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REVIEW
What does robotics offer animal behaviour?
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There is a growing body of robot-based research that makes a serious claim to be a new methodology for
biology. Robots can be used as models of specific animal systems to test hypotheses regarding the control
of behaviour. At levels from learning algorithms to specific dendritic circuits, implementing a proposed
controller in a robotic device tests it against real environments in a way that is difficult to simulate. This
often provides insight into the true nature of the problem. It also enforces complete specifications and
combines bodies of data. Current work can sometimes be criticized for drawing unjustified conclusions
given the limited evaluation and inevitable inaccuracies of robot models. Nevertheless, this approach has
led to novel hypotheses for animal behaviour and seems likely to provide fruitful results in the future.
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We have recently seen robots that use ‘bee’ vision to
navigate down corridors and avoid obstacles; a

robot ‘cricket’ that tracks down a male cricket by its song;
a ‘robolobster’ that follows an underwater chemical
plume to its source; and a group of robots that construct
an ‘ant nest’ wall. Such examples of engineering can be
attention grabbing, but what is their value for biological
science? In particular, beyond the ‘gimmick’ of resem-
blance to natural systems, is any deeper understanding of
how animals behave brought about by the building of
such robot systems?

Robots are machines built to perform tasks using
actions that are based on, or reminiscent of, humans or
other animals. Some features distinguishing these
machines are: direct actuation, that is, they have motor
devices that allow them to move about in and manipulate
their environment independently of human interven-
tion; direct sensing, that is, not just a highly constrained
push button or keyboard interface; ‘intelligent’ control,
that is, their actuation is goal-oriented with respect to the
variations in the task environment; and ‘autonomy’, that
is, once set in motion, the behaviour is self-determined
rather than remote controlled. Clearly the problems
roboticists have to solve correspond closely to the
problems evolution has solved for real animals.

Attempts to make machines behave in a life-like man-
ner are as old as science. Ingenious mechanical devices
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have been built to mimic animal behaviours, sometimes
with impressive detail, but their clockwork mechanisms
did not noticeably resemble the inner workings of bio-
logical systems. Fifty years ago the advent of cybernetics
saw the building of a series of electromechanical devices
more seriously intended to explore aspects of animal
behaviour, such as the ‘homeostat’ machine (Ashby
1952) and the reactive ‘turtle’ (Walter 1961). However,
since then robotics as a research field has been largely
dominated by approaches developed in control systems
theory, such as methods to find inverse kinematics or
establish robust feedback control. As yet there is no
general theoretical solution to the problem of building a
robot to perform a specific behaviour, but rather a diverse
range of mechanisms that can be adapted to specific
tasks. It is apparent that if we knew how animals con-
trolled their behaviour this might give us ideas about how
to make robots do it (although these may not turn out to
be the best methods to adopt from an engineering per-
spective). In fact, the title of this paper inverts the
question posed in a recent robotics textbook ‘What does
animal behaviour offer robotics?’ (Arkin 1998, page 52).
Biology can be viewed as a source of existence proofs for
what capabilities might be possible for robots, and of
ideas for mechanisms for achieving these capabilities.

However, in the present paper, I am not concerned to
debate the potential benefits or otherwise of biological
inspiration for robot engineering, but rather to explore
how robot-based research might be a new methodology
for biology. This involves using robots as biological
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models: ‘robots can be used as physical models of animals
to address specific biological questions’ (Beer et al. 1998,
page 777); ‘the goal of this approach is to develop an
understanding of natural systems by building a robot that
mimics some aspects of their sensory and nervous system
and their behaviour’ (Lambrinos et al. 1997, page 185);
‘hypotheses can . . . be verified or falsified by building an
adequate robot, implementing the hypothesized control
mechanism, and then observing if it can account for the
behaviour’ (Lund & Asada 1998, page 303). However as
Delcomyn & Nelson (2000, pp. 5–6) have noted, com-
pared to the number of engineers adopting biological
ideas in their robot building ‘neurobiologists have been
slower in establishing collaborations with engineers for
the converse purpose, to use robots as models to study
biological mechanisms’. Lund & Asada (1998, page 303)
further suggested ‘the majority of biologists might not
accept this methodology . . . the debate . . . concerns the
reliability of a robot as the model of the animal under
study’.

From this perspective, robot building has the same
general steps one would expect in any model building:
identifying a target and issue to be explained; offering an
explanation; demonstrating that it accounts for obser-
vations; deriving further predictions and testing them.
Indeed, many of the issues to be discussed, such as
underdetermination, accuracy of representation and
evaluation, are relevant to other kinds of modelling, such
as mathematical or computational approaches. However,
there are also unique issues for this particular form of
modelling, not always appreciated by biologists when
they make claims such as ‘a two-eared robot programmed
to obey this rule (if suitable noise were incorporated)
could be made to track a sound source in a manner
like that of the female [cricket]’ (Weber & Thorson 1988,
page 14).

Building such a robot requires the solution of a large
range of problems. The basic body plan and actuation
mechanism for the robot have to be determined, for
example, how fast must it move, how easily must it
manoeuvre? Transduction devices that resemble the ani-
mal’s sensors have to be found or designed. The exact
details of the wiring between the sensors and actuators,
and the precise programming specification of the behav-
ioural ‘rule’ has to be determined. ‘Suitable noise’ (what-
ever that may be) may have to be incorporated. If a
functional device is produced, the behaviour has to be
tested under a range of conditions, and means of collect-
ing data devised. Finally, appropriate ways to compare
the robot’s behaviour with that of the animal have to be
found: given the inevitable differences between them,
how similar must the behaviour be to support the original
claim? I hope to illustrate in this review how solving
some of these problems can help us better understand the
behaviour of animals.

Some collections of papers in this area can be found in
recent special issues of Connection Science (10, part 3) and
Robotics and Autonomous Systems (18, part 1 and 30, parts
1–2). Some discussions of this approach include: for
modelling motor control (Beer et al. 1998); in relation to
more general ‘animat’ methods (Dean 1998); and in
relation to robot autonomy (Sharkey & Ziemke 1998). In
this paper, I focus on work in which a physical robot has
been built and tested, and explicitly used to demonstrate
understanding or explore hypotheses of animal be-
haviour. This is not to denigrate biological computer
simulations, or robotic investigation for its own sake, but
simply to delineate a distinctive area of current research
where biology and robotics intersect. The first restriction
means that hardware as well as software issues have been
involved in building the model and interaction with a
real not just simulated world has been examined. The
second means that the results of the robot building
is intended to produce information of relevance to
biologists, not just to engineers.

