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1. INTRODUCTION

During the "Symposium on the Relations Between Infinite-
Dimensional apd Finite-Dimensional Convexity" arranged by the
London Mathematical Society in Durham (England) in Summer 1975, the
authors became interested in various geometric topics thét have been
forced "underground” by the ”mainStream of mathematicsﬂ'Even a Very
cursory examination of the literature revealed the fact that many
questions relating fo crystallography, rigidity of structures, etc.
lead to challenging problems and attractive résults in geomefry.
Some of these were, at one time._knbwn to some m&thematiéiané. but
for the majority of us_they have become loét in the overwhelming
flood of publications. -

On returning to the University of Washington one of us (B.G,)
gave in the Fali Quarter of 1§75/76 a series of informal talks on
this "Lost Mathematics". For the convenience ofbthe listeneré dittoed
~ lecture notes were prepared and distributed as the lectures wént on.
The two main topics of the léctures were tilings and rigidity. The
discussion.of tilings started‘fhe authors oh an intensive investi-
gatioﬁ that led to a series of papers (listed below) and.to the
monograph Grﬂnbapm-Shephard (19791 that is nearing completion.
Notes on these results were distributed-to the audience of the
lectures (and, later, of the "Geometry and Combihatorics" seminar
at the University of Washington) as they were 6btained. and Qere
not included in the "Lectures on Lost Mathematics" notes. The
material on rigidity was presented in Chapters 2 and 3 of_thej
"Lectures®”. The reader of the "Lectures" may easily find signs of
the haste in which they were prepared, as well as of the fact that

they were‘written as adjuncts to the lectures, and not for publi-
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cation. The demonstration of many models helped the audience's
“understanding of the spatial relations:\the drawings in the notes
were meant more to recall these models than to serve as substitutes
for them., ' |

Due to various accidental circumstances a rather large number
of copies of the "Lectures” was circulated. The material on r1g1d1ty
(1n particular. the critique of the literature on frameworks, and
the concept of "tensed frameworks" that has not been con51dered
previously in the mathematical 11terature) attracted some attention,
and references to the "Lectures” appeared in several papers. This
led to additional requests for copies -- but two problems arose.

On the one hand the original stock of the "Lectures" was exhausted;
on the other, to Just reprint them in the original version would be
a dlsserv1ce to readers. since many of the problems posed there have
‘already been solved.

‘ Since a rewriting of the "Iectures"»to account for the new
developments is at present not feasible. we decided to use the
’_occasion of the Special Session on Rigldlty to solve these problems
by reprinting the "Lectures unchanged except for the inclu81on of
a number of marginal remarks that provide access to the new results.
These marginal remarks. collected in Section 2 below, are keyed to
places in the original "Lectures” They are followed by a 1list of
additional references.

It is hoped that this arrangement w111 do Justice to historic
fidelity without confus1ng the reader about the present status of
the various questions. For completeness, the addltlonal bibllography
1ists also recent papers that are not mentioned in the text (although

not all were available to the authors). as well as some of the old
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references for which more precise data have become available.
3* %* . ®

We would also like to use this oécasion to correct the
"Sample conjecture” mentioned in ouf abstract for the Special
Session on Rigidity‘(Abstract 760-D3, Notices Amer. Math. Soc.
25(1978), A-642). Wé ihadvertently omitted from its wording thé;
requirement that the fraﬁework F is convex}_that is, that each
element of F (cable or rod) be contained in the boundary of the

convex hull of F .



>. REMARKS ON THE “LECTURES"

(page 1.3, line -10) For information on the current status
of this problem see Schattschneider»[1978]. Other aspecfs of the
vtheory of planar tilings are investigated in Grinbaum-Shephard
{19773, [1977a], [1977b], (1977¢], (19781, (197821, (1978b], [1978c].
[1978d], (1978e ], (1978f], and a systematic treatment will be
pfesented in Griinbaum-Shephard [1979]; | |

2. (page 1.4, line 6) For a survey of  this area and for

references to the literature see Grilnbaum-Shephard {1978].

. (page 1.4, line =4) For results concerning convex poly-
hedral tiles for the 3-d1men31ona1 space that are far better than
anything mentioned in the mathematical literature see Flscher-

Koeh [1973] and the references given there.

4, (page 1.5, line 5) More details concerning such networks

can be found in A. F. Wells [19771.

5. (page 1. 5. line 11) For a survey of related material see
A. F. Wells (19771, as well as Grﬂnbaum {1977 ] and Grtinbaum-

Shephard [19783._Where additional references may be found.

6. (page 1.6, 11ne 1) The investigation of sucn "aperiodic
tilings underwent an explosive development in the last three years,
though very little has been published on the topic. Some informatlon.
on. the "Penrose tiies" may be found in Gardner [1977]: a detailed
exposition is given in Chapters 10 and 11 of Grﬂnbaum-Shephard {19791].

7. (page 1.6, line 15) It is not clear whether the results

in the literature mean that arbitrarily large parts of each algebraic

S\
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curve can be traced. Precisely what is true in case of algebraic

surfaces, and under what conditions, is even less clear.

. (page 1.6, line =3) The various regidity questions are

dlscussed in great detail in Chapters 2 and 3 of the "Lectures".
(page 1.7. line 5) See also 0tto-[1973] and Pugh [1976].

., (page 2.3, line 9) A different appfoach is présented in
lecture notes by H. Hopf [1946].
11, (page 2.3, line 10) The proof in Gluck [1975] -- although
interesting from several points of view -~ establlshed Cauchy s
rigidity theorem only for simplicial convex polyhedra and not for

all convex polyhedra as claimed.

12. (page 2.3, line 14) For a reéent discussion of such
examples see Goldberg [19781.

13, (page 2.4, line =6) The Bricard polyhedra are not

immersions of the 2-sphere in 3-space, as implied by the text.

14.‘(page 2;5, line -1) The questibns of terminology are
exceedingly vexing. The fact that different authors uée'the same
‘words to describe distinct notions (often without giving précise
definitions) is probably one of the causes of many of the errors
in the literature. It also contributes to the difficulties we have
in understanding the claimsfand proofs preseﬁted by various authors.
This may in some cases be our fault; but there are sufficiently
many instances in which the authors misled themselves to make én
agreement on terminology (and an insistence on clear and comﬁlete
definitions) most highly desirable. It is to be hoped that the

~ Special Sessidn on Rigidity will produce suggestions concerning the
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terminology.
As an example of the problems in communications that arise
(and for which it is not clear to us whether they are due to our
misunderstanding of the writers' intentions, or to an error on their
part) we mention the followings
Writeley (1978, p.12] (see also Abstracts ?60-D4 and 760-D5,
Notices Amer. Math. Soc. 25(1978), A-642) quotes from Crapo-Whiteley
*{1978]: "...For a bar and joint structure with an ﬁnderlyiﬁg planar
' graph the result is very explicit: the set of bars is dependepnt iff
it contains the projection of some honbdegenerate plane-faced

olvhedron from 3-space. ..." The example in Figure 1 - in which
rods under compressibn are shown by solid lines, those under tension
by dotted lines -~ seems to us to contradict this statement, for

it clearly does not arise from any "plane-faced polyhedron from

3-space”.

