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Abstract— In this paper we are concerned with the challenge

of flight control of computationally-constrained micro-aerial

vehicles that must rely primarily on vision to navigate confined

spaces. We turn to insects for inspiration. We demonstrate

that it is possible to control a robot with inertial, flight-like

dynamics in the plane using insect-inspired visual autocor-

relators or “elementary motion detectors” (EMDs) to detect

patterns of visual optic flow. The controller, which requires

minimal computation, receives visual information from a small

omnidirectional array of visual sensors and computes thrust

outputs for a fan pair to stabilize motion along the centerline

of a corridor. To design the controller, we provide a frequency-

domain analysis of the response of an array of correlators

to a flat moving wall. The model incorporates the effects of

motion parallax and perspective and provides a means for

computing appropriate inter-sensor angular spacing and visual

blurring. The controller estimates the state of robot motion

by decomposing the correlator response into harmonics, an

analogous operation to that performed by tangential cells in

the fly. This work constitutes the first-known demonstration

of control of non-kinematic inertial dynamics using purely

correlators.

I. INTRODUCTION

Autonomous flight by an insect-sized robot will require
feats of miniaturization on multiple fronts: actuation, system
integration, power use, and even computation. For instance, it
may be necessary to replace electric motors and ball bearings
with piezo actuators and flexure joints because of scaling
considerations [1]. In this work we are concerned with the
sensors and feedback control of such a vehicle, aiming to
insure it flies stably and keeps collisions to a minimum.

Miniaturization may require dispensing with traditional
sensors and looking toward biology for inspiration. Larger
unmanned aerial vehicles (UAVs) use radar, lidar, and the
global positioning system (GPS) for self-localization. But
for a tiny robot that may need to fly in enclosed or cluttered
environments, these sophisticted sensors may be unavailable.
The GPS signal will be compromised or provide insufficient
precision or bandwidth [2]. And emissive sensors may use
too much power or be too heavy. In nature, the fly is
a virtuoso flyer among insects that performs under these
constraints [3]. To perform their aerial feats, flies carry
large omnidirectional eyes that sense patterns as well as
visual motion [3]. Considering that our small robot and the
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Fig. 1. The correlator model for visual optic flow estimation in insects. A
pair of visual elements aimed at different angles observes luminance signal
L moving across the retina with retinal velocity ⌫r . The element ⌧ is a delay
or time-lagging low-pass filter and ⇥ is a multiplication or “correlation.” For
a sinusoid of a given spatial frequency, the correlator response R increases
linearly with ⌫r for ⌫r sufficiently small.

Fig. 2. A fan-actuated robot with hovercraft dynamics carries an omnidi-
rectional array of correlators and navigates a corridor. The goal is to move
along the axis, avoiding the walls. A representation of the projection of the
visual environment onto the retina surrounds the robot.

fly operate under similar constraints, we aim here to take
inspiration from the fly in the design of our robot. Despite
its reliance on biomaterials, Nature’s solution is nonetheless
quite adept: flies can land on inverted surfaces and right
themselves within tens of wingbeats after tumbling surprise
take-offs, and can navigate complicated enclosed spaces like
kitchens and often avoid flyswatters [3].

Insects rely heavily on the pattern of optic flow, that is,
the rate of visual motion across the retina (measured in
radians per second), for flight control. In a variety of insects,
including flies, bees, and beetles, visual flow is detected by a
computation that is modelled faithfully by an autocorrelation
scheme in which outputs from neighboring pairs of visual
sensors are delayed and multiplied [4], [5], [6] (Figure 1).
Each pair is known as an “elementary motion detector,” or
EMD. The time-mean response of an EMD pair has the same
sign and, below saturation, is proportional to the magnitude
of the optic flow ⌫

r

.
It is not yet understood the underlying neural mechanism

that performs the delay-and-correlate operation in insects [3],
or why correlation is used rather than a different method such
as the gradient method [6]. Correlator response is strongly
dependent on both spatial frequency and contrast in the
image [5]. For naturalistic imagery, this leads to a low signal-



to-noise ratio that requires averaging over space and time to
obtain a lower-noise estimate [7]. Nevertheless, insects use
correlators in spite of these non-idealities. It may be that
autocorrelation-based control is easy to bootstrap [8] or that
performing a division or matrix inversion as required by the
gradient scheme is too neurally expensive [6]. In any case,
an advantage is that the correlation computation is minimal,
and the output may be sufficient to carry out the feedback
controls tasks required by the fly.