I refer to this research as ‘biorobotics’, although the
terminology is currently rather mutable, and I argue that
indeed such robots are useful for biology. This is partly for
the reasons that any implemented model is useful: it
enforces clarity and full specification of hypotheses; and
provides a means to derive the nonobvious consequences
of complex sets of assumptions. But robot models also
have particular strengths for understanding animal
behaviour. They can test hypotheses of control (at levels
from algorithms to subneural properties) under realistic
bodily and environmental conditions, thus integrating
diverse data. In doing so they can be very effective in
helping to characterize the problem that the animal
needs to solve. Consequently, they can be productive of
new hypotheses, predictions or suggested experiments for
biological systems. At the same time there are limitations
that should be kept in mind. In particular, the strength of
the conclusions that can be drawn from this research
depends on the accuracy of representation of the animal
and its behaviour, and this is frequently not sufficiently
well explained or assessed. Both these strengths and
weaknesses are discussed in detail below.
TESTING HYPOTHESES

Robots as models are a means by which hypotheses can
be tested for adequacy and sufficiency to explain a set of
data, and additional predictions from the hypotheses can
be derived. Robots can be useful in exploring hypotheses
about the mechanisms of behaviour particularly when
behaviour is considered as the outcome of the interaction
of an environment, a body and a control system.
Computer-simulated models tend to focus investigation
on the control system in isolation, or use highly idealized
input and output. In robotic modelling, a proposed con-
trol system is tested for whether it really produces the
behaviour of interest when placed under comparable
bodily and environmental conditions to the animal.
Hypotheses can be investigated at a variety of different
levels, from functional to subneural properties, as the
following examples illustrate.
Algorithms

The essential functions performed by the neural system
can be explored at an algorithmic level. For example,
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Srinivasan et al. (1999) have explored what basic rules or
cues for visual navigation could be used by the bee, both
in experiments on the animal and by showing their
efficacy in robot control. An example is using the balance
of optical flow on each side to negotiate a corridor of
variable direction and width. A mobile robot equipped
with a camera and able to derive an estimate of optical
flow can use this to maintain a constant distance from
walls or ground surfaces (Santos-Victor et al. 1995; Weber
et al. 1998). Santos-Victor et al. (1995) noted how run-
ning their robot in a real environment raised some novel
issues, for example difficulties in using direct reflexes
based on optical flow when natural environments can
contain patches of untextured surface that provide no
information.

Srinivasan’s group has taken a similar algorithmic
approach to understanding how the peering behaviour of
the locust (Sobel 1990) can serve as a range-finding
mechanism (Srinivasan et al. 1999). This peering behav-
iour has also been implemented in a neurocomputational
model on a robot by Lewis & Nelson, using nondirec-
tional selective motion detectors (Douglass & Strausfeld
1996) and producing a ‘jump’ parameter estimate of
object distance from real image inputs as a robot moves
back and forth in front of a target (Lewis & Nelson 1998).
Other examples of ‘algorithm’ level research include
investigations of navigation (e.g. Lambrinos et al. 1997),
collective behaviour (e.g. Holland & Melhuish 1999) and
motor control (e.g. Raibert 1986) discussed further below.
Learning Mechanisms

Another group of studies carried out mostly at the
algorithmic level is the use of learning mechanisms
to train robot behaviour. While most uses of ‘learning
algorithms’ in robotics make few explicit connections to
animal learning (e.g. biological parallels are barely men-
tioned in articles in the special issue ‘Reinforcement
Learning’ of Robotics and Autonomous Systems, 15, part 4),
there are exceptions. An example is the implementation
of operant conditioning by Saksida et al. (1997) which
includes conditioned reinforcers and shifting reinforce-
ment contingencies. They tested the model using the
delayed match-to-sample paradigm often used to test
working memory in rats. Verschure (1998) has investi-
gated classical conditioning issues such as secondary
conditioning and blocking in robot models. Chang &
Gaudiano (1998) implemented Grossberg’s (1982) model
of associative learning and demonstrated its flexible
application across different robot devices and environ-
ments. Hallam et al. (1994) implemented and tested on a
robot a biologically derived model of associative learning
in Siamese fighting fish, Betta splendens. The last three
studies all introduced ‘neural network’ descriptions of the
mechanisms and used variant forms of Hebbian changes
of ‘connection weights’. Damper & Scutt used more
explicit models of neural habituation and sensitization
for robot learning (Scutt & Damper 1997; Damper et al.,
in press), to test the suggestion that the same mechanisms
underlie associative learning, as suggested by Hawkins &
Kandel (1984).
Savage (1998) reviewed and criticized some of these
learning models as not sufficiently sophisticated to
address current issues in learning theory. It is true that
discussions of learning (and other animal behaviours) in
robotics can often seem ‘biologically naïve’. It is import-
ant that robot researchers wishing to claim relevance of
their results for biology make a serious effort to under-
stand the current state of knowledge and to engage
appropriate problems. However, this criticism is missing
the point if the objection is only that robots fail to
reproduce the full diversity of observed animal behav-
iour. The point of this research is to discover what
behaviour does emerge from the algorithms as currently
specified, and therefore to test whether they can account
for observed animal behaviour; insofar as they fail to do
so, it may be the theory that needs revision. Indeed, one
use of robot learning studies can be, irrespective of the
precise learning mechanism, to explore whether certain
environmental contingencies are sufficient for explaining
certain animal behaviours; we can be sure what is or is
not ‘innate’ in our robot. An example is the use by S. Nolfi
& H. H. Lund (unpublished data) of an evolutionarily
adaptive approach to show that a robot (and by impli-
cation a rat) does not need a ‘cognitive map’ to learn to
perform oriented behaviour in the box task used by
Cheng (1986) and Margules & Gallistel (1988). The con-
clusion drawn is that sufficient richness of environmental
interaction can account for the behaviour without
additional internal mechanisms.
Evolution

The idea of testing the power of adaptive mechanisms
by using robots in real environments was discussed by
Nolfi (1998, page 169) in relation to the use of evolution-
ary algorithms. As he noted ‘only information . . . truly
available in the environment can be used for training’ or
evolving the behaviour of the robot. Evolutionary algor-
ithms implement processes akin to natural selection: that
is, random variations in the robot result in differential
success on some behavioural task, which is used to pre-
serve differentially the variations in subsequent imple-
mentations. This can be an effective ‘blind’ method for
improving the adaptation of the robot to its task and
environment, confirming the basic principle of natural
selection as a mechanism for evolution. However, it is
often not trivial to make this method effective: it may fail
to improve the robot in the way desired (Mataric & Cliff
1996). The reasons for difficulties may be revealing about
the process of natural selection, for example that the
discriminations made by certain sensory devices in cer-
tain environments may not be the obvious ones that we
as observers assume are available to shape the robot’s (or
animal’s) performance.