? -9
al o
o e
Figure 1

15. (page 2.6, line 15) Connelly [1978b] introduced the

“concept of "second order rigidity" and used it to obtain very inte-

resting results.
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16. (page 2.7, line 4) The conjecture has been disproved.veven
for the case in which the manifold is a sphere, by the spectacularly
ingenious examples found by R. Connelly; see Connelly (1978], ([1978a],
Kuiper [19781]. | |
17, (page 2}7, line =7) These "rings of tetrahedra"” are now
available as Schattschneider-Walker (19771].
18. (page 2.7, line =-2) For a related result see Poznyak
(19601, |
19, (page 2.8, line =8) An affirmative solution is given
in Asimow-Roth [19787.
_ 20, (page 2.9, line -5) See, for example, Timoshenko;Young
(1945, p. 1891 .
- 21, (page 2.10, line 6) Conjecture 3 has been established
by Aleksandrov [1950] (see also Asimow-Roth [1978a1) in case no
vertex of the framework is a relatively interior point of any face
of the convex hull of the framework. Without any such restriction
Cdnjecture_B has been proved by Connelly [1978bJ; it appears to be
contained also among the results of Whiteley [1976, Corollary 3.5

and Remark 2], though we were unable to follow the proof.

22, (page 2.10, line -8) The term "cabled ffameworks".
introduced by R. Connelly, is much more appropriate that the "tensed
frameworks" used in the text.

23. (page 2.12, line 2) For the case of the cube see also
D, Wells [1975]. | |

24, (page 2.12, line 5 ) The éonjectUre made in Grinbaum -
Shephard [1975, pP. 31] concerning the minimal number of cables-
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" needed to ineure stiffness is disproved by the example of the
dodecahedral cabled framework in Figure 12 of the text taken together

with Connelly s result about Conjecture 4 (see below).

| 25. (page 2.12; line 8) The conjecture is 1nva11d, even if
restricted to convex frameworks (with no cables), as was shown by
Connelly [1978b, Figure 19] Possibly it becomes valid if it is'
required that each edge of the convex hull is a rod. A beautiful
theorem of Connelly [1978b] establishes just that, under the added
assumptions that the cabled frameﬁork has no nodes other'thahvphe
vertices of its convex hull, and that for each face of the convex
hull the planar cabled framework contained in the face is planarly
1nfin1tes1ma11y rigid. A somewhat weaker result may be found in
Whiteley [1976 Corollary 3.6]; however, we were unable to verify .

the proof (see Remark 14, above)

26, (page 2.12, line -3) To avoid misunderstandings, it
. should be stressed that each edge of a convex polygon is the inter-
‘section of the polygon with one of its supporting 1lines. (This

notion is called "strictly convex polygon” by some authors.)

27. (page 2.13, 1ine 11) B. Roth (private communication)
has recently established a negative solution of the problem,

28, (page 2.13, line -9) Conjecture 5 has been established
by R. Connelly (private communication). |

29. (page 2.14, line 1) A variant of Conjecture 6 has been
established by B. Roth (private communication).

30, (page 2.15, line -5) The finiteness of the number f(r),
together with several related results, has been established by '

Kahn [19783.
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University of Washington

Brankd Griinbaum: : | Seattle, Fall 1975

-Lectures on

1. Introduction.

Through a concatenation of events I was led, during the past
v éeveral'months, to the realization of the following fact, which
I find rather disturbing:

In a considerable number of fields and professions, people
are engaged in research of purely mathematical questions{ we, as
ﬁathematicians,'not only failed to answer'those'questions previously
-- we are even post factwn unaware that anything has been happening.
No trace of this'sometimes sizable lifefature is found in the

Mathematical Reviews or in the other mathematical survey journals.;

I find this situation distressing for many reasons, - but the

most important one is that we are missing out on much bgautiful
mathematics. One aspect of the loss is that we are (generally)
ignoraﬁtkof many facts and theories - just because they dd not
fit into our (rather harebrained) curricula and the "mainstrcam
of mailhematics". Another aspect is even worse: Interesting,
challéﬁging and important mathemétical pfoblems are not considered
at all, in many cases because the workers in other disciplines
have neither the motivation nor the training to do so.

Let me illustrate these contentions with just a few examples.
While I have no ddubts thaf’thereiare many other instances, ny
éXamples will’(naturally) havé a géometric cbntext, siﬁce gecometry

happens to be a very exciting part of mathematics which I find

V¢
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altogethef.overly neglected.'

Parenthetically I would like to add that it is not very
surprislng that gebmetry,_and{tﬁe mathematics of interest to various
sciences, have beenjjdintly neglected by "mainstream" mathematics;
Sociologists of science will probably dlscover that in human activities
there is the follOW1ng analogy to the sometlmes fatal concentratlon
of pollutants in the ascending links of the food chain. In many of
our endeavors, as the torch of inquiry is passed.on to successive
generations —a process with a time-span of'just.S‘of S0 yearsv—f
the motivation and context of the questions we are investigating
are being rapidly lost, and their objects assume an independenf ,

.. form of'life, complete with procreation of derived questions.
Naturally, after very few generations the process leads to deeply inbred
questions — possibly very hard but rarely of interest to anybbdy bufj
the most devotedvfollowers of some-particulér cult. Ih contrast,
problems arising from other sciences, and frequently also problems
from«geometry (which, after all, is almost a physical scienee) often
lead to questions which have no "elegant" answer and hence tend to
leave us with a feeling of frustratlon unless we are able to
appreciate their inherent beauty. It is probably time to realize
that "elegance" - or should we say "gllbness" - is not always the most
desirable goal in mathematics. Possibly a better attitude for many
of us would be to try to ﬁake some headway with the "messy"
questions; the uhsolved parte would continue to prod us on and would
help fight the incibient sterility of many mathematical disciplines.

" I should like to stress that T am not proposing that we all
turn into "applied" mathematicians overnight. I am not expecting us

to go (or to even attempt to go) and solve problems in other areas,

SN LY
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“but - as ﬁas been happening throughout'history - to obtain from the
}outside inspiration and motivation fbr purely mathematical
investigations; it would seem reasonable to expect that if any
_worthwhile mathématics results, other disciplines would derive
benefits as well., '

Note that a similar interaction occured (and is still happening)
in connection with computers. Many purely mathematical problems
originated there, and méthematical insights proved to be useful
in very "applied" settings. |

Let's return to the examples I promised; several ofthem will
be examined in thureAtalks in more detailg_and in. some depth. Right
now I only wish to transmit a feeling for the type of problems and
interactions.

In chemistry.‘crystals of elements and of many organic
compounds lead to purely geometric questions about tilingsor packings‘
by congruent objecfs, sometimes with certain side{conditions. The -
importance of.questions of that nature was quite clear fo Hilbert
at the turn of the century, who included it among his famous problems.
Despite that, we still do not even know what convex polygons are
tiles‘for the plane ! (A polygon P is a tile if the plane can be -
covered by copies. of-‘P with disjoint interiors.) In cohtrast,
chemists are interested in much more complicated possibilities - such
as tilings with squares and heptagons (or other kinds of polygons),'
that possess a high degree of.symmetry. The related questions
concerning the crystallization of ionic or metallic’ compounds are
(1argely) not at all known to mathematicians. Not to mention
onec other aspect - the systematics and classification of crystals -

which once oécupied people like Schoenflies, but which has since then

(e
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VA= e/

Figure 1. A periodic'tiling‘of the plane by squares and heptagons.
(From F. Blum and F. Bertaut, Acta Cryst. 7(1954), B81-86.)

REVERSAL AND ROTATION occur simultaneously in this ingenious design. When the
stylized maple-leal pattern alternates between black and white, it also rotates 90 degrees.

Figure 2. Some colored symmetries.

(a) 2 colors, from F. Attneave, Scientific Amer., Dec. 1971,62-71.

N
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been completely excised from our collective mathematical consciousness.