In this work we are concerned with whether the output
of correlators can be employed as the primary source of
information for the controller of a robot with non-kinematic,
flight-like dynamics. Correlators are appealing from the
perspective of controlling small flying vehicles because they
require minimum computation. They eschew serial, digital
computation (for example, comparing lists of visual fea-
tures [9]) in favor of simple operations like addition and
multiplication that could be performed in parallel on low-
power analog silicon. We are concerned with motion in
a corridor (Figure 2) because it is the essential behavior
required for navigating between obstacles in a cluttered
environment. A reflexive corridor following controller could
operate in real-time, freeing a high-level controller to pursue
long range goals such as searching or path planning.

Previous work reported controlling a wheeled robot us-
ing a different motion detection system based on time-of-
flight [10], but this robot had static kinematic motion that
did not admit sway so was much easier to control. Later
results using this optic flow algorithm controlled altitude [11]
and corridor/wall following [12], but rely on an unspecified
mechanism for attitude (yaw or pitch) control. Another
wheeled robot used image interpolation for corridor fol-
lowing [13]. Other controllers have been formulated around
pure optic flow and used a more compute-intensive gradient
algorithm to estimate it [14], [15]. Another flying robot
used a gradient-based algorithm to sense visual expansion to
perform sudden turns in a square arena inspired by the body-
saccades observed in flies [16]. In the domain of simulation
alone, forward velocity regulation [17] and simplified lateral
position control [18] have been demonstrated in a visually-
realistic fruit fly simulator, but these simulations relied on
artificial constraints of certain degrees of freedom.

In this work we report that it is possible to stabilize
the motion of a dynamic fan-actuated hovercraft robot in
the 2D plane along the centerline of a corridor using fly-
like visual correlators (Figure 2). Contributions include a
frequency-domain model for the response of an array of
correlators moving relative to a large flat textured surface. In
addition, we propose decomposing correlator response into
square harmonics for improved performance, rather than the
sinusoidal harmonics of [14].

II. FREQUENCY-DOMAIN ANALYSIS OF
CORRELATORS

A. Correlator response to panoramic image motion

To analyze correlators, we first consider the case of
luminance readings coming from panoramic image motion

as would be induced by self-rotation. Since by Fourier
decomposition an arbitrary image can be represented by a
sum of sinusoids of different frequencies and amplitudes,
we start with an analysis of a single, arbitrary sinusoid.

A single correlator consists of two luminance sensors
oriented at slightly different body-centric angles separated
by an angle �� (Figure 1). Suppose a sinusoid luminance
signal L with spatial frequency f

s

(cycles/rad) moves at ⌫
r

rad/sec in front of the retina. Each sensor reads

L(�, t) = C0 cos(2⇡fs�+ 2⇡f

s

⌫

r

t), (1)

where t is time. The correlator response is R = L2L1d �
L1L2d where the subscript d indicates a delayed or filtered
version of the luminance signal. If a pure delay is used,
the correlator response can oscillate between positive and
negative with increasing ⌫

r

. Accordingly, we preferred low-
pass filter 1

⌧s+1 as the delay element because it never goes
negative. Assuming zero-mean input, it can be shown that
this form of the correlator asymptotically reaches a steady-
state (constant in time) response [7]
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(3)

is the temporal frequency of the sinusoid’s oscillation as it
moves. Initial transients die off with an exponential time
constant ⌧ .

B. Decomposing correlator response

The correlator response to a sinusoid (2) can be decom-
posed into a product of factors

R =

1

2⇡⌧

C

2
TA, (4)

where

C = C0 (5)

is a contrast factor that depends only on the amplitude of the
luminance input L,

T =

f

t

f

2
t

+ 1/(2⇡⌧)

2
(6)

is a temporal factor that depends only on the temporal
frequency f

t

of the sinusoid, and

A = sin 2⇡f

s

�� (7)

is an aliasing factor that depends only on the product of
spatial frequency f

s

and angular separation between the pair
of luminance sensors ��.



C. Incorporating the effect of spatial blurring

We model the luminance sensors as having a Gaussian
sensitivity profile, blurring the image. This is effectively
a spatial-frequency-dependent attenuation of C. Each lumi-
nance sensor has an angle-dependent blurring function

G(�) =

1p
2⇡�

2
exp

✓
� �

2

2�

2

◆
,

where � is proportional to the width of the blurring function.
If the original luminance signal is L0 (1), then by convolving
it with G we get the blurred lumincance signal

L = G � L0.