It has been suggested that evolutionary robotics might
go beyond generically exploring natural selection to test
more explicit hypotheses: for example, that an evolution-
ary simulation based on a real creature may be a way to
derive a possible network model for that behaviour (Beer
& Gallagher 1992; Cliff et al. 1993). Most evolutionary
robotics to date is not, in fact, closely based on specific
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animals. One exception is Kortmann & Hallam’s (1999)
investigation of cricket song preference which sought to
explore the ‘evolutionary plausibility’ of a specific neural
model for the behaviour. Nolfi (1998) questioned the
viability of this approach and argued that robot evolution
is better used either to study more general principles of
evolutionary theory, such as how predator–prey inter-
actions may lead to increased sensory motor complexity
(Nolfi & Floreano 1998), or to develop counterexamples
to assumptions about ‘necessary’ mechanisms in animals
by evolving robots capable of comparable behaviour
without those mechanisms, as described above.
Neuroanatomy

Rucci et al. (2000) used a somewhat similar approach, a
learning mechanism functioning under natural con-
ditions of real stimuli and real sensorimotor responses, to
look at azimuth localization of sound sources by a robot
head. In this study the system was also constrained by
and compared with data on the neural structures subserv-
ing this capability in the barn owl, Tyto alba (Konishi
1993). Rucci et al. (2000) noted that ‘the use of robotic
systems has the advantage of introducing phenotypic and
environmental constraints similar to those that brains of
animals have to face during development . . . particularly
important in the light of modern brain theories, that
emphasise the importance of the environment and
sensorimotor experience during neural development’.

Also at the level of brain neuroanatomy, Arbib & Liaw
(1995) have produced both simulation and robot models
of the functioning of the tectal region of the frog brain
(Ewert 1987), for example in the response to visual
looming, expressed in terms of ‘schemas’. Arbib & Liaw
(1995) described how their robot raised previously
unconsidered problems of handling object occlusion and
detecting gap size when trying to guide a real device
around a real environment. They argued that what makes
such research a specifically biological model is when
‘explicit hypotheses are offered as to how the constituent
schemas are played over particular regions of the brain’
(Arbib & Law 1995, page 56). In the context of robot
models of hippocampal function, discussed further
below, Gaussier et al. (2000, page 175) noted ‘our level of
modelization cannot account today for the neurobiologi-
cal details of each brain structure’ but can allow the
researcher ‘to test for the coherence of global brain
models and to verify if two functional boxes can really be
connected’.
Specific Neural Circuits

At the level of specific neuron function and circuitry,
good examples are provided by several robotic investi-
gations of the motion-sensitive circuitry of the fly and its
role in optomotor, obstacle-avoiding and visual fixation
responses. The first was a hardware model of the motion
selectivity of the H1 neuron of the fly (Franceschini et al.
1992). As well as confirming that this mechanism sufficed
for visually guided avoidance of obstacles (Pichon et al.
1989), it led to novel experiments on the fly such as
the discovery of a mechanism of ‘binocular vergence’
(Franceschini 1996). The H1 neuron has also been
modelled in analogue VLSI (Very Large Scale Integration)
technology to produce an optomotor ‘chip’ (Harrison &
Koch 1999). The output of this device has been used to
correct to straight-line motion the path of a robot with
asymmetric gearing. It has also been directly wired into
the experimental equipment used to test the fly
(Warzecha & Egelhaaf 1996) to demonstrate that the
implemented circuitry suffices to reproduce the fly’s
behaviour closely, both correcting for imposed rotation
and producing microoscillations.

In another interesting model of the fly’s motion detec-
tion system, Huber et al. (Huber & Bulthoff 1998; Huber
et al. 1999) have used a conical mirror to obtain a coarse
360� image comparable to the fly’s visual input on the
horizontal axis (similar technology has also been used
in work by Srinivasan et al. 1999 and Lambrinos et al.
2000). This is processed using a model of the spatial and
temporal filtering of the fly’s retina and lamina and
Reichardt-style motion detectors. By copying the asym-
metric properties of lobula plate HSE neurons to large-
field progressive and regressive motion (Egelhaaf et al.
1989) a control signal for movement by the robot is
derived. Huber et al. (1999) have shown that the same
sensory circuit can then produce both optomotor and
fixation behaviour comparable to that of the fly depend-
ing on the environmental cues, and concluded that the
large field cells in the fly participate in both responses.
They have thus explicitly shown how ‘the process of
designing the sensorimotor control of a robot . . . can
provide the basis of a critical evaluation of biological
models’ (Huber et al. 1999, page 227).
Dendritic Circuitry

An example of robotic investigations of the behavioural
capabilities consequent on the dendritic structure of
specific neurons is the implementation of the locust
looming detector by Blanchard et al. (1999, 2000). Studies
of the locust LGMD neuron have suggested that a ‘race’
between inhibitory and excitatory inputs tune it to
respond only to rapidly moving edges (Rind & Bramwell
1996). On a robot this model has been used to detect
approaching objects and avoid collisions. An interesting
finding was that, with relatively natural scenes as input,
the response of the model does not predictably encode
the rate of approach in the spike rate, as had been taken
to be the case from studies of the real LGMD obtained
with simpler stimuli (Rind & Simmons 1997). This has led
to proposals for further experiments on the animal using
more complex stimuli.
Robots in Animal Experiments

Another somewhat different role for robots in testing
biological hypotheses is the use of robot devices to carry
out behavioural experiments on animals. That is, the
robot can be used to interact with the animals to test
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particular predictions of animal behaviour. One example
is the electromechanical ‘bee’ used by Michelsen et al.
(1992) to study critical cues in the communication of the
location of nectar sources by honeybees, Apis mellifera. A
more recent example is discussed in Takanishi et al.
(1998a) where a remote-controlled electromechanical rat
was used to look at imitation behaviour in real rodents.
Both these devices are under fairly direct experimenter
control, but a more autonomous device has been devel-
oped as a robot ‘sheepdog’ whose interaction with groups
of ducks tests models of flocking behaviour in these
animals (Vaughan et al. 2000).
CHARACTERIZING THE PROBLEM AND
UNDERSTANDING THE ENVIRONMENT

