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‘Infotaxis’ as a strategy for searching without
gradients
Massimo Vergassola1, Emmanuel Villermaux2 & Boris I. Shraiman3

Chemotactic bacteria rely on local concentration gradients to
guide them towards the source of a nutrient1. Such local cues
pointing towards the location of the source are not always avail-
able at macroscopic scales because mixing in a flowing medium
breaks up regions of high concentration into random and dis-
connected patches. Thus, animals sensing odours in air or water
detect them only intermittently as patches sweep by on the wind
or currents2–6. A macroscopic searcher must devise a strategy of
movement based on sporadic cues and partial information. Here
we propose a search algorithm, which we call ‘infotaxis’, designed
to work under such conditions. Any search process can be thought
of as acquisition of information on source location; for infotaxis,
information plays a role similar to concentration in chemotaxis.
The infotaxis strategy locally maximizes the expected rate of
information gain. We demonstrate its efficiency using a computa-
tional model of odour plume propagation and experimental data
on mixing flows7. Infotactic trajectories feature ‘zigzagging’ and
‘casting’ paths similar to those observed in the flight of moths8.
The proposed search algorithm is relevant to the design of olfact-
ory robots9–11, but the general idea of infotaxis can be applied more
broadly in the context of searching with sparse information.

Chemotactic search strategies based on local concentration gradi-
ents require the concentration to be high enough to ensure that its
average difference measured at two nearby locations is larger than
typical fluctuations1,12 (see also Supplementary Information). The
signal-to-noise ratio depends of course on the averaging time and
might be improved by waiting. However, the average concentration
may be decaying rapidly (for example, exponentially) with distance
away from the source, and in this weak signal-to-noise (dilute) case
the waiting time becomes huge. An example of organisms performing
olfactory search in a dilute limit is provided by moths which use
pheromones to locate their mates2–6. Moths are known to proceed
upwind by way of counterturning patterns of extended (‘casting’) or
limited (‘zigzagging’) crosswind width, thought to correlate with low
and high rates of odour detection. A practical situation involving the
challenge of searching in dilute conditions is encountered in the
design of ‘sniffers’9–11—robots that track chemicals emitted by drugs,
chemical leaks, explosives and mines. Existing methods apply to
high-concentration conditions, where chemotactic13–16 or plume-
tracking strategies17–21 might be used.

In the dilute limit, the searcher detects odour in a sporadic
sequence of distinct events arising from its encounters with patches
of fluid (or air) where turbulent mixing has failed to dissipate the
advected odour down to a level below the detectability threshold22–24.
These detection events, or ‘hits’, are separated by wide ‘voids’ with no
detectible signal. Because the probability of odour encounter
depends on the distance from the source, the set of encounters that
occurred at times {ti} along the search trajectory r(t) carries informa-

tion about the source location. We shall use T t to denote times and
coordinates of these hits.

In the spirit of coding theory, the trace T t might be thought of as a
message, sent by the source and transmitted to the searcher with
strong noise due to the random nature of odour propagation in
the turbulent medium. Decoding of the message is implemented
using Bayes’ formula to construct, given the received signal, the pos-
terior probability distribution Pt(r0) for the unknown location of the
source r0 (see Methods, and similar independent arguments in ref.
25). The subscript t reminds us that T t and Pt(r0) are dynamical
objects, continuously updated with time. The specific decoding pro-
tocol depends of course on the nature of the detection events and the
transmitting medium. For concreteness, we treat here two cases: (1)
experimental time-course data for a mixing flow; and (2) a model
where detectable ‘particles’ (which represent patches of detectable
odours) are emitted by the source at rate R, have a finite lifetime t,
propagate with effective diffusivity D and are advected by a mean
current or wind V. The decoding protocol requires knowing the
probability of odour encounters as a function of the distance to the
source. This function can be computed analytically for model (2)
or estimated from experimental data for case (1), as detailed in
Supplementary Information. The latter method is quite general
and might be applied to other cases as well.