To find the resultant amplitude attenuation, we turn to the
frequency domain. Because it contains only one frequency,
the Fourier transform ˆ

L0 of L0 is a pair of delta functions
at ±f

s

. Using the property that convolution in the spatial
domain is equivalent to multiplication in the frequency
domain, we take the Fourier transform of G,

ˆ

G(f

s

) = exp
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where f

s

is the spatial frequency, and thus ˆ

L(f

s

) =

ˆ

L0(fs)
ˆ

G(f

s

). The two delta functions of ˆ

L0 are scaled by
ˆ

G(f

s

). When the inverse transform is applied on ˆ

L(f

s

),
a sinusoid is recovered, but in general with a change in
amplitude and phase according to ˆ

G(f

s

). Because ˆ

G is a
real-valued function, the phase is unchanged and the effective
amplitude of the blurred image is thus

C(f

s

) =

ˆ

G(f

s

)C0, (8)

where C0 was the amplitude of the original luminance
sinusoid (1). At low frequencies where f

s

⌧ 1/(2⇡�),
C ⇡ C0, and at high frequencies C ⌧ C0.

D. Incorporating motion parallax and perspective

We would like to extend the equation for R (2) to a moving
flat surface of infinite extent. To do so, we need only consider
how know the spatial and temporal frequencies (f

s

and f

t

)
project onto the retina and change as a function of angle �

and state of the vehicle q.
The vehicle is moving at a velocity v (m/sec) near the

midpoint between two walls pattered with sinusoids with
spatial frequency F

s

cycles/m (Figure 2). The walls are
separated by 2y

d

where y

d

is the desired distance the robot
wants to keep from the walls. The distance to the left and
right walls are y

l

and y

r

respectively, with y

l

+ y

r

= 2y

d

.
The fly’s position ỹ is its distance from the centerline, giving
y

l

= y

d

+ ỹ and y

r

= y

d

� ỹ.
The first matter is to find an expression for how the spatial

frequency F

s

on the walls is projected onto the retina as a
(spatially varying) spatial frequency f

s

. By multiplying the
effect of changing distance to the wall f

s

=

y
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F

s

by the
effect of changing the angle of the wall f

s

=

1
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F

s

, the
spatial frequency f

s

projected onto the retina is

f

s
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F

s

y
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�

, (9)

Fig. 3. Simulated and analytic model correlator response R for different
visual sensor blurring widths �. As � increases, the response diminishes
and simplifies, until it begins to resemble the red line, a scaled version of
the retinal velocity or “optic flow” ⌫r . Thick lines are simulated at 5 kHz,
black lines are from (11-13), and dashed lines are simulated result at 60
Hz with a zero-order hold and are qualitatively the same. The vehicle is
situated 1.5 m from the wall moving at v=0.25 m/s. The red line is scaled
for easier comparison.

where y is the distance to the wall seen by that sensor and �

is the angle relative to the axis of the corridor. (Or alternately,
equate frequency !
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where x = y tan(��⇡/2) is the linear distance
along the wall from the vehicle and d'
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.)
Second, the retinal velocity or “optic flow” ⌫

r

in the
corridor is [14]

⌫

r

= � ˙

✓ +

1

r

(v sin�� ẏ cos�) , (10)

where r =

y

sin�

is the distance to the wall at angle �. ✓ is the
angle of the fly in the counter-clockwise direction relative to
the axis of the corridor.

To find the correlator response in the corridor, we need
only substitute the corresponding f

s

, f
t
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r

f

s
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)

into (5-7), to arrive at
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for the correlators facing the left wall of the corridor. For
the right wall, substitute y

r

for instead of y
l

and negate any
appearance of v. In the rotated frame of the robot, substitute
�

0 � ✓ = �.
The analytic form is faithful to the response under full

simulation (Figure 3). One limitation is that the model
assumes both visual sensors of the correlator observe the
same local spatial frequency f

s

, but in fact f
s

is continually
varying across the retina. This is not a significant problem



because rapid changes in f

s

coincide with high f

s

, which
are blurred out.

III. A CONTROLLER THAT USES CORRELATORS
TO APPROXIMATE RETINAL VELOCITY

The control task is to provide thrust force commands
to a pair of fans operating in unison (thrust u1) or dif-
ferentially (torque u2) on a hovercraft robotic testbed. To
avoid impacting the walls, the controller uses omnidirectional
visual imagery to stabilize its motion along the middle of
the corridor (for details of the robotic implementation, see
Section V). The vehicle rolls on uni-directional roller balls
which allow motion in all directions like a hovercraft with
small linear b and rotational c damping coefficients. The
dynamics of the vehicle in the moving coordinate frame of
the vehicle are thus modelled as

mv̇ = �bv + u1 cos ✓

mÿ = �bẏ + u1 sin ✓

J

¨

✓ = �c

˙

✓ + u2,

where m is mass and J is the rotational moment of inertia
about the center of mass. The vehicle is underactuated
because it cannot generate lateral force directly, but lateral
dynamics are controllable because they are coupled to for-
ward dynamics by the ✓ term.