An advantage of real robot implementation is that the
researcher is forced to confront assumptions about the
nature of the stimulus and the possible actions given real
characteristics of the environment. What is thereby
brought to the fore is the critical importance of environ-
mental and bodily factors in explaining behavioural capa-
bilities. The significance of these considerations for a
variety of biological examples was reviewed in Chiel &
Beer (1997). Flynn & Brooks (1989) have discussed this
point in relation to simulation within robotics research,
noting how building systems in the real world often
shows one’s prior intuitions about requirements to be
completely wrong. As Grasso (in press) argued: ‘The
bio-robot offers a way of systematically evaluating the
contribution and influence of environmental structure
on behaviour patterns’. For example, in work on the
‘robolobster’ described further below, Grasso et al. (2000)
noted that in a sense the work they are doing is a study of
the characteristics of the water-borne plume that the
lobster tracks, as much as it is a study of the lobster itself.
Stimulus and Sensor Characteristics

The airborne plume that is the stimulus for pheromone
tracking in the moth is a similarly complex environ-
mental signal and several groups are using robots to
model the moth’s tracking behaviour. Obviously the
nature of a ‘signal’, for an animal, is relative to its sensors.
Kuwana et al. (1995) have wired the dissected antennae of
the male silkworm moth, Bombyx mori, directly to their
robot to investigate the plume-following behaviour. This
biological sensor is much more sensitive than any avail-
able artificial one. Using the robot, they have shown that
a control network based on the ‘flip-flop’ hypothesis
(Kanzaki 1996) produces behaviour more comparable to
the moth than a simple ‘reflex’-based network (that has
no memory) or an evolved recurrent network. The latter
worked in simulation but not when faced with the real
environment.

Ishida et al. (1999) used standard gas sensors in their
robot model of moth pheromone tracking, but have
mimicked, with a fan, the way that the moth uses wing
vibration as a means to draw air over sensors to improve
the sensors’ directional accuracy. They have shown their
device can localize odour directions in three dimensions.
M. Willis (web site http://flightpath.neurobio.arizona.
edu/Model/index.html) has used ionization detection in
a robot model, as having more similar temporal response
properties to the moth than available gas sensors. This
robot is intended to be used in parallel studies with the
real moth and detailed simulations. Chemical sensing has
also been used in robots that mimic ant trail-following
behaviour (Russell 1998; Sharpe & Webb 1998). The latter
study tested the effects of different chemical con-
centrations, antennae spans and speeds on robot per-
formance, in replication of biological and simulation
studies (Calenbuhr & Deneubourg 1992), using a simple
neural controller. The results qualitatively resembled
those for ants: for example, showing a peak in perform-
ance at a particular concentration, improvement with
larger antennae span, and improvement with slower
movement.
Substrate Characteristics

The importance of environmental characteristics can
also be illustrated by current investigations of robot
‘fish’. The ‘robotuna’ (Triantafyllou & Triantafyllou 1995)
showed how tail propulsion was dependent on the pro-
duction of a series of vortices in the water. More generally
the aim in this work is to explore the ‘complex fluid
dynamics that fish use to propel themselves’ (J. T.
Davis, web site http://web.mit.edu/towtank/www/pike).
Mojarrad & Shahinpoor (1997) developed novel poly-
meric muscles to explore similar issues, such as the
relationship of undulation frequency, production of
vortices and speed of propulsion. Kato & Inaba (1998)
described a different form of fish propulsion, the pectoral
fin motions of ‘feathering’ and ‘lead-lag’. Their robotic
implementation was a motivating factor for the close
study and characterization of the animal mechanism.

These studies have parallels in studying flight of
insects, birds and bats, where understanding the aero-
dynamic characteristics is critical. Preliminary robot
investigations of animal flight include Fearing et al.
(2000) and Pornsin-Sirirak et al. (2000). Another obvious
‘substrate’ is realistic natural terrain in which terrestrial
animals locomote. Many of the robots described thus far
use wheeled propulsion and require a flat floor to run on.
Although many animal experiments may have compar-
able conditions, natural environments do not. The aim of
using robots in such natural environments is one of the
inspirations for research on legged biorobots.
Body Characteristics

A feature of research on legged robots is the emphasis
placed on the equal importance of mechanical structure
and control systems for explaining how locomotion is
achieved. This leads to an emphasis on descriptions of the
dynamics of the body’s interaction with the substrate.
Raibert’s (1986) analysis of dynamical stability in running
machines also raised a number of critical questions for
biological locomotion, such as the potential importance
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of symmetry, or the multiple means for achieving foot
placement. Dynamical ideas have been directly applied to
the cockroach (Kubow & Full 1999). Similar ideas have
led investigators of four-legged robot walking to include a
foot actuated by springy tendons (Berkemeier & Desai
1996), and to show how this can be compared to an
abstracted cat hindleg to evaluate the spring-mass model
of muscle function. Indeed, biomechanics is an area
where there is a well-established crossover of robotic
theory into biology.

These ideas apply of course to other motor control
systems. Williamson (1998) has explored, using a two-
armed robot torso, how problems of actuator co-
ordination (for example in playing with a slinky) can
be solved by relatively simple oscillators ‘hooked’ to the
world and each other through implementation on the
robot. In investigating a model of human oculomotor
control, Shibata & Schaal (1999) emphasized the impor-
tance of matching the motor properties of the system,
such as the effective ‘spring’ that returns the eye to the
zero position without applying torque.
INTEGRATING DATA AND ENFORCING
COMPLETENESS

One advantage of robot models is that a robot builder is
forced to be complete in their specification. There are two
aspects to this completeness. One is that all terms and
mechanisms have to be precisely specified if the simu-
lation is to be run to produce data. The other is that the
complete ‘problem’ of behaviour, from an environment,
through sensing and processing to actuation and its
consequence in the world, has to be tackled. Unlike
simulation, a robot model cannot choose an arbitrary
form of input to avoid the sensing problem, or have an
interpreted output that skips the actuator problem. The
behaviour has to be addressed as the integration of all
these factors. A consequence of this is that it becomes
particularly evident where existing hypotheses are
incomplete. This has led to the adoption of what could be
called a methodology of incremental modelling.
Incremental Models