That's why, for example, the crystallography in higher dimensions
is being actively pursued - but almost exclusively by physicists,
chemists, etc.iSimilar is the situation concerning the so-called
colored svmmetries - a topic in which hard sciences make contact
with art on a geometric and groub-theofetic ground, of which
mathematiciéns are totally ignorant. |

| I shall return to crystallography & bit later, but let me make
here one more observation. All crystals, and similar structures
periodic. in space, are well known to have symmetries based on 2, 3.
‘and their multiples. But recent experimental evidence indicates that
pentagonal syr~metry does occur, eVen if exceptionally. The explanation
is that this phenomenon may be due to impurities ; in other words to

local perturbations of an otherwise regular tiling or packing. Now

this is a question that leads at once to a whole class of mathematicai

’-problems of the following general'tybe: If we inquire about tilings
of the "punched" plane - that is, the plane from which a small (say
finite) part was deleted - are there any ﬁew possibilities ?'Here.
one should - recall that already Kepler tried to tile the plane by
various combinations‘of pentagons, decagons, penfagrams, etc., -
and it turns out that this is indeed possible; |

In another way of looking at certain types of orystals;
chemists have been led to consider various polyhedra, associated with
atoms or groups of atoms. Many of iheir results concefning packings
of such polyhedra and similar topics were news toime. But an even
greater mathematical challenge is presented by the "networks"
" considered by crystallographers. The question is to classify "regular

networks" - that is, infinite 3-connected graphs with rectilinear

(€
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Figure 2(b). 3 colors, following A. L. Loeb, 'Color and Symmetry',
Wiley-Interscience 1971. ’ '

Figure 2(c). 4 colors.

(€
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Figure 3. An anomalous structure with 5=-fold rotational symmetry
on the surface of a single crystal of gold. (From R. L. Schwoebel,

" J. Appl. Phys. 37(1966), 2515-2516.)
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(e)

Figure 4. (From "Mathematical-Physical Correspondence"; No. 12 (1975),
edited by Stephen Eberhart.) (a) Kepler's tiling of the plane by
pentagons, pentagrams, decagons, and "fused decagon pairs”.

(b),(c) Explanation of Kepler's tiling given by Wolfgang Dessecker

in 1964; each small rhombus in (c¢) is a copy of (b).

Al
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(@ ®) ' ©

fig. § (@) The basic building block of NagTl consisting of an aggregate of five icosahedra arranged approximakely about a fivefold
axis of symmetry. () Two such fivefold rings interpenetrating at right angles in such a way that the central pentagonal prism
in(a) is shared by two icosahedra. (¢) Six interpenctrating fivefold rings forming a complex of 14 icosahedria and 42 centered

pentagonal prisms.

/el “Two icosahedral complexes of the kind shown in Fig.
5(c) sharing one equilateral triangle each with a Laves—
Friauf polyhedron (dark), the center of which is a fourfold
inversion center. Hence, each Laves—Friauf. polyhedron is
shared between four such complexes which are tetrahedrally
arranged around the 4 center. For the sake of perspicuity one
jcosahedron has been removed from each 98-atom complex.

Figure 5. Packings of icosahedra. (From S. Samson and D. A. Hansen,
Acta Cryst. B28(1972), 930 - 935.) :

-
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edges, all of the same length equal to the mlnlmal distance between
‘vertlces, such that geometric symmetrles of the network act
.tran31t1ve1y on the vertlces. A particular questlon, typlcal lor
problems in this area, is: How large can be the girth (= length of
minimal circuit) of 3-valent regular networks ? The maximal known
girth is 12 (in a network found by a chemist, A, F, Wells, in 1954), -
hut it is not known even whether there is an upper bouhd'onrgirth :

" A similar problem (whiCh'eXhibits an analogoue gap between the
range of the empirically found examples and the total lack of
theoretical bounds) was investigated mainly by architects: What
polyhedral surfaces (that is, 2-manifolds) can be formed_hy regular
convex polygons in 3-space. if one insists that (geometric) symmetries
ofkthe;surface act transitively on the vertices. If.only one type of
polygons (n-gons) is allowed, and if k of them meet at each vertex,
the following pairs (n,k) are known to be possible in non-planar |
and non-spherical suyrfaces of this kind: (3,6), (3,7), (3,8), (3,9),
(3,10), (3,12), (B,B), (4,5), (4,6), (5.5), (6,4), . (6,6).
However, no other pair with n > 3 and k> 4 (except (3,4) and (3,5))
has been ruled out as a possibility. | |

A large area of ﬁnexplored ground is suggested by various
Batterﬁs that occur in art, in nature, - and even in mathematics.,
Almost without exception mathematicians tend to equate geometric
patterns with symmetries, and those with groups of transformations;
But many . simple, attractive, and important patterns fail to be
expressible by groups in any reasonable way. Nany such patterns can
be found in the worke of J. Albers, B. Riley and other painters. |

A different type of pattern underlies the tilings constructed by
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Figure 6(b). 6-valent (from 'The world of M. C. Escher’,
Abrams, New York 1971). '
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Figure 6(c). 3-valent.(From 'Models in Structural Inorganic
Chemistry' by A. F. Wells, Oxford 1970.) :

Figure‘G(d). 6-valent. (Sculpture 'Sphere-Web' by F{'Horellet,
1962.)
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. Pigure 10. Design from an advertisment in the Scientific Amer.,April1969.
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Figure 11. A woodcut by M. C., Echer.



1.6 |
<:) R. M. Robinson in his beautiful paper "Undecldablllty and nonperiodlcity
for tilings of the plane" (Inventiones Math. 12(1971), 177-209). It
may be shown to have the remarkable property that for each flnlte part.
of it there exists a_“criticalhsize" such that any square in the plane

that has‘that size'contains a congruent copy of the chosen part..
Possibly it WOuld be worthwhile to investigate in general the
consequences of this property, or of other traits found in different

patterns.

| One last (for today) group-of problems is rooted in phenomena

that are of 1nteres€?arch1tects, engineers, some modern sculptors,

and geometers: The rigidity or moblllty of variously hinged systems

of polygons. rods (= segments), cables, etc. Cauchy's theorem on the

rlgldlty of polyhedra that have as faces rigid polygons hinged along |

.common edges is probably the deepest known result. Another known

fact is that every planar algebralc curve may be traced by a sultable
(:) planar llnkage (that is, system of hlnged rods); probably 'the most .

famous linkage is Peaucelller s, which draws a (segment of a) straight

line, thus solving a problem which re81sted Cayley, Sylvester and

Chebifev - %o mention just a few names. However, the related question

of Hilbert whether every algebraic surface 1n 3J-space can be traced

by a suitable linkage, is still open. The englneerlng literature

contains much that is of interest in this context; some of it is true,

some possibly true but unproved some false. For example, it is

“true (and follows at once from Cauchy's theorem) that if the edges

of a s1mpllclal convex polyhedron are replaced by rods hlnged at thelr
(:) endpoints, the resulting structure will be rigid. The rlgldlty of the

system formed by the edges of any convex polyhedron to which face-

diagonals have been added in such a manner that each face is triangulated_
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}is frequently asserted. It is probably true, but I am not aware of

any proof. The often repeated assertion that a non-planar rigid

system with V vertices must have at least 3v-6 edges (rods) is

false. What happens if some rods are replaced by flex1ble but
jnextensible cables has attracted the curiosity of archltects
(Buckminster Fuller, D. G. Emmerich), artists (Kenneth Snelson)_ 
and-geometérs (G.C. Shephard and myself) - but so far with Qery

few results.
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' Figure 13. Two views of K, Snelson's ‘'Needle Tower', 1968.
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Figure 1l4. 'Northwood III'

by K. Snelson, 1970.
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Figure 1. '
€, 'Structures
Geometri ' autotendantes’ '
je Constructive' by D. G 8 irom *Exercices de
. G. Emmerich, Paris 19
67.
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- (a) (b)

Figﬁfe 16. Various well-known aimple linkages.
(a) Watt, (b) Roberts, (c) éebyélev, (d) Peaucellier.
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2. Rigidity and stiffness.