This inertial (non-kinematic) control problem is similar to
that encountered by the fly, with its aerial dynamics and pair
of independently-controlled wings. An approach for flight
control proposed by Humbert et. al. [14] decomposes the
retinal velocity function ⌫

r

(�), also known as “optic flow,”
into sinusoid basis functions (Fourier harmonics), emulating
the lobula plate tangential cells (LPTCs) of insects [19]. It
can be shown that within a straight corridor, the first few
harmonics correspond implicitly to the state variables of the
vehicle, {v, y, ✓, ˙✓}. Linearizing about an operating point of
baseline motion along the center of the corridor and using
the first few harmonics as the outputs of the system, the
vehicle’s state is both observable and controllable by the fan
pair.

A. Tuning � and �� angles for the environment to approx-
imate retinal velocity ⌫

r

While correlators do not measure pure retinal velocity,
their response rises monotonically with it under certain
conditions. Figure 3 shows that the correlator response have a
complicated shape for low �, but as it is increased (increasing
blurring), its response resembles a Gaussian function and
also the retinal velocity ⌫

r

. It is possible tune the inter-sensor
angle �� and the width of the Gaussian blurring kernel �
together to insure that response appears Gaussian and does
not alias to a negative response.

There are two criteria to satisfy. The first is to insure the
spatial aliasing term A does not go negative in the operating
regime. For this we require that A be positive for a correlator
facing laterally (� = ±⇡/2) no matter where the robot is in
the corridor 0 < y < 2y

d

where y

d

is the desired distance
to be maintained from each wall. This can be insured if

the argument to the sin function 2⇡F

s

y��  ⇡. This puts
an upper limit on ��, and since R is strongest for larger
�� (thereby minimizing the effects of noise) we choose the
upper limit

�� =

1

4F

s
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d

. (14)

The second criterion is to insure that attenuated contrast
factor C

2 falls off sufficiently fast with increasing y that
when A does go negative at y > 2y

d

, the blurring effect
in C has attenuated the response to near zero. Under this
condition, as the vehicle moves still further from the wall
the correlators’ response will remain near zero because all
of the scenery is blurred away. This is preferable to having
aliasing cause the response to go negative. Since the contrast
factor dies off as e

�(2⇡Fs�y)
2

, we set the blurring width �

such that at y = 2y

d

the signal attenuation has diminished
by three standard deviations, or

� =
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Lastly, scale the correlator response so that it matches the
retinal velocity at � = ⇡/2 by the factor
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where v

d

is the desired forward velocity operating point for
the robot.

The foregoing insure that the correlator response will
resemble the pure retinal velocity across � near the desired
operating point of forward motion along the axis of the
corridor, enabling the use of the Humbert controller. Figure 3
shows the correlator response function R(�) for a few
different values of �, showing that the model is faithful to a
full correlator simulation.

B. Implementation in simulation

A simulation environment was written in MATLAB to
render the scene from the perspective of the robot. Visual
updates were received at 60 Hz, equal to the servo rate of the
physical robot’s controller software. The visual environment
consisted of 2880 visual rays, and each of the 64 visual
sensors was simulated with a local Gaussian pool across a
3-� neighborhood of the sensor’s orientation, blurring the
image. The discrete-time low-pass filters in the correlators
were also updated at 60 Hz, and dynamics were integrated
with a zero-order hold. To replicate the actual robot, the
following parameters were used: F

s

= 1 cycle/m, corridor
width 2y

d

= 2.5 m and length 12 m, v
d

= .25 m/s, � = .14 rad
from (15), and �� ⇡ .2 rad from (14) (achieved by us-
ing second-nearest neighbors when constructing correlators),
m = 6 kg, b = 4.45 N-s/m, J = .06 kg-m2, and c = .06

N-m-s.
Because of the difference between correlators and pure

retinal velocity, it was necessary to select different gains
than those reported in [14]. Following the same naming
convention, the lateral gains of K

a0 = �0.1, K
a1 = 0.8, and



Fig. 4. Simulation of robot using Humbert controller (sinusoid harmonics)
and tuned blur width � and correlator distance ��. On the left is the 360�

visual environment used for state estimation by the robot and on the right
the robot is shown by a blue rectangle with its velocity vector a green line.
The robot was stable with this controller, but barely.

K

a2 = 4 were found to give stable performance as shown
in Figure 4. However, because the difficulty of decomposing
the response R (11-13) into sinusoid harmonics analytically,
it was impossible to provide a satisfactory stability analysis.
This led to the design of the more-tractable controller in
Section IV.

IV. A CONTROLLER DESIGNED FOR
CORRELATORS

The limitation with applying the Humbert controller to the
correlator response is that correlators do not behave like the
retinal velocity. In areas of low visual contrast (such as where
it is blurred out at angles near the axis of the corridor) there
is no correlator response, leading to an ambiguity between
˙

✓ and y (Section V). In addition, because of the complexity
of the correlator response R, taking sinusoid harmonics of
this function is analytically intractable, making a stability
analysis impractical.

