.). Thus two tilings of the same type are (combinatorially)
indistinguishable.

A k-coloring of a tiling 7 is a partition of F into k color-classes 7,,j =1,2,...,k,
where 7, ={T,:i € I} and 1,,. .., I, is a partition of the index set I into non-empty
sets. In accordance with the obvious interpretation, we shall say that each tile of 7,
has color |.

Let 7 be a transitive tiling and s € $(J) be a symmetry of 7. A k-coloring of .7
is said to be compatible with s if s preserves the partition of 7 into the color-classes
Ty .. .o Tr. In other words, the k-coloring is compatible if there exists a permuta-
tion o of the colors 1,2, . . ., k such that s maps each tile of color § into a tile of color
oj. A k-coloring of a transitive tiling 7 is called perfect if it is compatible with every
symmetry s € S(J).

A pattern in the plane consists of a motif M together with all the images of M
under the operations of one of the plane crystallographic groups. The only
restrictions we must impose are that M be a connected set, and that M and all its
images be pairwise disjoint. In [¢] it was proved that there are precisely 93 types of
patterns in the plane, and that each type can be represented by a “‘marked tiling™.
that is to say, by a transitive tiling. each tile of which bears a “‘marking” or “motif™".
Clearly coloring, k-coloring and perfect coloring can be defined for patterns in
complete analogy with the definitions for transitive tilings.

The terminology we have introduced enables us to formulate our results in a
precise mann:r:

Theorem 2.1. The regular square tiling of the plane admits a perfect k -coloring if and
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only if k = n? or k =2n* for some positive integer n. The regular hexagonal tiling
admits a perfect k -coloring if and only if k = n* or k = 3a’. The regular triangular
tiling admits a perfect k-coloring if and only if k =2n’, k =6n? k =(3n-2Y or
k = (3n - 1). In each case, for a given k, the perfect k-coloring is vnique.

Theorem 2.2. Every transitive tiling and every pattern in the plane may be perfectly
k -colored for infinitely many integers k.

3. Proof of Theorem 2.1.

For each of the three -egular tilings the arguments are similar, so we shall present
the proof in detail only for the regular square tiling 7. We begin by showing that if a
k-coloring of F is perfect then k has one of the two stated forms.

For a given perfect coloring of J we can see that each of the color-classes 7,
must be congruent to every other color-class J; of 7 in the sense that 7, can be
brought into coincidence with J; by a symmetry of 9. Let m be the smallest
positive integer such that a horizontal translation by m squares brings a square of
color 1 into coincidence with another square of color 1. By the congruence of the
color-classes we can deduce the following: every square obtainable from a square of
color j by a horizontal translation of m squares also has color j. Further, by
considering rotation about the center of a tile through 90° we see that exactly the
same assertion follows for vertical translations also. Thus, for each j, color j is
assigned to, at least, all tiles that form a square lattice of “mesh™ m.

Consider now the color-class 7,. Two possibilities arise (see Fig. 3):

5
|

| |

RS Se e s

Fig. 3.



Perfect colorings of transitive tilings 239

(i) either all the tiles of color 1 lie on a lattice of mesh m, or

(ii)) some other tile has cclor 1.

In case (i) we see that all m? tiles in the mesh must kave different coiors. and that
these same colors are repeated in the same way in every mesh. Hence k = m?. In

» ) - - 3 .
Fig. 3(a), m =5 and only tiles of one color are indicated.

In case (ii) consider reflections in the horizontal and vertical lines that pass
through the centers of the tiles of color 1. Due to the minimality of m, the only
possible positions for the cxtra squares of color 1 are at the centers of the meshes,
and so this situation can arise only if m =2n is even. Hence each mesh of
(2n) =4n’ tiles contains two tiles of color 1, ard the number of colors is
k =3n®=2n’. Fig. 3(b) illustrates the case m = 6; again only the tiles of one color
are indicated.

The conserve statements to the above also hold. If we color an m by m square
patch of tiles with k = m* different colors, and cover the whole plane by translates
of this patch, then the resulting k-coloring is perfect. Fig. 4(a) illustrates the case
m = 5. Similarly, if a 2n by 2n square patch is colored by 2n? colors as described
above, and the plane is covered by translates of this patch, then a perfect
2n*-coloring is obtained. Fig. 4(b) shows the case n = 3.

This completes the proof for the square tiling.
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Fig. 4.
{”) A perfect 25-coloring of the regular tiling by squares.
(b) A perfect 18-coloring of the regular tiling by squares.
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Fig. 5. Perfect k-colorings of the tiling by regular hexagons.