A convenient starting place for this topic is the rather famous

result knovm (since 1813) as Cauchy's rigidity theorem. In order to

formulate it pfoperly we need a few definitions.‘ | |
Let P and P* be convex polyhedra in the Fuclidean 3-space

E3; we shall say that 99 is an 1somorphlsm between P and P¥

provided Lf is a one- -to-one map from V(P) , the set of verulces of P,

to V(P*) , with the property that a subset V< V(P) is the set of

all vertices of a face of P is and only if “SV(V) is the set of

all vertices of a face of P¥. (Hore intuitively, QQihduces a‘oné—to—

one incidence-preserving map among the faces of the polyhedra.) |
A map Vo from a set A to a set B is an isometri of A and B

provided the distance between any twd points of A 1is the same as the

distance between their images in B . It is well known (although

usually not stated explicitly) and it follows easily from the theorems

‘on congruence of triangles, that if QQ_is an isbmetry befween the
veftestets V(A) and V(B) of convex polygohs. A and B in the
Aplane, theﬁ‘90 may be extended to an isometry petween the polygons:
A and B themselves. Cauchy's theorem is, essentially, an extension
of thié statement to convex,pdlyhedra.

Theorem 1. (Cauchy [18131) IT 99 is an isomorphism between

convex polyhedra P and P* = 99(P)., and if, for each face F of P,
yﬁ induces an isometry between V{(F) and V(yﬂ(F)) ( and hence also

between F and y’(F); then P and P* are isometric (=congruent).

N



‘ 2.2
ﬁess formally, Cauchy's theorem may be (and often is) stated
as follows: | ' |
' Theorem 1%. Two convex polyhedra for which corresponding faces
ﬁre equal (=congruent) and equally arranged, have'equal corresponding'
dihedral angles, and ére themselves COngrﬁeﬁt.

: (Note that we use the word "congruent" synonymously with
“isometric"; congruent sets can be made to coincide either by rigid
motlon alone - in which case they are sometimes said to be "directly
'congruent" - or by reflection and rigid motlon.)'

Stillmore intuitively:

Theorem 1##% ., A convex polyhedron put together from rigid polygons

iﬁ a specified manner is itself rigid.

Note that this formulation is suggested by - and provides an
' ;explanatidn for - the experimental fact that models of polyhedra made
frdm cardboard.polygons.scotCh-taped along common edges.'are quite
rigid when,completed, although many fail to be rigid if even a.single
faceris removed. An example of this failure of rigidity may be observed
with the square antiprism from which one of the squares has been
" removed. | | |
(Hlstorlcal notes and references: Cauchy's theorem seems to-

have been suspected or suggested already by Legendre [1794]. Cauchy s

[1813] proof consists of an'elementary-geometrlc part (see below, D. 2.13)

and a topological part, and is very ingenious and elegant;it was highly
fegarded and’praised, and reproduced in the more advanced texts on
elémentary géometry publiéhed during the XIX#h century. However,
technical defects in the topological part were observed'by Hadamard

[1907] (see also Steinitz [1916]); various repairs were given by

38



®O

2.3
Lebesgue [1909] and others (see the‘differeht editions of Hadamard's
[{1910] "Cours de geoméfrie"). But these efforts helped only partially

" because - as pointed out by E. Steinitz (see Steinitz-Rademscher

(1934, Chapter 16])'the elementary-geometric part of the proof was

2lsc inconplete. The fqut complete - though_rafher iong - proof

3

-

of Ceuchy's theorem was given in Steinitz-Rademacher 119347]; it was

assentially reproduced in Lyusternik L1956],'andothe English translations

of *hat booklet are the only books in English that contain any proof

‘of Cauchy's theorem. A dlfferent (and simpler) complete proof is given

in Aleksandrov [1950], related to it is the proof by Stoker L1768]
Relatively simple direct proofs of the elementary-geometric 1emma have
been g£iven alco by Egloff [1956] and Schoenberg-Zafe&ba 119671]. )

™,z rather delicate nature of'Caﬁchy's theorem is probably best
urderlined by examplee_showing that it is not possible‘éo weakeo mos%t of
its assu‘ptions. This also means th'% the more informel versions of the
tneorem have to be interpreted w1th care. |

In order to present these examples in a reasonaole manner we

should remark that the above definitions of 1somorph1sm and 1sometry

jo not really depend on the convexity of the polyhedra in question,

- and remolv valid for "geometric olyhedral complexes" - that is,
and cegments
‘families of convex polygonsYwith the property that the 1ntersect10n

of any two polygons is either an edge of both, or a vertex of both,
or empty. |

E#ample.l. There exist pairs of non-congrueﬁtconvex polyhedra
that satisfy all the condltlons of Cauchy's theorem except that the
isometries of the correspondlng faces are not in all cases induced

by the isomorphism 39'. An example is 1ndlcated in Figure 1.
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2.

Exémgle 2., If the conVéxity is not assumed for both P and P*
Theorem 1 may fail; this may easily be seen by the example in Flgure 2,

that goes back at least to Legendre (17941,

It is tempting to suggest that the phenomenon exhlblted in
Example 2 is p0351b1e because in the two incongruent polyhgdra with
congruent faces certéin péirs of;édges that cérréspond to each other
have different convexity or concavity charactef With‘respecf to fhe
whole polyhedron. However, following Wunderlich'[1965] we have:

| Example 3. There exist pairs of incongruent octahedra with
corresponding faces congruent and corresponding edges of same °
conﬁexity character.

Frpm a cardboard model of one.of thosé‘polyhedfa the other ié
easily obtained by applying a slight twist. The simplest way to
conétruct such "jumping polyhedra" is to start from a regular 3-sided
right\prism; aﬂd rotate the upper basis slightly.(in its plane) with
_respect to the lower basis; %he'sides of the prism should be replaced

by pairs of triangles, so as to obtain one concave edge in each side.

In Figure 3 (adapted from Wunderlich [19651]) We show the view from
above of such a pair of "jumping octahedra", togethérVWifh their
common "net".
An even more radical failure of the theorem occurs if the
pbiyhedra in question aré allowed torhéve selfintersections. (In other
(:) words, if one considers pblyhedral immersions, and not only embéddings,
of the 2-sphere in EB.) Following a query By Stephanos (1894 ], Bricard
(18957 found selfintersecting octahédra for which there*exists-a whole
one-parameter family of polyhedra with congruent corresponding faces, no
two of which are congruent. These polyhedra are best described by . |

their usual designation "movable octahedra". Later, Bricard (18971
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Figure 3. View from above (with top base removed), and net of