Our approach is to instead seek an approximation R

0 of the
correlator response that captures its salient characteristics.
With the approximation, it becomes possible to analytically
take square harmonics which are also functionally equivalent
to the wide-field integration performed by the tangential
cells in flies [19], sidestepping the difficulty of taking in-
ner products with sinusoids. To disambiguate y and ˙

✓, an
estimate ˆ

˙

✓ must be made from a non-visual source such as a
gyroscope. With that information, as well as the centroid
of the correlator response to estimate ✓, by taking first-
order Taylor expansions of the sum and difference of the
harmonics, it is possible to explicitly estimate the state.

A. Approximations to correlator model

We start with an approximation to the correlator model,
simplifying (11-13) by making certain assumptions that hold
for the conditions of the robot described in Section V.

1) Aliasing factor (13): A attains an infinite frequency in
the vicinity of � = {0,⇡}. However, the correlator response
is also heavily attenuated by Gaussian blurring C factor
there, meaning that the correlator response at these angles
is nearly zero and can be ignored. In addition, the Gaussian
blurring “bump” around � = ±⇡/2 in C is much narrower
across � than the corresponding “bump” in A, so we may
approximate A as being constant across �.

Fig. 5. Correlator response to state perturbations as a function of body-
frame angle �0. The baseline response R(qd,�0) is shown in grey and
perturbation responses are shown as solid (R(q,�0)) or dashed (approxi-
mation R0(q,�0)) lines. Changes in ✓̇ are essentially indistinguishable from
changes in y, necessitating an externally-derived estimate ˆ̇✓. Changes in ẏ
have essentially no effect on R. The perturbation magnitudes are �v = 0.05
m/s, �y = 0.2 m, �✓ = .2 rad, �✓̇ = 0.08 rad/s, and �ẏ = 0.05 m/s.

2) Temporal factor (12): T rises to a “saturated” max-
imum at f

t

= 1/2⇡⌧ and then drops off, mimicking
the temporal frequency peak observed in studies on insect
behavior. If, however, the temporal frequency is far below
saturation, f

t

⌧ 1/2⇡⌧ , then the f

2
t

term in the denominator
can be neglected. We also assume assume ẏ is small and
neglect it. Though it is amplified by the large factor cot�

near � = {0,⇡}, temporal frequency saturation negates the
effect of this term as cot� grows large, as does the Gaussian
blurring. In simulation, it was found to have little effect on
the correlator response (Figure 5).

3) Perspective approximation: The quantity 1/ sin
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appears repeatedly. To approximate it, substitute ↵ = �± ⇡

2
and perform a Taylor expansion around ↵ = 0 (the same
approximation holds in both cases) to find
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Applying the approximations to equations (11-13) and
truncating the Taylor expansion to 2nd order terms, we arrive
at the tractable approximation R

0 whose factors are
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Full analytic and approximate responses under different
perturbations are shown in Figure 5, showing reasonable
agreement across the perturbations of interest.

B. Finding state variables by square harmonics

There is a finite minimum number of correlator pairs at
different directions � needed to make the system observable.
But we seek an explicit inverse relation between correlator
response and state variables with a significant effect on the
correlator response for ease of constructing a controller. In



analogy to the fly, suppose we have two lobula plate tangen-
tial cells, call them L

L

and L

R

that take the mean response
over the left or right hemisphere, respectively. Because this
integration range is much larger than the width of each
R(�) Gaussian, the integration range may be extended out
to infinity without significantly affecting the result, assuming
the sensor blur width � ⌧ ⇡/2. Thus,
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.

By approximating this ⇡-width square harmonic as an
infinite-domain integral, we need only evaluate integrals
of the form

R
x

2
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dx and
R
e
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2

for which closed-
form limits exist. This avoids taking analytically-intractable
inner products with sinusoids. And because the limits of
integration are much wider than the width of these Gaussian-
like functions, for small ✓ the orientation of the robot may
be ignored here. Integrating,
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where we have defined �
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� and the constant
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0Fs
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⇡/2 for compactness. For L
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, negate v

and substitute y
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for y
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.
By taking the sum and difference of the two L’s (compare

to the zeroth cosine and first sine harmonic),

⌃ = L

L

+ L

R

(20)
� = L

L

� L

R

(21)

as well as the centroid of the bumps, and using internal
knowledge of ˙

✓ gathered from e.g. gyroscopes, the full state
can be extracted as follows.

For a chosen desired operating point q
d

= {y
d

, v

d

, ✓

d

=

0,

˙

✓

d

= 0} there is a corresponding ⌃

d

and �

d

. Shifting
the origin to the desired operating point, ṽ = v � v

d

, ỹ =

y

l

� y

d

= y

d

� y

r

, ˜

⌃ = ⌃ � ⌃

d

, ˜

� = � ��

d

, the shifted
coordinates can be interpreted as error to be driven to zero.