For the hexagonal tiling we proceed in an analogous manner. Orienting the tiling
as in Fig. 5 (s0 that one third of the edges are vertical) we again let m be the
smallest pesit.ve integer such that a horizontal translation by m tiles brings a
hexagon of color 1 into coincidence with another hexagon of color 1. Then we can
deduce, as before, that the tiles of color 1 form, at least, a triangular mesh of side m.
A fundamental region for the corresponding group of translations is rhomb-like
(indicated in :%ig. 5 by thickened lines) and hence, if there are no further tiles of
color 1, we have k = m? (see Figs. 5(a) and 5(b) for the cases n =2 and n = 3). On
the other hand, if another tile has color 1, then, by considering refleciions in the
altitudes of the triangles forming the meshes, we see that the only position it can
occupy is the center of one of the “triangles” of the mesh (see Fig. 5(c)). This case
only arises if m = 3n for some positive integer n, and then k = 3n? For example,
Fig. 1 represents the case n = 1, while Fig. 5(c) illustrates the arrangement of tiles
for the case n = 2. In Fig. 5 we have indicated only tiles of one color, but it is
evident how, in each case, the tiling can be completed in a perfect manner by k
colors when k has the stated forms. ,

For the tiling by equilateral triangles the situation is slightly more complicated.
Considering only tiles of one particular aspect (that is, translations of one another)
we again define m to be the smallest positive integer such that a horizontal
translation through a distance mb (where b is the length of the side of a tile) brings
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a triangle of color 1 into coincidence with another tile of color 1. Again we deduce
that the tiles of one aspect of color 1 form, at least, a triangular mesh of side m. A
fundamental region for the corresponding group of translations is a rhomnb
(indicated in Fig. 6 by thickened lines) and hence, if there are no further tiles of
color 1, we have k = 2m?* (see Figs. 6(a) and 6(b) for the cases m =2 and m = 3). if
there is another tile of color 1 then the only position it can occupy is the center of
one of the triangles of the mesh. Three cases arise:

(i) If m = 3n then the triangle in the left half of the rhomb has a central tile of
the same aspect as the tiles forming the mesn. Hence we have k = 6n’ (see Figs.
6(c) and 6(d) for the cases n =1 and n = 2).

(ii) U m =3n — 2 then the triangle in the left hali of the rhomb has a central tile
of the opposite aspect to the tiles forn:ing the mesh. Hence k = (3n - 2)’ (see Figs.
6(e) and 6(f) for the cases n =2 and n = 3).

(iii} Finally, if m = 3n — 1, then the triangle in the right haif of the rhomb has a
central tile of the opposite aspect to the tiles forming the 11esh. Hence k = (3n - 1)’
(see Figs. 6(g) and 6(h) for the cases n =1 and n = 2).

In Fig. 6 we have indicated only the tiles of one color, but it is evident hcw, in
each case, the coloring can be completed in a perfect manner by k colors, where k
has the stated form.

This concludes the proof for the triangular tiling, and also the proof of
Theorem 2.1.

A A AN

ININ/N/NIN/N VAV VAVAY VAVAY VAVAN
V VAV VAV Vi VAVAVAVAVAVAVAVAVAVAV.
(@) k=8 (b) k =18

Fig. 6. Perfect k -colorings of the regular tiling »v triangles.
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Fig. 6. Continued.

4. Proof of Theorem 2.2

It was shown in [4] that the combinatorial structure of each type of transitive
tiing or patiern in the plane could be represented by taking 11 tilings {which we
shalt call the semiregular tilings), one corresponding to each of the Laves nets, and
then marking the ties with & suitable maotif. This shows that ¥ § 35 2 semiregular
tiling, thea any other transitive tiling J' with the same net as J, must have a
symamety googn X7 which s sihatupaf (U7 This e dmalies dhat ary:
perfect color 'ng of 7 is necessarily also ¢ perfect coloring of 7. Hence for a proof
of Theorem 2.2 it suffices to produce an infinite number of perfect colorings for
euzch of the semiregular tilings.
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(a) [3".6] {b) [3"47]

- -

(©) [3°4.3.4) | () [3.6.3.6]

(g} [3.127] ) [4.6.12]

Fig. 7. The eight semiregular tilings that are not regular

Thiee of the semiregular tilings are regular (with the Laves nets [4°], [3°], and
[6°], respectively) and the existence of infinitely many perfect colorings of these has
already been established in Theorem 2.1. The remaining eight semiregular tilings
are shown in Fig. 7. It will be noticed that some of these have been taken in a
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slightly different form from those illustrated in [4]. In fact, there is considerabie
arbitrariness in the shapes of the various tiles, and the reason for choosing the
particular representatives of Fig. 7 will become apparent in the following discus-
sion.