a pair of.fjumping octahedra”.
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2.5
gave a detailed analysis of all such possibilities, which showed that
fthere are three distinct types of "movable octahedra" and completely
determlned their construction. Other papers on the same toplc - extendlng
Bricard' s‘result. explaining it, or duplicating it (or parts of it) -
are Benmett 119121, Wunderlich [1965], lLauwerier [1966], Bottema:L1967] ’
Lebesgue [1967], Dunitz-Waser [1972], Connelly.119?5] The topic_has
relatlon° to the theory of llnkages, some of which we shall mention
later. It also 1s of interest in connection with- the organlc chemlsts'
concerns about nonerlgld ring-structures "of molecules (see Dunatz-Waser
{1972] and the references given thefe). Another direction of related
investigafions}dealé with the rigidity_or.mobilityvbf “equilaterél '
polygons"; see Grilnbaum [1975] for results and references.
The simplest of Bricard's "movable octahedra™" may be descfibed
as follows: | | | | | |
Example 4. Let i?, +b, *+c be the 6 points at unit distance
from the origin on the coordinate axes. Let the triangles of'an octahedron
ve as follows: ~ @,~8,C; ‘a,b,c; b,-b,c; ‘-a;-b,c; a,-a,=c; a,b;-c;
b,~b,-c; - -2,=b,~c. I each of the triangles is rigid, but if the
trlangles are freely hlnged along common edges, then the elfintersecting)
octahedron will be movable. (See Flgure L.)
- Note that in this example the selfintersection occurs all along
the segment c,-¢c ; in order to have physical movability it is simplest
to delete two of the triangles, for example c,-b,c and a,-a,=Ce
In order to descrlbe the different types of fallure in the
attempted cyten51ons of Cauchy s theorem exhibited by the above examples,
and also to prepare for analogous'ultuatlono in other contexts, we

(:) shall make the following definitions.

Y3
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| 2.6

We call a polyhedron P rigid (in a certain class of polyhedra)
if it has the following propertyz Whenever P# is a bolyhedrph (of
that class) that is isomorphic to P ‘and is such that the isomorphism
induces iSometries’of the corresponding faces, thenvthe'isomorphism
induces an isometry of P and P¥*, | |

We call a polyhedron P stiff if.for any fémily of polyhedra
P(t) , with 0 £t < 1, that depend continuously on t, the following
holds: If P(0) = P and if for each t P(t) 4is isomorphic to P(0)
by an isoémorphism that induces 1sometr1es of the correspondlng faces,
then P(t) 1s_1sometrlc to P for all t.

Put simply, P is stiff if, assuming its faces are rigid, it
may not_be’gradually deformed; P is rigid in a:certainvclass'if‘it
may not be deformed even in a discontinuo@s ménner (within:the class
4in question). If P is not stiff we shall éay it is movablé.

(Other notlons related to rlgldlty or stlffness have been
) considered in the llterature, but we shall not dwell on them ‘here.
‘The most popular of these is the so-called "infinitesimal rlgldlty",
which is motivated by mechanical as well as dlfferentlal-geometrlc
considerations; see, for example, Dehn [1916], Gluck [1975]- It should
also be pointed out that the terminology varies,froh author to author,
i requlrlny care when comparlng different texts.)

In the terminology we have Just 1ntroduced Cauchy s theorem
asserts the rigidity of convex volynedra in the class of convex
polyhedra Example 4 (and the example of the square antiprism from

which one square was removed) deal with movable polyhedra, while those

in Examples 2 and 3 are stiff but not rigid.

y
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One of the most attractive open problems is this area is the

xfollow1ng conaecture. a variant of which was made by Euler in- 1766

(see Gluck [1975])
Conjecture 1. Every geometric polyhed:elcomplex which has a

closed 2-manifold embedded in E3 as its underlying point set, 1s_stiff.
It should be noted that various. apparent counterexamples to
Conaecture 1 -= Chinese 1anterns, bellows, accordlons. etc. —

depart from polyhedrality, rigidity, or isometry in the 1ntermed1ate

- stages.

Conjecture 1 is also of a rather delicately balanced nature.
As shown by Brlcard s movable octahedra it fails if immersions are
allowed; it also fails if the embedded manifold has a boundary, and
it is invalid if "almost-manifolds” are allowed in which edges may
belong to’ more than two faces. For rather spectacular "rings of

tetrahedra" that demonstrate the last assertion see Ball-Coxeter

(1974, pp3154. 215], Wheeler (1974]; particularly intriguing specimens,

sklllfuly decorated by ‘'syitable drawings of M. C. Escher, were demonstra-‘

.ted at the Annual Heeting of the Amerlcan Mathematlcal Society in

January 1975 by Prof. D. W. Schattschnelder. The failure in the case

of manifolds w1th boundary is very attractively demonstrated by the
so-called flexagons (see, for example, Gardner [1959, pp. 1 - 141,

(1961, pp.24-31], where also references to the 11terature may be found)

As mildly supporting evidence for the conjecture we may mention the

recent result bf_Gluck [1975] that “"almost all" (in some sense)

polyhedral sphefes embedded in E3 are stiff.

#* 3 #
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| 2.8
A somewhat different type of rigidity problems‘is-of'interest in
mechanical engineering and archifecture.'Abstraéting from questions
arising in the design 6f buildings, bridges, towers, etc., we are led

to the notion of frameworks (or rod-structures). Those are.special

:.geometric polyhedral complexes which are formed by edges and vertices
only, without any 2-dimensional polygons. Thus we may think of a frameé

work as consisting of rigid rods (edges), connected at theirvendpoints

(joints, vertices), and we ask the obviously practical questions about

the rigidity 6r stiffness of such structures. o,
A special class of frameworks are the polyhedral skeleta; a

polyhedral skeleton is a framework the edges of which coincide with
the edges of a convex polyhedron. Recalling that a polyhedron is éalled
simplicial if all its faces'ére triangles, we havé: |

Theorem 2. Polyhedral skeleta of simpliciél convex polyhedra
are rigid (nence stiff). |

For a proof we need only to observe that the lengths of the
sides of a trlangle determine the trlangle (up to 1gometrle:), and to
invoke Cauchy's rigidity theorem.

As a complement of Theorem 2 we have (compare Fullér L1975, p.319],
where a vague statement of the same characterbis dogmatically affirmed):

Con]ec’tuY‘f‘ 2.  The polyhedral skeleton of a nonsimplicial.convex

polyhedron is never stiff in the class of frameworks.
Caution is needed in econnection with Conjecture 2 since, as is
easily seen, there exist nonsimplicial convex polyhedra.such that their

polyhedral skeletons are even rigid in the class of polyhedral'skeleta;

for example, each regular pyramid has that property. However, there
also exist convex polyhedra for which the polyhedral skeleton is not

rigid in the class of polyhedral skeleta; examples to that effect, that

Q!
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satisfy vefy'stringent additional conditions, were given by.Danzer

{1967]1. The polyhedral skeleton of a cube shows that even movabllity

in the class of polyhedral skeleta is pos51b1e. The problem of
characterlzlng polyhedra with skeleta rlgld in the class of polyhedral ‘
skeleta ves posed by Jessen [19671] and again by Shephard L1968]. but

at present there is not even a congecture as to its solution. Similarly
open is the question obtained by asking for stiffness instead of

rlgldltyo

A result often gquoted in the englneerlng literature (see, for
(see also Section 3 of these notes)
example, Parkes (1974, p. 48] for an equivalent formulat1dﬁp asserts

that a etl‘f Iramework with v +vertices has at least e = 3v=5 rods,

While not 211 the ramifications of that question are clear ati present,
the assertion is certainly false in the generality in which it is |
interpreted a2t least by some authors (for example, Cox [1936]; see
belcw, page 2.14), Since the graph of a convex polyhedron P with v
verticeslhas 3v-6 edges'if and only if P is simplicial, even for
frameworko that are polyhedral skeleta the validity of the assertion
depends on that of ConJécture 2, In the slightly more general case
of convex frameworks (see definition below) the assertion is certainly
false unless some additional restrictions are imposed.'It seems that
the basis of the aone assertion‘is the confusion of necessary conditions
with sufficient ones, and of convex frameworks with non-convex ones.
Engineering experience strongly suggests the following cohjecture,
whiéh appears to be accepted as a fact in all felevant literature., It
should be stressed, however, fhat the aims, the termindlogy. and the
methodology of the engineering literature are so different from

those in mathematics that a direct comparison or quotation are well-nigh

impossible.
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For convenience in the sequel, we shall call a framework convex
the boundary of

provided all jts rods (edges) are contained 1nA1ts convex hull - that
boundary of the

1s, in theAconvex hull of its joints (vertices). Clearly polyhedral
skeleta are convex frameworks, and so are the frameworks of Figures -
5, 6, 7. |
Conjecture 3. If the edges of a convex framework triangulafe the

oundary of

Yits convex hull then the framework is stiff.