First, ˆ˙✓ is estimated from gyroscopes, a reasonable propo-
sition for both flies and robots. Then, ˆ

✓ is found by taking
the centroid of the two opposite-hemisphere “bumps” from
the perspective of the vehicle, that is, using �

0 instead of �,

ˆ

✓ =

hR(�

0
), |�0|� ⇡/2i
R(�

0
)

⇡ h ˆR(�

0
), |�0|� ⇡/2i
⌃

0
/2⇡

. (22)

where R is the true reading and ˆ

R is the response read in
from sensors. The divisor ⌃

0 is known from the model and
thus can be inverted beforehand to be a multiplicative scaling
factor, avoiding a division operation. This inner product is
similar to the first cosine harmonic, but has a larger domain.

The other states are found by taking Taylor expansions of
˜

⌃ and ˜

� about the origin. For ⌃,

˜

⌃ =

@⌃

@ỹ

����
ỹ=0

ỹ+

@⌃

@ṽ

����
ṽ=0

ṽ+
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˜

✓

����
✓̃=0

˜

✓+

@⌃

@

˜

˙

✓

���� ˜̇
✓=0

˜

˙

✓+. . . (23)

where the ellipsis denotes higher-order terms. Using the
approximation ⌃

0, an analytic form can be found for each of

the derivatives. Both @⌃0

@ṽ

= 0 because the v term changes
sign between L

R

and L

L

(19) and @⌃0

@✓̃

= 0 because by
construction ⌃ does not depend on ✓. Because we have an
estimate ˆ

˙

✓ from gyros, we can rearrange (23) to get the
estimate

ˆ

ỹ =

✓
ˆ

˜

⌃� ˆ

˙

✓
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0

@

˙

✓

◆�
@⌃

0

@y

, (24)

where ˆ

˜

⌃ is read from the sensors. Both derivatives of ⌃

0

are evaluated at q
d

and can be found from (19) and (20)
and can be easily calculated with symbolic software such
as Sympy or Mathematica. As in (22), the divisor can be
inverted beforehand. We can then calculate

ˆ

ṽ =

✓
ˆ

˜

�� ˆ
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@�
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� ˆ
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. (25)

The controller was implemented by using an outer loop
to set a desired orientation ✓

d

according to the estimate of
the lateral distance from the center, ✓

d

= 0.25

ˆ

ỹ to steer the
vehicle to the center. A slightly-damped inner loop regulated
ˆ

✓ with the torque command ⌧ = K

✓

(s + 10)

ˆ

✓

e

where
ˆ

✓

e

= ✓

d

� ˆ

✓ is the ✓ error and K

✓

/J = 3. This controller
was implemented in simulation and was much more stable.
Though we can offer no proof of stability in this report, we
note that this controller (with 2⇥ larger blur width) is able
to stabilize in a corridor patterned with a texture taken from
a real photograph (Figure 6), suggesting its ability to control
motion under more real-world circumstances.

Fig. 6. The second controller has a larger basin of attraction, extending
nearly to the walls of the corridor (too close and it overcompensates) (top).
It is also able to stabilize motion in a corridor patterned with imagery taken
from a real photograph (bottom).

V. ROBOTIC IMPLEMENTATION
We constructed a custom infrared omnidirectional visual

sensor that emulated the eyes of the fly to test the con-
trollers outside of simulation. The sensor was mounted on
a 20⇥35⇥20 cm tall 3 kg robot platform that rolled on
low-friction rollerballs and was actuated by fans powerd
by 12 V NiMH battery [20]. Computation was performed
by an onboard laptop running the RHexLib library on top
of the real-time QNX operating system. Fan forces were
calibrated beforehand and interpolated from a look-up table
to achieve desired forces. An overhead vision system could



Fig. 7. Diagram of the fan-actuated hovercraft robot in its environment.

track position and pose of the robot for analysis afterward
(Figure 7). The parameters of the vehicle and dimensions
of the arena were what were used in the simulation and are
given in Section III-B.