Let us consider, to begin with, the tiling with Laves net [3°.6], se: Fig. 7(a). The
unions of sets of three tiles (one such triple is shaded in the figure) clearly leads to
the regular tilings by equilateral triangles. Hence a perfect coloring of this net can
be obtained by taking any perfect coloring of the triangular tiling and either
assigning the same color to each of the three tiles that form a triangle, or giving
them, systematically, three distinct colors. We deduce from Theoreia 2.1 that this
coustruction will lead to perfect colorings of any tiling with net [3°.6] by 2n?, 6n?,
(3n =2, (3n — 1), 3(3n ~ 2)* or 3(3n — 1)’ colors. We are not asserting, of course,
that perfect colorings by other numbers of colors are impaossible.

The same technique can be applied to six of the other seven nets. For [3.12°] and
{4.6.12] we consider unions of three or six tiles, as illustrated in Figs. 7(g) and 7(h),
and deduce in this way periect colorings from those of the regular tiling by
triangles. For [3%.4.3.4] and [4.8°] we consider unions of two or four tiles as in Figs.
7(c) and 7(f), and perfect colorings can then be deduced from those of the regular
tiling by squares. For [3°.4°] and [3.4.6.4] we consider unions of two, or six, tiles, as
in Figs. 7(b) and 7(e), and perfect colorings can then be deduced from those of the
regular tiling by hexagons.

This leaves only the net [3.6.3.6] to be considered. Here a simple construction
(for which we are indebted te Stephen Wilson) shows that perfect colorings by
k =3n colors are possible, for all positive integers n. The rhombs of the
semiregular tiling lie in thiee different aspects, and all the tiles of one aspect liein a
sequence of parallel rows touching vertex to vertex. Assigning the same color to all
rhombs in a row, and using n colors periodically repeating in each of the three
directions of rows, leads to a coloring by 3n colors. It is easy to verify that each such
coloring is perfect.

This concludes the proof of Theorem 2.2. It is interesting to note that in this last
case the number of colors is proportional to n, whereas in the other seven cases it is
proportional to n’. Whether this shows that the colorability of tilings with net

[3.6.3.6] is rather special, or whether it is just a consequence of the constructions we
have used, is an open problem.

5. Remarks and open problems

It would be of interest to determine, for each of the 93 types of transitive tiling or
pattern in the plane, the set of all k for which a perfect k -coloring of the tiling is
possible. In Theorem 2.1 we have done this for the three regular tilings, and for
some other types it is also easily possiole. For example, tilings of type TH 62,
according to the classification of [4] (sce Fig. 8), have a perfect k-coloring if and
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Fig. 8 A transitive tili* g of type [H 62. Fig. 9. A transitive tiling of type IH 61.

only if k = a’ + b*, where a and b are integers satisfying a >0 and a = b = 0. The
coloring is vniquely determined by a and b if b =0 or if b = g, but there are two
(enantiomorphic) colorings in all other cases. On the other hand, tilings of type IH
61 (see Fig. 9) admit perfect k-colorings for all even values of k as well as for k of
the form (2n + 1)’ (and possibly for some other values also). Tilings of types IH 61
and IH 62 have the same crystallographic symmetry group p4, and the same net
{4']. We deduce from these examples that the set of values of k for which perfect
k -colorings exist depends on the actual type of tilings, as defined in [4], and not
only on its symmetry group and net.

In Fig. 10 we show a tiling of type IH 28 by Escher {71. This type of tiling also
admits perfect colorings by k = a’+ b? colors, and in Fig. 10 we have indicated a
perfect 5-coloring. In [7] Escher shows a perfect 4-coloring of the same tiling.

It is obvious that for a given tiling J and a fixed k the number of perfect
k -colorings of 7 is finite. The remark made above concerning tilings of type 1H 62
shows that for some k certain tilings may have distinct perfect k -colorings. It is not
known what types of tilings or patterns share with the regular tilings the property of
having at most one perfect k-coloring for each k.

Every perfect coloring of a regular tiling 7 leads to a regular map M on the torus
(that is, a map which is regular and reflexive in the terminology of [2]). 7 servesas a
universal covering surface of .#, and each face of # corresponds to a colot in 7
(except in the third and fourth kinds of perfect colorings of the tiling by triangles.
where each color in & corresponds to a pair of *‘antipodal’ faces in .#). It would be
interesting to investigate the relations between possible types of transitive tilings of
the torus, and perfect colorings of iransitive tilings of the plane.

Another unexplored direction is the investigation of the analogues of our results
for perfect colorings of transitive tilings of 3- or higher-dimensional spaces, or of
maps on compact 2-manifolds. Similar questions may be raised also for tilings in
which the tiles form 2,3... transitivity classes with respect to the group of
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Fig. 10. A perfect 5-coforing of a transitive tiling of M.C. Escher.

symmetries of the tiling. In such variants it would prcbably be advantageous to

strengthen the definition of perfect coloring by the requirement that all color-
classes be mutually congruent,
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