(A similar question could be posed regarding rigidity; however,
there the sltuatlon is complicated by the possibility of "folding",=-

4

compare Figure 8.)

v There seems to be no way in which an affirmative answer to
Conjecture 3 can be derived from Cauchy's rigidity theorem, or even.
from the stronger results of Aleksandrov [1950] on the determination
of convex polyhedfa through the "inner metric". The reason fof the

inapplicability of these results is the possibility of failure of

. gtiffness by such a deformation of the framework that all the’

intermediate stages fail to:'be convex.

3* % 3

Before proceeding with the discussion of frameworks, we shall
extend the scope of the considerations by introducing the more general

tensed frameworks. The mechanical interpretation of a tensed'framework

is by a collection of rods and inextensible (but flex1ble) cables.

In purely mathematlcal terms, a tensed framework is a (finite) set

of points (its vertices, or joints)for certain palro‘of which their

distance apart is prescrlbed (those are the edges, or rods) whlle for
other pairs only an upper bound on the mutual distance is given (cablpg
of the tensed framework). A member of a tensed framework is either a

rod or a cable. Clearly, frameworks and tensed frameworks are objects
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that flt well 1nto the domain of "metric geometry" (see Blumenthal 119537

for a detalled exposition of this branch of mathematlcs, and for refe-
rences to the literature), although it seems that they have not been
investigated from this point of view. | ‘H |

It is obvious from the definition of tensed frameworks that.we
on purpose disregard the problems that arise 1n the mechanlcal-phy51cal
realizations from the possibilities of 1nterpenetraclon of cables with:
each other or with rods, and of knottlng of cables or of “51deways"

support of rods by other rods or cables. In this respect even tensed

frameworks consisting exclu31ve1y of rods are more general than frameworks,

4

since the definition of the 1atter excludes uhe"cros31ng Vof rods. .
In Figures 9 -20 we illustrate sOme tensed frameworks;. other
examples were given in Flgures 13, 14, and 15 of SectiOn 1. In all
these 1llustrat10ns rods are indicated by heavy lines, cables by thln
ones, and jcints by small 01rcles. ‘ |
' A‘tensed'frameworgzis convex provided all segments between pairs
of points that are the endpoints of a member of F Dbelong to the

boundary of the gonvex hull of F (that is, of the vertices of F ).

A face of a tensed framework F is the tensed framework formed by
those members of F +that have both endpoints'in a'fixedfface of the
convex hull of F . |
The notions of rigidity and stiffness extend to tensed frameworks
in the obvioﬁs way. | -
Questions of stiffness of tensed frameworks arise from and in
the work of archltecbural desleners like Fuller and Emmerich (see, for
example, Fuller [19757, Emmerlch [19671) and the artist nﬂelson (se

Snelson [1971]). of those, only Emmerlcn appears to have been avare of’

the possibility of stiffening the polyhedra skcleton of a non31mplnoldl

§l.
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Figure 9.‘
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(:) tensed framework (see the example at top rlght of Figure 15 in Sectlon

2.12

polyhedron through the addition of cables that turn it into a convex

1). Independently. the general conaecture that every polyhedral skeleton

can be stiffened by inserting as cables sufficiently many;(poselbly all)

(:)the diagonals of its faces was made by Grinbaum-Shephard 119753,

@

Making this conjecture more precise while at the same time

generalizing Conjecture 3, we propose:

Conjecture 4. A convex tensed framework F is stiff whenever

each face of F is a planarly-stiff tensed framework.

Here a tensed framework F 1is called planarli—stiff provided
F is contained in a plane and is stiff in the class of tensed frame-
works contained 1n that plane. Examples of planar tensed Irameworks
that are planarly stlff, and of such that are not, are given in

Figures 10 and 11.

(Planar frameworks that are planarly-infinitesimally rigid

have been 1nvest1gated by Laman [19701.)

As supporting ev1dence for Conjecture 4 we may mention -
besides its esthetic appeal - the fact that its assertion is experi-
mentally confirmed on rather 1arge models in the two cases indicated
in Figure 12'; note that the dodecahedral example has 24 cables
less than the model of Emmerich (Figure 15 of Section 1).

Planarly-stiff tensed frameworks are - it scems -~ not yet vell

understood either. To illustrate this contention, let a tensed rod-nolygor

be any planar tensed framework in which the rods form precisely the
set of edgee of a convex polygon. One affirmative result knovn about
tensed rod-polygons may be formulafed as follows (see illustrations

in center column of Figure 10).

$3
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Figure 11. Examples of planar tensed frameworks that are not

 planarly-stiff.
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~ Cauchy's 1eﬁma. If a tensed rod-polygon P - has cables of

shortest possible length for n-2 consecutive diagonals spanning

just two edges each then P is planarly stlff.

For proof of the lemma we have only to observe that it is Just

the planar case of the elementary-geometric fact mentioned above, in

. eonnection‘with the proofs of Cauchy's rigidity theorem. Thus the books

and papers mentioned on page 2.3 provide proofs of this lemma.

In this instance we see that if the (shortest possible) cables

are present in a tensed rod-polygon P according to a certaiﬁ pattern,

then P is planarly stiff regardless of the metrlc proportlons of P.

One. of the open problems is whether that is typical; more prec1se1y,

if P and P* are tensed rod—polygons that are isomorphic (that is,

have members of the same kind between corresponding vertices) and have

shortest possible cables, are they simultaneously planarly-stiff ?

- In particular, we have no proof even for the following conjecture

(see Figure 10):
" Conjecture 5. 'If the n-sided tensed rod-polygon P has n-2

‘shortest possible cables, n-3 of which share a vertex whlle the last

cable connects the two neighbors of that vertex, then P 1is

planarly-stiff.
The direct verification of Conjecture 5 is easy for n=4, 5 ,

but no way has been found to escape the sharply‘inoreasing complexity

" needed in the proofs for larger n.

One other curious experimental observation that still lacks any

explanation (or proof) is given by:

5
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_ : Conjecture 6. Let P be & stiff tiensed fod-polygon' at.ld -le'_l:

~ P* be the teﬁsed framework obtained by replacing all rods of P by
shortest possible cables and the'caﬁles of P by fods.-Then VP*

is planarly-stiff. | | |

The converse of Conjecture 6 is invalid, as may be verified on
hand of the éxample shown in Figure 13.