The custom, 64-element visual array used a short segment
of heat-shrink tubing attached to each infrared diode so that
its field of view was narrowed to a blur width of � ⇡ .077 rad
or 4.4

�. The output of the array was sequentially read by
multiplexing through two layers of 8-input analog multiplex-
ors, amplified by operational amplifier, and read into the 8-
bit analog-to-digital converter of a PIC microcontroller. The
microcontroller read the entire array of luminance readings
and communicated the result to the host laptop at 60 Hz
over its parallel port. A spatial discrete Gaussian blurring
was performed in software with � = .11 using the prop-
erty that the convolutions of two Gaussians with standard
deviations �1 and �2 is a Gaussian with standard deviationp

�

2
1 + �

2
2 to arrive at the desired � = .14 rad. Parallel walls

were constructed and illuminated by DC incandescent lights
powered by a large power supply to minimize 60 Hz line
interference. The infrared sensors could detect printed black
vs. white on paper if it was printed by laser, but not by
other printing technologies such as ink-jet printing [21]. To
normalize the luminance to zero, the mean was taken of all
sensors at the beginning of each trial and subtracted out. The
robot and its environment are shown in Figure 8.

Correlator response and velocity estimation of the robot
are shown in Figure 9. Representative trajectories captured
by the overhead vision system are shown in Figure 10. The
robot could navigate the corridor, but not always consistently.
Clumps of lint and cracks in the floor were large disturbances
that were hard to compensate for.

A significant problem was that if it got too close to the
walls it would turn into them rather than away. This can be
explained as follows. The first few sinusoid harmonics of
the retinal velocity ⌫

r

give enough information to observe
the vehicle state. But the zeroth cosine harmonic (the mean
⌫

r

) is a0 = �
p
2

˙

✓ +

vdp
2y2

d

y and is a function of two
state variables. This is not a problem using pure optic flow
because they can be separated using information from the
second cosine harmonic a2 =

v0

2y2
d
y also has information on

y alone. However, using correlators, the two states cannot be

Fig. 8. Fan-actuated hovercraft robot with a 64-element circular omni-
directional array of infrared light sensors (top). The view of each infrared
sensor was constricted by a segment of heat-shrink tubing to increase visual
accuity and eliminate spurious sources of light. Computation was performed
by a subnotebook laptop at the base of the robot and forces were generated
by two ducted fans (black) powered by a NiMH battery (yellow). The “hat”
used by the overhead tracking system attached by velcro to the translucent
piece of acrylic at the top and was removed so that the visual sensor was
visible. The vehicle is shown in its environment, patterned walls lit by DC
incandescent lighting and a low-friction floor.

disambiguated because there is no response near � = {⇡, 0}
because of blurring of the high spatial frequencies. Hence,
being leftward of the centerline of the corridor (stronger
correlator response on left hemisphere) is indistinguishable
from a rightward rotation ˙

✓ < 0 (larger response on left
hemisphere) (see Figure 5). These two conditions require
opposite torque responses to reach the desired y = y

d

,

˙

✓ = 0.
As soon as the robot turned away from the wall arising
from a large detected error in y, its large rotation rate
˙

✓ would immediately eliminate the perceived error and,
overcompensating, the robot would turn back into the wall.
For this reason, the improved controller of Section IV was
devised, but implementation of this controller on the robot
we leave for future work.

VI. CONCLUSIONS AND FUTURE WORK

This paper reports progress on the visual control of micro-
aerial vehicles using a small number of visual sensors. The
controllers rely only on simple-to implement neurologically
plausible multiplies and adds and were computationally effi-
cient, requiring less than 6n multiply-accumulate operations
per step, where n is the number of omnidirectional pixels.

The frequency-domain correlator analysis may extend to
naturalistic scenery with known power spectra (for example,



Fig. 9. Correlator response (top) during a run in which the robot was pulled
along the corridor by a cord. Mean was taken during seconds 4-7. Variations
in mean correlator response arise from variability in visual sensors and inter-
sensor spacing. Comparison (bottom) of velocity measured by overhead
vision system to estimate derived from sin harmonic of correlator response
(filtered with a 10-element box filter).

1/f ) following [7]. It may be extended to a flat surface
projected onto a 3-dimensional hemisphere by incorporat-
ing a longitude-like lateral angle � between the poles of
expansion and contraction, substituting y/ cos� for y. The
sensitivity to frequency or contrast exhibited by correlators
may be mitigated by compressive nonlinearities [7] or by
local contrast estimation [8]. A further question is how many
sensors are needed to reach a desired variance in the state
estimate.

This work is related to [8] and [22] in that both works aim
to stabilize around “snapshot” desired visual response, but
differs in that this work seeks a desired correlator snapshot
corresponding to a continuous state of motion rather than a
fixed pose. Future work may build on both, demonstrating
an ability to learn or “bootstrap” the weighting kernels for
corridor following.
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Fig. 10. Trajectories (left to right) of the robot in the corridor captured
by the overhead vision system. Gaps in the trajectories coincide with areas
where tracking was not available.

REFERENCES

[1] Michael Karpelson, John P. Whitney, Gu-Yeon Wei, and Robert J.
Wood. Energetics of flapping-wing robotic insects: Towards au-
tonomous hovering flight. In International Conference on Intelligent
Robots and Systems, 2010.