The cricket phonotaxis system is an example often
cited in neuroethology as one of the better explored and
understood systems. However, attempting to build a
robot model revealed that, although much is known
about the auditory system and identified neurons
(Wohlers & Huber 1981; Schildberger 1988; Stumpner
et al. 1995) the connectivity and means by which the
behaviour is controlled is not at all clear. The strategy
adopted was to build a series of models that included
progressively more of the biological detail as previous
models made clear what aspects of this are crucial to test.
Thus the first model was relatively crude but sufficed to
show that a single mechanism could underlie both the
approach behaviour and the selectivity to song pattern
(Webb 1995). The influence of the peripheral auditory
system was then further explored in a more complex
robot model that attempted to maintain the same spatial/
temporal scale as the cricket, making experiments with
real cricket song as stimuli possible (Lund et al. 1998). In
a third implementation, this improved robot base was
augmented with a dynamic spiking neuron model to
carry out a more direct exploration of the function of
timing in neural interactions, allowing both behavioural
and ‘physiological’ tests on the model (Webb & Scutt
2000). One result of this work has been the suggestion
that what, in the biological studies, appeared to be a
critical ‘recognition’ neural response (Schildberger 1984),
that is, the firing rates of a brain neuron that correlated
with performance to a varying stimulus, may in fact play
no direct role in explaining the behaviour.

A similar sequence, from relatively inaccurate but
‘complete’ systems to those with an increasingly close
resemblance to the biological system, can be seen in the
research on six-legged walking mechanisms by the bio-
robotics group at Case Western. Their Robot I had simple
legs with two degrees of freedom and they investigated
the effectiveness of a neural controller for generating gait
patterns (Quinn & Espenscheid 1993) based on Pearson’s
flexor burst-generator model for cockroach walking
(Pearson 1976). Robot II (Espenschied et al. 1996) had
legs with three degrees of freedom and implemented the
control circuit devised by Cruse (1990) that uses local
interactions to coordinate leg movements (this stick-
insect-derived controller has also been tested on robots by
Pfeiffer et al. (1995), Kindermann et al. (1998) and Ferrell
(1995). By incorporating several reflex mechanisms the
robot was able to negotiate uneven terrain. Robot III is
based on close studies of cockroach kinematics, with rear
legs with three degrees of freedom, middle legs with four
and front legs with five. Posture control of this robot
based on proprioceptive data has been implemented
(Nelson & Quinn 1998). Attempting to devise loco-
motion control has led productively to further detailed
experimentation on the cockroach: ‘many of the prob-
lems that arise in controlling the robot lead to new
understanding of the animal’ (Quinn & Ritzmann 1998,
page 252) for example the need to stiffen leg joints prior
to loading. Delcomyn & Nelson (2000) reported work on
a similar robot model with cockroach-like kinematics,
controlled by a pulsed pneumatic system that provides a
parallel for spike-impulse control of real muscle.
Limiting Models

A number of models of hippocampal function in rat
navigation have looked to improve understanding of this
biological system by testing hypotheses for function
within the complete system, thus setting a kind of mini-
mum limit on the viability of the models. Burgess et al.
(1997, 1998, page 292) implemented their neural net
model of the hippocampus on a robot as this ‘forces it to
use real world inputs, tests whether it can indeed direct
navigation under these conditions, and allows a fairer
comparison with behavioural and electrophysiological
data’. This is provided by a robot with a camera using
visual cues to create ‘place’ cells to locate itself with
respect to features of the environment.
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Some alternative models of hippocampal function have
also been implemented on robots (Recce & Harris 1996;
Gaussier et al. 2000). Etienne (1998) critically reviewed
work in this area. She argued that biological knowledge in
this field is too weak for such models to be more than
speculative, and that the robot’s sensorimotor systems are
too different from rats in the input and feedback they
provide. The robot researchers argue that, while different,
the input and feedback are at least ‘comparably bad’ and
thus provide a valid test of the robustness of the model.
The robot can be seen as a limiting test on the controller:
if it suffices for a system of clearly inferior sensorimotor
capability, then it is at least plausible for the animal.
Etienne (1998, page 286) agreed that it is not trivial to be
able to show a mechanism can work in the ‘real physical
world’ and also suggested the nature of robotic inter-
action ‘may lead to discovery of new functional principles
that may influence our understanding of naturally
evolved behaviour and neural events’.
Integrative Models

In this section I have so far discussed robot models of
increasingly complex biological behaviours, from reactive
sound source localization, through motor patterns for
six-legged walking, to issues of mammalian brain func-
tion. There is also extensive research in ‘humanoid’
robotics (e.g. Advanced Robotics special issue on humanoid
robots, 11, part 6, 1997). While by no means all this work
is directed at understanding human sensorimotor and
behaviour systems, some of it is explicitly undertaken
with that end. Examples include the anthroform arm
designed by Hannaford et al. (1995) to explore spinal
control circuits; the biped walking system developed
by Yamaguchi & Takanishi (1997); the head–eye co-
ordination systems studied by Takanishi et al. (1998b)
and Clark (1998); and the hand–eye coordination systems
explored by Taddeucci & Dario (1998) and Marjanovic et
al. (1996). The latter group has also used their humanoid
robot to investigate issues in social development in
humans (Scassellati 1998), such as the Baron-Cohen
model of shared gaze and imitation (Baron-Cohen 1995).
A particular motivation in many of these studies is to use
the robot as a way of integrating a range of data and
theories under the constraints of a single device. Thus
Hannaford et al. (1995, page 399) described their robot as
a platform ‘designed for comparing, integrating and test-
ing diverse pieces of knowledge about motor control and
spinal cord function’ and argued that ‘Physical modelling
as opposed to computer simulation is used to enforce
self consistency among co-ordinate systems, units and
kinematic constraints’.
PRODUCING NEW HYPOTHESES

Biorobotic investigations have also contributed new
hypotheses to biology. Some of the factors already dis-
cussed drive this production of new ideas. The problem of
producing complete working systems often requires exist-
ing hypotheses to be augmented and adapted. The need
to deal with real environments can change the emphasis
on what the problem to be solved is, suggesting a novel
solution. In addition, the robot builder is always under
pressure to find a simple solution, one that involves less
processing power, or is easier to implement. A particular
philosophy behind much current work in biorobotics
incorporates the biological ideas of ‘matched filters’
(Wehner 1987) and ‘active perception’ (Ballard 1991).
That is, it looks to building the right kind of active
interface between the system and the environment
to provide relatively simple solutions to the control
problem, as illustrated in the following examples.
Navigation

Current research related to the robot model of the
desert ant Catyglyphis has led to several new hypotheses.
The ‘Sahabot’ was initially constructed to test the efficacy
of a compass based on sky polarization as thoroughly
explored by Wehner (1994). Critical aspects of the bio-
logical system were adopted, such as using a cross-
analyser configuration to obtain a relative polarization
response that is independent of the ambient light inten-
sity. The robot was tested in the same desert environment
as the ants (Lambrinos et al. 1997). While the previously
hypothesized ‘scanning’ mechanism, in which the ani-
mal uses a maximum in the response as the reference,
could be successfully deployed to control behaviour, a
more efficient ‘simultaneous’ model, using change in
polarization to estimate the angle turned was equally
effective.