3t 3 .‘ +#*

Regarding frameworks and tensed frameworks that are not necessarily:
convex it shoud be pointed out, first, that very little of a
mathematically interpretable and verifiable character seems to‘have
been written. The condition e 2:3v-6 , alleged.to be nebessary for
stiffness of frameworks (see above, page 2.9), is clearly violated
by rigid frameWOrks like the one in Figufe 14 which, if»theré are k
edgesbon the diagonal, has_le = k+9 edges and v = k + 5 veftices.’Such
examples are excluded by some authors as being'of-an "ill-conditionéd"'
type ("...in which the members at a joint are nearly paraliel," -
Parkes [1974, p.24]).-Exampies with e = gv + 1 can be constructed
in which this definition of 'ill-conditioned framework"” is not violated,
although its probable intention is; a very simple such framework (actually
a stiff tehsed framework with v = 8 and with‘only 13 members, of Which
“just 4 are rdds) is shown in Figure . 15 ,vanother (with v = 6 and
e =_11) in Figure 16 . More important is the observation that even
"well-conditioned" frameworks with arbitrarily large Vv -can be found
sé»that e = 2v. An example of ,that nature (actually, again a stiff
tensed framework, with v = 8 , e = 16) is shown in Figure 17 ; it
also contains only 4 rods. Examples with lérger # ( with e = 2v and

containing only v/2 rods) can easily be derived from the one in

Figure 17 .

5
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2.15
‘Concerning the tensed framework represented in Figure 17 it may
be observed that the graph detefmined by its vertices and members- is
the complete bipartite graph Ku Le All its vertices are h-valent,
and its girth (length of shortest c1rcu1t) is also &4; thls contrasts
- with the situation in the case of polyhedralvskeleta. whlch must.
contain either triangles, or trivalent vertices. J
| * #* #* |
Let a tensed framework be called proper ,provided it is stiff,
its cables are shoftest possible (that is, are representablebby
‘straight segments); its members are non-redundant (that is, tﬁe
each vertex meets at least one rod,
omission of any member renders the framework movable)/«and two
»\members meet -. if at all - only at a common endpoint. Rather obviously,
proper tensed frameworks are the "nicest" and "best-behaved" type of
tensed frameworks. One interesting question concerning them (that
parallels similar questions about other types and realizations ofl
graphs and complexes) is how to classify them. One. p0381b111ty,
patterned after the clas51flcatlon of planar polygons in Stelnltz'[1916]'
and Grtnbaum [1975], is the following: We shall say that proper, tensed
frameworks FO and F1 have the same form provided there exists a
family of proper tensed frameworks F(t); 0£& t< 1,d”suoh that
each }F(t) is 1somorph1c to 'FO = F(c) , and F(t) depends contlnuously
on t . It seems rather obvious that proper tensed frameworks with
r rods have only a finite number f(r) of dlfferent-forms; but I
have not seen a complete proof of that assertion. With just a 1little
‘patience it.may be shown that ‘f(3) = 1, a representative of the only
form being the proper tensed framework indicated in Fignre 18 .

Already f(4) is still undetermined; some‘forms'arefindicated.in Figures

15, 16, 17, 19 and 20, It is known that f(4) 2> 20.

Go
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, BrahkovGrﬂnbaum: / ' University of Washington

Seatt;e. Fall 1975
. LECTURES ON “LOST MATHEMATICS"

3. .Stiffness_of_frameworks.

As mentioned on page 2.9 and in other places in Section 2, the
, englneerlng literature contalns many fallacious statements about
stlffness and related toplcs. The following pages stem from an
attempt to clarify and make precise and detailed thls accusation. -
My'interest in the topic derives as much from its intrinsic geometric'
contents as from the desire to find out how could such serious
‘blunders have been committed by so many respected and otherw1se
reasonable investigators, and how could the detection of the errors
have been so l1ate in coming. | - |

We shall 1nvest1gate in deta11 the following assertion, parts of
which are variously attributed to Mohr (18743, Levy [1874] and
F&ppl [18801]: | |

"Theorem”. If a blanar framework with v vertices (joints) and
e edges. (11nks, bars, rods) is planarly stiff, then e )-2v -3 .
if a framework in 3-space, with v vertices and e edges, is stiff then
e> 3v - 6.
| Slnce this "theorem” is the basis of several englneerlng methods
of practical importance, it is extensively used and there is no hope
of giving a complete list of references for it; the following are
among the publlcatlons I have consulted that contaln the above
formulatlon (or part of 1t) .or . some closely related statement

Hermeberg [1892, p.5761, [1903, pp.388, #413], Schur (1897, p.153]
lamb [1928, p.9%4], F8ppl [1926, pp. 167, 2361, Timoshenko-Young

(1945, pp. 45, 1891, Housner-Hudson'[1949, p. 1407, Parkes [1974,p.4817.
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3.2

Some of thesé books do not pretend to prove anything.yAs for those
that do attempt to prove the "Theorem", it is in all cases some
combination of vagueness of definitions - coupled with the appeal to
non-existent "facts" that lead to the meaningless "proofs".

Concernlng the vagueness, the principal problem is in the definltlon
of stiffness. Those authors that at all care to be preclse (Schur [1897]
gives no explanation at all, but presumably follows Henneberg [1892])
define a framework (consisting of vertices and edges) as stiff (some
say “rigid") if it is "incapable of deformation without alteration
of length of at least one of its vars" (lamb [1928, pP. 93-94]), or
by some equivalent wording (F8ppl [1880], Henneberg [1892,p.576],
{1903, p. 3871); this coincides with the‘définition given above
(page 2.6) for polyhedra and used also for ffameworks.ylt is
ﬁnderstood in all those writings that in case of planar frameworks
the stiffnessvis with respect to deformations in the same plane;
~we called thié property "planarly-stiff" (see page 2.12). Howéver,
several of the authofs later cﬁahge their mind by asserting, when
convenlent that this definition was meant to include also the
prohibition of "1nf1n1te51mal deformatlons" (Henneberg [1892. P 57?],
[1903, p. 3861, Féppl [1926, pp. 175-176], Lamb [1928, pp. 96, 1291]),
although the latter is a much more stringent condition; we shall
discuss it later. At any rate, most of the shortcomings in the
_Wproofs" of the "theorem" are not dependent on the‘Choice of méaning
attributed to"stiffness". B

In much of the literature a framework is‘called "just stiff" B
(or "simply stiff") if it ceases to be stiff whenever one of its

edges is deleted,

eg



3.3

The pattern in'one type of “proofs" given for the "Theorem" is
best seen in the following quotation from Iamb (1928, p. 941]:

“"There is a definite relatlon between the number of joints and
bars 1n a plane frame which is just rigid. Let the number of 301nts
be n . Suppose one bar, with its two 301nts. to be fixed; this will
by hypothesis fix the frame. The pos1t10ns, relatlve to this bar,
of the remaining n-2 joints will involve 2(n-2) coordinates
(Cartes1an or other); and these must be completely determlned by the
equations which express that the remaining bars have given lengths.

These eguations must therefore be 2n-4 in number, i.e. the total

number of bars must be 2n-3." [Emphas1s supplied, B.G. ]
The fallacy is committed in the underllned sentence. while in
- a system of linear equations it is true that the variables can be
uniquely determlned only if ‘the number of eqhations exceeds or equals
to, the number of variables, - nothlng of the sort holds for real
solutions of ggggggjig equations of thé type (x -X . )2+(y -y, )z_alJ
1nvolved in the statement that the bar with endp01nts (xi,yi) and
(x .y ) has length alJ . Indeed, it is obvious from the example
of" the planar framework 1nd1cated in Figure 1 that there ex1st stiff
planar,frameworks that have v vertices and only e = v+2 'edges,
as well as (Figure 2) stiff frameworks in 3-space that have v vertices
and only e = v+5 -edges. |
The “"proof" in Henneberg (1892, p.577] is very similar to lamb's,
The second type of "proofs" of the "Theorem" usesvresults (from
the klnematlcs of solids) on the inStantaneous centers of rotation,
applled to the assembly of rods obtalned by omitting one of the rods

from a just stiff framework. The results from kinematics are asserted

to apply to this situation since-"the framework obtained by omitting
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- a rod from a justistiff framework has precisely one degree of freédbm.

