ME 599/AA546/EE546: Biology-Inspired Robotics

University of Washington, Autumn 2017. Instructor: Dr. Sawyer B. Fuller

Survey and paper preferences. Please return to instructor by end of first class session

Name: _____

Part I Survey to get a sense of the background and level of students in the class. Please mark your answers in the space provided.

- 1. What is your department? (ME, EE, Aero, etc.)
- 2. Master's/Ph.D. and year? (M1, M2, Phd1, etc.)
- 3. Put a check mark next to any of the courses you have already taken. Put a "C" if you are currently enrolled in the course:
 - _____ ME 373/374 or equivalent (UG): Analysis of spring-mass-damper lumped-parameter dynamics
 - _____ ME 471 or equivalent (UG): Feedback control theory
 - _____ ME 489/599: Biomechanics of movement
 - _____ CSE 571: Probabilistic robotics
 - _____ EE 543/544: Kinematics of robot manipulators
 - _____ AMATH/CSE 579: Intelligent control through learning and optimization
 - _____ BI 427: Animal biomechanics
 - _____ CSE/EE 576: Computer vision
 - _____ ME599: Advanced Robotics (Instructor: Ashis Banerjee)
- 4. Are there specific applications of biology-inspired robot control systems concepts that you are interested in?

Part II Please indicate your top four choices of papers you would like to present by marking "1" (top choice) through "4" in the spaces below.

- 1. _____ Braitenberg, V., Vehicles: Experiments in Synthetic Psychology, 1984. A conceptual investigation about how hard-to-analyze behavior forms the basis of life-like systems.
- 2. <u>Collins, Ruina, Tedrake, & Wisse, "Efficient bipedal robots based on passive dynamic walkers,"</u> Science, 2005.
- 3. _____ Franceschini, Ruffier, Serres, "A Bio-inspired Flying Robot Sheds Light on Insect Piloting Abilities," *Current Biology*, 2007.

How insects regulate their altitude above the ground using vision, without a specific sensor for distance, is not known. This paper suggests a new possible explanation that matches anecdotal evidence for how insects respond to wind.

4. _____ Cheney N, Bongard J, SunSpiral V, and Lipson H, "Scalable Co-Optimization of Morphology and Control in Embodied Machines," ArXiv preprint: June 2017. Robots designed through artificial evolution tend to get stuck at local equilibria, limiting their performance. This paper shows that by "protecting" innovations, allowing them a number of generations to adapt to sudden changes in shape, evolution is enhanced.

- 5. _____ Srinivasan, Zhang, Lehrer, & Collett, "Honeybee navigation en route to the goal: visual flight control and odometry," Journal of Experimental Biology, 1996. Simple behaviors in the honeybee help them navigate between flowers and the hive.
- 6. _____ Ijspeert, Crespi, Ryczko, & Cabelguen, "From swimming to walking with a salamander robot driven by a spinal cord model," *Science*, 2007.
- 7. _____Smith, "An investigation of the mechanism underlying nest construction in the mud wasp," Animal Behavior, 1974. This paper revealed an example of stigmergy: how animals can perform complicated tasks by storing and interacting with information encoded in the environment, e.g. parts of a nest. In concert with a series of reflexive behaviors in the animal, a sophisticated nest is formed.
- Jindrich & Full, "Dynamic stabilization of rapid hexapedal locomotion," Journal of Experimental Biology, 2002.
 A canon mounted to the back of a running cockroach reveals that it recovers from perturbation primarily by properties intrinsic to its musculoskeletal system, rather than by feedback from its nervous system.
- Wood, Robert J., "The first takeoff of a biologically inspired at-scale robotic insect," *IEEE Transactions on Robotics*, 2008.
 Suggested Additionally: Ma, Chirarattananon, Fuller, & Wood, "Controlled flight of an insect-scale, biologically-inspired robot," *Science* 2013. *How to design and build a mechanical fly.*
- 10. _____ SH Collins, Wisse, & Ruina. "A three-dimensional passive-dynamic walking robot with two legs and knees," The International Journal of Robotics Research, 2001. This paper built on a classic passive dynamic walking robot result to add a more realistic 3D walking gait, partly by using swinging arms.
- 11. _____ Werfel, Petersen, Nagpal, "Designing collective behavior in a termite-inspired robot construction team," Science, 2014. Simple rules are downloaded onto a collection of termite robots that encode the design of a construction. Each robot's interaction with the environment and the portion of the construction that has already been placed determine the shape of the final result.
- Macnab & Koshland, "The Gradient-Sensing Mechanism in Bacterial Chemotaxis," Proc. National Academy of Sciences, 1972.
 A simple, reactive model that explains how bacteria can move toward a source of sugar without any sort of high-level controller or knowledge of where it is.
- 13. _____ Hawkes E, Blumenschein L, Greer JD, and Okamura A, "A soft robot that navigates its environment through growth," *Science Robotics*, 2017.
- 14. Lilienthal A, Duckett T, "Experimental Analysis of Gas-Sensitive Braitenberg Vehicles," *Advanced Robotics*, 2004.

The following require a background in machine learning and probability as is covered in CSE571, ME/EE 549 (Kalman filtering), or ME599 (Advanced robotics). If you request and are assigned one of the papers below, please make sure to *skim it early* to make sure you will be able to understand it.

15. _____ M Milford and G Wyeth, "Mapping a Suburb With a Single Camera Using a Biologically Inspired SLAM System," *IEEE Transactions on Robotics*, 2008. *This paper uses a rat-inspired minimalist mapping approach to use a single camera to build a topological map and determine where a robot car is in a suburban neighborhood.*

16. <u>Heess</u> N, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T, Wang Z, Eslami A, Riedmiller M, Silver D. "Emergence of locomotion behaviors in rich environments." arXiv:1707.02286. July 7 2017.

Recent results from DeepMind: walking behavior emerges.