Similarly, in investigating the use of ‘snapshot’ land-
mark navigation (Cartwright & Collett 1983), Lambrinos
et al. (2000) found that a mathematically equivalent but
in processing terms much simpler model for finding a
heading vector from the current viewpoint to the home
position could be devised. This mechanism has been
implemented in analogue hardware and tested in exper-
iments based on those performed on bees and ants
(Moller, in press). It has been used to suggest what critical
experiments might determine whether these animals
really store the full information of a snapshot or this
simplified ‘average landmark vector’.
Recognition

Many animal behaviours seem to have obvious task
decompositions, which have guided research efforts in
both behavioural and neurophysiological studies. An
example is cricket phonotaxis behaviour, in which the
female cricket needs to recognize the conspecific song
and approach it. In attempting to design a minimal
controller for the robot cricket mentioned above, it
became evident that an alternative view could be taken:
that recognition could consist only in ability to localize;
and ‘unrecognized’ signals were in fact those that could
not adequately stimulate the localization device. Exper-
iments taken as demonstrations of the ‘recognition’
mechanism in the cricket could be reproduced in the
robot model without such a mechanism (Webb & Scutt
2000).
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An analogous result has emerged in robotic investi-
gation of bat echolocation (Walker 1997; Walker et al.
1998). Bats hunting specific targets, in this case moths
with fluttering wings, are assumed first to recognize the
desired target (via a remembered 3-dimensional model)
and then locate it. However, by using a localization
mechanism that is inherently tuned to specific patterns
of energy in the echo, because it performs binaural
comparison of invariant spectral cues produced by targets
with periodic motion, the robot effectively ‘ignores’
stationary reflectors or those with different motion signa-
tures. The results of the robot implementation of this idea
show that ‘target selective behaviour [in bats] need not be
mediated by formal recognition of targets, but, rather,
can be underpinned by a coupling between echolocator
and environment to the extent that the signature
signal provides a steering signal which is used directly in
localisation’ (Walker 1997, page 93).
Collective Behaviour

The effectiveness of relatively simple control mech-
anisms has also been investigated in robot models of
collective behaviours such as piling and sorting in ants. In
this case, the capabilities are closely related to how the
environment is used to provide the cues for appropriate
behaviour, a principle dubbed ‘stigmergy’ by Grassé (cited
in Holland & Melhuish 1999). For example, by using a
small set of behaviour rules relating to locally sensed
events, small groups of robots have been shown to collect
and sort objects successfully in a way that mimics ant
capabilities (Holland & Melhuish 1999). The result
emerges without any global coordination or goal states,
simply from the interaction of the robots with the struc-
tures they are building. This line of robot work is now
being developed in close coordination with studies of
nest building in Leptothorax tuberinterruptus (Franks &
Deneubourg 1997), to determine how they might exploit
environmental ‘templates’ such as chemical gradients or
other heterogeneities in the environment to build nest
walls using only simple stimulus–response behaviours
(Melhuish et al. 1999).

Kube & Bonabeau (2000) have implemented robot
models of cooperative transport in ants. This work has
similarly demonstrated the sufficiency of some minimal
assumptions to reproduce ant capabilities such as re-
positioning dependent on prey size. Kube & Bonabeau
(2000, page 87) noted that prior to their work ‘no formal
description of the biological phenomenon has been
developed’ and that ‘surprisingly, roboticists went further
than biologists in trying to model co-operative transport:
perhaps the only convincing model so far is one that has
been introduced and studied by roboticists’.
DISCUSSION

The range of examples presented here establishes that
there are already fruitful outcomes from the use of robots
for understanding animal behaviour. Essentially, bio-
robotics is an extension of conventional modelling
methods already used widely in biology, but it has several
specific strengths. In particular it is a powerful way to
integrate data from different levels of investigation, to
understand how the relation of brain, body and environ-
ment produce behaviour, to clarify the essential problems
posed, and to devise and test hypotheses under realistic
conditions.
Why not just Simulate?

For many problems posed in explaining animal behav-
iour, computer simulation rather than robotic implemen-
tation would seem easier to carry out, and sufficient to
answer the questions. Undoubtedly this can be the case,
and indeed many of the robot implementations described
above followed on from simulations of the same systems.
So what ‘added value’ might a robot model provide?

One important factor already referred to is the differ-
ence between real input and simulated input: this often
reveals limitations in what a hypothesis can explain.
Thus, for example, Blanchard et al. (2000, pp. 24–25)
noted ‘traces [from the robot] show the theory that
LGMD spike rate increases . . . until collision . . . is not
necessarily true when the variability of real images is
considered’. Other considerations raised in robotic imple-
mentation concern the need for successfully controlling
ongoing activity in real time. Blanchard et al. (2000)
described how, when looming visual input leads to an
avoidance response, then some suppression of the usual
response to visual motion is needed during the avoidance
action, but the time course of this is critical to avoid
ignoring the next potential collision. Saksida et al. (1997)
noted difficulties arising in their learning mechanism
because the time course of reward for actions is critical
and the experimenter shaping the behaviour may not
manage to reinforce the right action. Voegtlin &
Verschure (1999) argued that the time criticality can also
be exploited in a ‘self-supervising’ scenario, where the
robot’s actions themselves determine when the reward
occurs.