énd ité_points are.constrained to move albng well-determined'arcs“
(free translation from Schur (1897, p. 149]). The fallacy here stems

from. the acéeptahce-of the quoted aSsertion as fact - while actually,

as shown by the examples in Figure 1 and 2, the omission of any one
rod from a stiff framework may lead to frameworks with many degrees
of freedom of motion. | .‘

~Arguments similar to this "proof" appear also in F8ppl '[1926,
p.198], Lamb [1928, p.1281.

The'third "proof" relies on a failure to distinguish sufficient
conditions from neceSsary ones. As an examplafy specimen of this
‘fallacy we may méntion the argumentation in Timoshenko-Young [i945,
PP, bh-- 4517, They say: | o

"Beglnnlng with a rigid triangle ABC ... and attaching to this
the bars AD and. BD whlch are plnned together at D o we obtain the
rlgld frame ABCD. ... In the same way, the rigid truss ABCDE wee is
’_obtained by adding tp the rigid portion ABCD the two bars DE and CE,
which are pinned togethér at E. Since the procedure above may’be

cOntinﬁed indefinitely, we conclude that a rigid plane truss can

alwavs be formed-by beginning with three bars pinned together at

their ends in the form of a triangle and then adding'to these two

new bars for each new pin."

Almost idéntical "reasoning" by jumps from examples to the
totality appears in F8ppl [1926, pp. 167-1681].
3 3 3t L
Since the above "Theorem" happens to be valid for "infinitesimally
stiff" frameworks.(see beloﬁ), it could be argued that the authors
of the above "prcofs" Were actually interested in infinitesimally

stiff frameworks, and not in merely stiff ones; in other words, that
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their worst error consists of using sloppy and inaccurate definitions.'

While this excuse may indeed apply to a certaln extent in some cases, -
most objections remain in effect. (It may be mentioned that .

Nielsen [1935] avoids these difficulties by formulatlng‘and proving
tne ”Theorem“'for'"mechanically determined“ frameworks; he does not
mention "stiffness” or “infinitesimal stiffness" at all.);Among'the-
objections to the usual treatment are the foliowing onest

. 1. None of the euthors quoted gave anything resembling a precise
and usable definition of infinitesimal stiffness. Since that'notion»
is more complicated than that of stiffness, the shying away from
formal definition is understandable, - but not excusable. Rigorous
definitions that do not involve “1nf1n1tely~sma11deformatlons ‘are
possible (see, for example, Iaman [1970]), and rather simple criteria
may be given for the infinitesimal stiffness of ffameWorks;.

2. Although many authors are trying to present 1nf1n1te51mal
dstiffness as the only notion of rigidity that 1s natural and important
from the engineering point of view, this attitude is very debatable
v'on several grounds. On the one hand, the lack of infinitesimal
stiffness is in many cases a singularity in the totality ofdpossible
realizatione of a certain structure. For example,ithe six-vertex, ..
nine-rods framework shown in Figure 3(a) is etiff but not infini-
tesimally stiff; however, there exist frameworks (Figure 3(b) )

" that ape infinitesimally stiff and arbitrarily close to the

framework in Figure 3(a); it is enough to choose O# 2 to be
- sufficiently close to 2. Rather obviously, a elassification in which
a’framework is "bad" if a certain length équals 2 but_iS"good"

whenever that length differs frbm-2, can not have a serious claim

L g
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.to_engineering reality or importance. (It may be mentioned that the
framework of FigureAB(a) is asserted to be "rigid" by Housner-
Hudson [1949, p.1501.) |
On the other hand frameworks that are stiff but not infinitesi-
mally stlff (such as those in Flgures 4 and 5, and in Figure 15 to
20 of Section 2 with cables_replaced by rods, as well as the structures
of‘SneISOn, Fuller, and Emmerich mentioned in Sections 1 ahd 2)
| may very well be practically usefull and have engineering importance.
3. The defects in the logic of the proofs mentloned above are
not affected by the distinction between stiff and 1nf1n1te31ma11y
stiff'frameworks..Hence,'although with the substitution of "infini-
tesimally-stiff" for "stiff" the planar case of the "Theorem" is
true and has been proved by lLaman [1970], and the 3-dimensional
case is probably also true and provable by similar methods, the
v"proofs" mentloned above are stlll invalid. .
4. The customary termlnology, 1n whlch nflnlte31mallx stlff
framew;rks (or surfaces) are des1gnated "rlgld" or "stiff" is
(at least.psychologically) misleading, and has actually caused
or contributed to errors. For example; Timoshenko-Young [1945, pp.
80 - 81] speak of trusses that are "not completely rigid" (meaning
stiff but not infinitesimally stiff ones) and even invite the
student "to demonstrate the incomplete riéidity of this. truss four
'Figure 3(a) above] by direct'experiment". As should be expected, in
actual experiments tﬁe Stiffness‘of this framework appers to be just
abeﬁt'the same as that of the “completely rigid" ones in Figure 3(b)
with O{ # 2 but close to 2. : | | |
Another example of errors in thinking that are probably 1nduced

by the laxity in terminology is the following: Many authors seem to

13



' be convinced that the only frameworks that are stiff but not
1nf1nitesimally stiff are those that satisfy the ‘equation e = 3v -6
(or e = 2v - 3 in case of planarly-stiff planar frameworks) but are

"critical" due to some collinearity, parallellism or coplanarity of
"to0 many edges.: Explanations, examples, and comments in this
spirit are given, among others, in F8ppl [1926 Sections 56, 57]»,
Iamb [1928, Sections 55, 561], Tlmoshenko-Young (1945, pp. 80-821.
This completely ignores the possibillty of stiff (but not 1nfinite-.
simally stiff) frameworks such as the one in Figure 5 (with e =12
£ 2v - 3 = 13) or the other ones_mentloned on page 3.6.

* « » ‘

The infinitesimally stiff frameWOrks havevtheafollcﬁing property:
If any system of forces in equilibrium is applied to the vertices
of the framework, longitudinal tensions and/or‘compressions may
be formed in the rods so that the forces at each vertex are in
equilibrium. Conversely, any framework that is "statlcally determlned"
in this sense 1s also 1nf1n1tes1mally stiff. The 1ntellectually
untidy s1tuat10n concerning the "Theorem" that was described above
probably arose from a combination of two forces: The. failure to
keep apart "motion" from "infinitesimal deformation" prOV1ded the
push -= away from the nalve "stiffnessﬂ It combined with the pull
exerted by the equivalence of the (obV1ously meanlngful) concept
of "statically determined” with vinfinitesimally stiff". The resultlng
aggregate proved its utlllty by enabllng the computatlon of forces
and stresses, = S0 why worry about "minor" difficulties with the
basic notions? Moreover, since infinitesimal'stiffness‘allows (and
emen jnvites) the appllcatlon of various powerful methods of analysis,
and is related to analogous notions in the theory of surfaces, - it

is not hard to understand that vagueness in the basics is a prlce

¢
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gladly paid for a selfcontained body of interconnected facts and
computational methods. The arrangement is completely safe from an

engineering point of view -- its only fpractical" drawback'(that is,

not counting the intellectual discomfort) being the exclusion of the

'stiff but not infinitesimally stiff frameworks from consideration.
This situation appears to be slowly'changing (see the Introduction
of Iaman [1970]), - but I have not found traces of the change in

textbooks on structural engineefing.
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