[2] Antoine Beyeler, Jean-Christophe Zufferey, and Dario Floreano.
Vision-based control of near-obstacle flight. Autonomous Robots,
27:201–219, 2009. 10.1007/s10514-009-9139-6.

[3] Graham K. Taylor and Holger G Krapp. Sensory systems and flight
stability: What do insects measure and why? Advances in Insect
Physiology, 34:231–316, 2008.

[4] Martin Egelhaaf, Alexander Borst, and Werner Reichardt. Computa-
tional structure of a biological motion-detection system as revealed
by local detector analysis in the fly’s nervous system. Journal of the
Optical Society of America A, 6(7):1070–1087, Jul 1989.

[5] E. Buchner. Photoreception and Vision in Invertebrates, chapter
Behavioral Analysis of Spatial Vision in Insects, pages 561–621.
Plenum, 1984.

[6] Mandyam V. Srinivasan. Honeybees as a model for the study of
visually guided flight, navigation, and biologically inspired robotics.
Physiological Reviews, 91(2):413–460, 2011.

[7] Ron O. Dror, David C. O’Carroll, and Simon B. Laughlin. Accuracy
of velocity estimation by Reichardt Correlators. Journal of the Optical
Society of America A, 18(2):241–252, February 2001.

[8] Andrea Censi, Shuo Han, Sawyer B. Fuller, and Richard M. Murray.
A bio-plausible design for visual attitude stabilization. In IEEE
Conference on Decision and Control, 2009.

[9] Yang Cheng, Mark Maimone, and Larry Matthies. Visual odometry
on the mars exploration rovers - a tool to ensure accurate driving and
science imaging. Robotics and Automation Magazine, 13(2):54 – 62,
June 2006.

[10] Nicolas Franceschini, J. M Pichon, C Blanes, and J. M. Brady. From
insect vision to robot vision. Philosophical Transactions: Biological
Sciences, 337:283–294, 1991.

[11] Nicolas Franceschini, Franck Ruffier, and Julien Serres. A bio-inspired
flying robot sheds light on insect piloting abilities. Current Biology,
17:1–7, 2007.

[12] J. Serres, D. Dray, F. Ruffier, and N. Franceschini. A vision-based
autopilot for a miniature air vehicle: joint speed control and lateral
obstacle avoidance. Autonomou, 25:103–122, 2008.

[13] K. Weber, S. Venkatesh, and M. V. Srinivasan. From Living Eyes to
Seeing Machines, chapter Insect inspired behaviors for the autonomous
control of mobile robots, pages 226–248. Oxford University Press,
1997.

[14] J. Sean Humbert, Richard M. Murray, and Michael H. Dickinson.
Sensorimotor convergence in visual navigation and flight control
systems. In 16th International Federation of Automatic Control World
Congress, Prague, Czech Republic, 2005.

[15] James Sean Humbert and Andrew Maxwell Hyslop. Bioinspired
visuomotor convergence. IEEE Transactions on Robotics, 26:121–
130, 2010.

[16] J.-C. Zufferey and D. Floreano. Fly-inspired visual steering of an
ultralight indoor aircraft. IEEE Transactions on Robotics, 22(1):137–
146, Feb. 2006.

[17] Michael Epstein, Stephen Waydo, Sawyer Fuller, Andrew D. Straw,
William B. Dickson, Michael H. Dickinson, and Richard M. Murray.
Biologically inspired feedback design for Drosophila flight. In
American Control Conference, pages 3395–3401, July 2007.

[18] William B. Dickson, Andrew D. Straw, and Michael H. Dickinson. In-
tegrative model of drosophila flight. Journal of the American Institute
of Aeronautics and Astronautics, 46(9):2150–2164, September 2008.

[19] Holger G. Krapp and Roland Hengstenberg. Estimation of self-
motion by optic flow processing in single visual interneurons. Nature,
384:463–466, 1996.

[20] Timothy Chung, Lars Cremean, William B. Dunbar, Zhipu Jin, Eric
Klavins, David Moore, Abhishek Tiwari, Dave van Gogh, and Stephen
Waydo. A platform for cooperative and control of multiple vehicles:
the caltech multi-vehicle wireless testbed. In Conference on Cooper-
ative Control and Optimization, 2002.

[21] Sawyer B. Fuller, Eric J. Wilhelm, and Joseph M. Jacobson. Ink-jet
printed nanoparticle microelectromechanical systems. IEEE Journal
of Microelectromechanical Systems, 11(1):54–60, Feb. 2002.

[22] Shuo Han, Andrea Censi, Andrew D. Straw, and Richard M. Murray.
A bio-plausible design for visual pose stabilization. In International
Conference on Intelligent Robots and Systems, 2010.