It could be argued that sufficiently sophisticated simu-
lation environments would also raise these issues. How-
ever, such issues are often missed in simulations, whereas
they are unavoidably encountered in real world imple-
mentations. Moreover, matching the complexity of the
world in a simulation is difficult, and in general, we
include only what we think is important, and thus can-
not discover what is really important. This point was
made by Beckers et al. (1996, page 183): ‘the complexity
of interactions available for exploitation cannot be
matched by any practical simulation environment’; simi-
larly ‘properties of the environment are usually difficult
to reproduce in simulations. Wrong assumptions about
these properties may severely misguide the development
of models’ (Lambrinos et al. 2000, page 39).

Thus robotics provides a tough testing ground for
biological hypotheses. Dean (1998, page 64) described the
potential results as ‘a proof in principle, which in [the
case of a robot rather than simulation] can be considered
to be stronger because such a closed model captures the
physical context and the loop through the environment
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[i.e. the consequences of action]’. Indeed it can be poss-
ible to provide the hardware device with the identical
environmental conditions to those used for behavioural
experiments on the animal, for example the examples
given above for the testing of optomotor responses
(Harrison & Koch 1999; Huber et al. 1999). However, it is
important to avoid leaping to the conclusion that a robot
is necessarily a good model of an animal, simply because
real-world deployment is attempted. It is still necessary to
demonstrate that it is a valid model, through appropriate
evaluation.
Evaluation?

If a control mechanism can reproduce the animal’s
behaviour in a robot, then it seems plausible to believe it
could explain behaviour in the animal. However, there
are problems with drawing this conclusion. One is that
we cannot conclude from similar performance that the
same causal mechanism has been found. This problem of
underdetermination is recognized as a general constraint
on model building in science. Strictly speaking, no matter
how well our current explanation seems to fit the facts,
there logically exists an infinite number of other theories
that could also account for them, so we cannot conclude
that we have found the true explanation. Laudan (1998)
has usefully laid out variants of this idea in the philos-
ophy of science. He pointed out that, in practical terms,
we are generally lucky to have even a few good expla-
nations to choose between, let alone an infinitude; and
their logical equivalence does not correspond to there
being no rational way to choose between them. Never-
theless there does remain some difficulty in drawing
strong conclusions from the successful results of a bio-
robotic (or any other) modelling study.

Hannaford et al. (1995, page 399) argued that ‘A puta-
tive theory of motor control which has been programmed
into the [robot] replica will either replicate the behaviour
of the system or it will not. If it does, it is thereby shown
to be consistent with all of the ideas that went into the
replica’s design’. The majority of studies in biorobotics to
date have confirmed (to this extent) rather than refuted
hypotheses. In particular, it is hard to find examples in
which competing hypotheses have been tested and one
shown to fail. In general, it seems, hypotheses can be
more or less made to work, provided they are complete
and coherent (which is not always the case). This may
reflect the implicit limit expressed by Hannaford et al.
(1995): if we have enough flexibility in designing the
robot replica, we can make sure that it does work with
any given theory of motor control. However, it more
likely reflects the problem that many biorobots are not
subjected to sufficiently rigorous evaluation.

Proper experimental evaluation is needed to determine
fully the real strengths or limitations of the implemented
hypothesis. Behaviour qualitatively similar to the animal
in a few trials, while encouraging, cannot be taken as
confirmation, yet too few studies do more. The more
strong correspondences between the model behaviour
and the animal behaviour can be demonstrated, par-
ticularly where those correspondences go beyond the
behaviours the model was initially built to explain, the
less likely it is that the behaviour is actually being pro-
duced by an entirely different mechanism, although logi-
cally that possibility remains. Thus even when successful
correspondences are found, the significance should be
conservatively interpreted, for example in concluding
that mechanisms shown to be sufficient to reproduce the
animal’s behaviour in the robot ‘perhaps should be added
to the list of candidates for study’ (Holland & Melhuish
1999, page 200) in biology.

An example of ‘good practice’ in this regard, which
indeed leads to the rejection of hypotheses, is given by
the study of the ‘robolobster’ (Grasso et al. 2000). First,
the robot has been designed to be tested in the same
experimental flow tank as that used for the lobster; it has
the same scale, speed and sensors that can be positioned
at the same relative position as the lobster’s antennules.
Second, the analysis methods used on the lobster behav-
iour are directly applied to the behaviour produced by the
robot. Several different ‘tropotaxis’ control schemes based
on chemical concentrations were implemented and
tested in a series of controlled trials. Although some of
these resulted in successful approach to the source of the
plume, several characteristics of this behaviour differed
significantly from the lobster. The lobster must therefore
use more than the instantaneous concentration levels to
determine its movement.
Accuracy?

The other main constraint on drawing conclusions
about animals from the behaviour of robot models is the
effect on those conclusions of limitations in the accuracy
of the models. That is, the technological limits on how
well biological mechanisms can be copied may limit the
force of the conclusions that can be drawn from robot
models. ‘Animal systems are made of very different com-
ponents from robotic systems and there are no a priori
grounds for supposing that the system trade-offs are
identical . . .’ (J. Hallam, unpublished). Problems include
differences in scale, the lack of good muscle-like actu-
ators, and an imbalance in the accuracy of various parts of
the system, for example a complex controller used in a
simple wheeled robot or a highly accurate sensorimotor
replication controlled by an arbitrary mechanism. Find-
ing a productive and plausible level of accuracy is one of
the most difficult issues in modelling. As Brooks (1997,
page 296) suggested in the context of building a human-
oid robot ‘Since we can only build a very crude approxi-
mation to a human body, there is a danger that the
essential aspects of the human body will be totally missed
[and] only the broad outline form is mimicked’.

Several strategies can be discerned in biorobotics
research in reaction to this problem. One is to limit the
claims made, for example that studies of collective forag-
ing in robots ‘contribute a piece of heuristic evidence that
complex social systems may be organised on decentral-
ised organisational principles’ but because ‘our robots do
not mimic any specific social insect species . . . no bind-
ing conclusion can be drawn by the comparative study of
our robot’s behaviour’ (Krieger & Billeter 2000, page 67).
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However this seems rather self-defeating; the question is
then why not mimic a specific species, so that conclu-
sions can be drawn? Another approach is to argue that
the robot is really only being used to investigate the
general character of the problem, for example ‘at present
we do not know enough about the actual processing
mechanisms that underlie insect vision to produce
a carbon or silicon copy . . . our aim is to reveal the
cues that insects use to navigate’ (Srinivasan et al. 1999,
page 214).

However, it is not true that because a biorobot cannot
be an exact replica of its target animal, it is not possible to
draw any substantive conclusions about the target. All
modelling involves simplification and substitution. The
issue is whether the simplifications and substitutions in a
particular case of modelling mean that the conclusions
cannot validly be transferred. In other words, are the
arbitrary accretions involved in building the robot in fact
the main determinants of the behaviour, not the original
hypothesis supposedly under test? To answer this
researchers need to be as explicit as possible about how
their robot differs from the animal, why it so differs, and
what effect those differences might have.

An example is provided by the robot model of the
nematode Caenorhabditis elegans. Morse et al. (1998)
noted that there are ‘snake’ or ‘worm’-like robots avail-
able (e.g. Hirose 1993), but for the purposes of their
investigation, it was sufficient to have a robot with a
forward propulsive force and a steering mechanism based
on the relative contraction of opposing muscles on each
side of the ‘head’. This was based on experimental obser-
vations that the speed of C. elegans during taxis is almost
constant and the direction determined by the angle of the
head. Similarly, a comparable sensory gradient to the
usual substrate of a two-dimensional Gaussian distri-
bution of chemical concentration on a petri dish can be
generated using a light source and a light sensor. Morse
et al. (1998) were thus able to show that a particular
neural connectivity (also expressed in terms of differen-
tial equations) can produce the kind of approach paths
seen in the animal under conditions of real noise in
motor control. Thus observationally grounded abstrac-
tions can be used to establish the correspondence
between the robot and the animal with respect to testing
particular hypotheses.
Interaction with Biological Investigations?

The issues of evaluation and accuracy both raise the
necessity of going back and forth between the robot
system and the real system. There can be a pernicious
view that the appropriate methodology for biorobotics is
(1) to find out everything about an animal, then (2)
replicate it as closely as possible in a machine. Nolfi
(1998, page 180) described Franceschini’s work thus: ‘by
carefully studying the vision system of the fly he came up
with a model so detailed it was easy for him to implement
in a mobile robot able to navigate . . .’. There are several
fallacies here. First, is the claim that it was ‘easy’. Even for
the best-studied examples, it is simply not the case that
robotics researchers can directly implement the biological
system: a straightforward translation of what is known
about the animal into hardware and software is rarely if
ever possible. Second, it implies that we cannot begin
building a useful biorobot until by careful study such a
detailed and easy-to-implement model has been arrived
at. In fact the main use of biorobots may be to suggest
what careful study might eventually lead to a detailed
model. Third, Franceschini’s model is not simply a
direct implementation of the fly but involves several
abstractions and substitutions motivated by engineering
considerations based on the final task constraints.

If biorobotics is to be effective, there needs to be good
two-way communication between those working on the
robot and the animal. The most productive robotic
groups have developed close and direct connections with
the biologists studying the systems of interest; and more
and more commonly biologists are taking the lead in
initiating robot research programmes. Nevertheless, com-
munication problems remain, perhaps because of the
different outlooks on problem solving that result from
engineering versus biological training. One manifestation
of this difference is that engineers are generally good at
(and keen about) generating solutions to posed problems.
In the current context, this means that they will propose
explicit hypotheses, where biologists tend to be more
cautious. Indeed, many of the examples discussed in
previous sections represent novel proposals and are the
most complete models of their respective animal systems
developed to date. This is a natural strength of the
methodology, and as such should be seen to comp-
lement, not challenge, more traditional research
approaches. As Raibert (1986, page 189) suggested in
the particular context of legged locomotion ‘detailed
knowledge of working locomotion algorithms, like those
embodied in running machines, should help to formulate
good experimental questions to ask of biological legged
systems’.

Biologists can justifiably be cautious in accepting as
correct the alternative hypotheses put forward by roboti-
cists. As discussed already, the fact that a mechanism is
successfully deployed to imitate animal behaviour in a
robot is not direct evidence that the animal functions the
same way. However, it would seem biologists can only
gain by consideration of such alternative hypotheses,
insofar as these have been shown capable of explaining
current observations on the animal. ‘Consideration’
includes taking up the challenge to find the critical
biological evidence to rule out such alternatives, or being
equally explicit in specifying and testing their own
hypotheses regarding the animal systems in question.
Conclusion

Franceschini et al. (1992, page 291) listed five advan-
tages of hardware implementation of biological models:
they enforce concreteness of specification; save the diffi-
culty of simulating complexity of real device and
environment; require working in parallel and analogue;
demonstrate, when a working device is produced, that
the ‘embodied principles [are] viable’; and verify ‘beyond
all expectation that the construction step itself [provides]
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us with deeper insights into the real problems’. The final
factor was echoed by Grasso et al. (2000, page 127):
‘experience has made clear a number of the intricacies of
the problem . . . that were not clear at the outset’. To
those involved in biorobotics projects, it is these insights
derived during the construction process that are com-
monly felt to be the most important contribution,
although they can be the hardest to express to those
outside the field. I hope that the examples discussed here
will have communicated some of the scope and variety of
insight that biorobotics can provide.

Most current examples of biorobots are justified at least
partly in terms of potential engineering advances. The
aims of engineering are not incompatible with doing
biologically relevant work; trying to make an artificial
system work can provide a driving force for trying to
understand the natural system. However, tension can be
induced. Franz & Mallot (2000, pp. 148–149) argued that
‘both interests cannot be pursued in the same system:
either, realistic modelling of animal behaviour restricts
the technical application to very specialised cases . . . or
the investigated mechanism is so highly abstracted that
predictions of actual animal behaviour are difficult’. Inso-
far as biologists become directly involved in these inves-
tigations, the ‘engineering motivation’ will become less
important, and the focus on biological relevance will be
improved.

One further way that robot models of animals may be
useful to the study of animal behaviour relates to the
impression made by robots as described at the beginning
of this paper. It is common for observers of robot behav-
iour to be quick to attribute capabilities to the robot that
go well beyond what it is actually doing, both in behav-
ioural terms and especially in terms of the mechanism
supporting that behaviour. Goals and intentions are read-
ily ascribed to any directed behaviour, a stalled robot is
sometimes described as ‘confused’ or ‘thinking what to do
next’ and so on. Brooks (1997, page 296) noted that ‘with
just a very few human-like cues from a humanoid robot,
people naturally fall into the pattern of interacting with it
as if it were human’. Systematic study of human reactions
to robot behaviour could be a useful way to explore the
inherent prejudices of human observers of animal behav-
iour, and thus lead to improvements in traditional
methodology in this field.
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