Given a probability distribution P(r0) for the location of the
source, we can show (see Supplementary Information) that the
expected search time ÆTæ is bounded by ÆTæ $ eS21, where S is
Shannon’s entropy for the distribution S:{

Ð
dxP xð Þ ln P xð Þ (refs

26, 27). The latter quantifies how spread-out the distribution is, and
goes to zero when the position of the source is localized to one site,
that is, is known. The rate of acquisition of information is quantified
by the rate of reduction of entropy26,27 (see also Supplementary
Information). The main problem for the searcher is that the real
probability distribution is unknown (to it) and must be estimated
from the available data: the history of its odour encounters. As
information accumulates, the entropy of the estimated distribution
decreases and with it the expected time to locate the source. The
searcher is faced with conflicting choices of either proceeding with
its current information (that is, going to the estimated most probable
source location), or alternatively, pausing to gather more informa-
tion and obtain a more reliable estimate of the source distribution.
The problem of dealing with only partially reliable information is
quite general, and has received a systematic formulation in learning
theory in terms of the ‘exploration versus exploitation trade-off’ to be
struck for effective learning28. In the search context, ‘exploitation’ of
the currently estimated Pt(r0) by chasing locations of maximal esti-
mated probability is very risky, because it can lead off the track. The
most conservative ‘exploration’ approach is to accumulate informa-
tion before taking any step. This strategy is safe but not productive,
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and is inferior to more active exploration—for example, systematic
search in a particular sector29.

To balance exploration and exploitation, we propose the following
‘infotaxis’ strategy. At each time step, the searcher chooses the dir-
ection that locally maximizes the expected rate of information
acquisition. Specifically, the searcher chooses, among the neighbour-
ing sites on a lattice and standing still, the move that maximizes the
expected reduction in entropy of the posterior probability field.

Expectations are based on the information currently available, that
is, the field Pt(r0) itself. The intuitive idea is that entropy decreases
(and thus information accumulates) faster close to the source
because cues arrive at a higher rate, hence tracking the maximum
rate of information acquisition will guide the searcher to the source
much like concentration gradients in chemotaxis.

Suppose that the searcher has arrived at r at time t, and gathered
information is stored into the field Pt(r0) having entropy S. The
variation of entropy expected upon moving to one of the neighbour-
ing points rj (or standing still) is:

DS r.rj

" #
~Pt rj

" #
{S½ $z

1{Pt rj

" #$ %
r0 rj

" #
DS0zr1 rj

" #
DS1z . . .

$ % ð1Þ

The first term on the right-hand side corresponds to finding the
source, that is, Pt11 becoming a d-function and entropy becoming
zero, which occurs with estimated probability Pt(rj). The second term
on the right-hand side corresponds to the alternative case when the
source is not found at rj. Symbols rk(rj) denote the probability that k
detections be made at rj during a time-step Dt, given by a Poisson law
rk 5 hke2h/k! for independent detections. The expected number of
hits is estimated as h rj

" #
:Dt

Ð
Pt r0ð ÞR rj jr0

" #
dr0, with R(rjr0)

denoting the mean rate of hits at position r if the source is located
in r0 (see Methods). The symbols DSk in equation (1) denote the
change of entropy between the fields Pt11(r0) and Pt(r0). Two effects
contribute to DSk: first, Pt11(rj) ; 0 because the source was not
found; and second, the estimated posterior probabilities are modified
by the k cues received. The first term on the right-hand side of
equation (1) is the exploitative term, weighing only the event that
the source is found at the point rj and favouring motion to maximum
likelihood points. The second term on the right-hand side of equa-
tion (1) is the information gain from receiving additional cues. It
appears even when the searcher does not move, and thus represents
conservative ‘exploration’. Thus we explicitly see that infotaxis nat-
urally combines exploitative and exploratory tendencies (see
Supplementary Information for details of this point and for quant-
itative comparisons among different strategies).

Figure 1 | Typical infotactic trajectories. a, Without wind; b, with wind.
Simulations are performed for a model of odour spreading where detectable
‘particles’ are emitted at rate R, have a lifetime t, propagate with diffusivity D
(combining turbulent and molecular diffusion) and are advected by a mean
wind V. The wind in b is directed downwards. The greyscale represents the
mean detection rate, decaying exponentially at large distances. In each panel,
the searcher starts from the black filled triangle, the colour code on the
trajectories is linear in the elapsed time, and odour detections are indicated
by black filled circles. Note the long lags with no particle detections,
characteristic of searches in dilute conditions.
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Figure 2 | Quantitative characterization of infotaxis searches. a, Scaling of
the average search time with the initial distance to the source. The mean path
of particles during their lifetime is 50. The linear scaling at large distances
compares favourably with the exponential time needed to average out
concentration noise. Error bars indicate s.d. b, The exponential decay of the
search time probability distribution function (PDF), indicating that
infotaxis is not plagued by strong fluctuations. c, The residual time to locate
the source plotted against the entropy of the estimated source location PDF.
The exponential dependence of the residual time indicates that reducing
entropy is effective in ensuring a rapid search process.
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Infotactic paths are illustrated in Fig. 1, which presents the result of
a numerical simulation using the model of odour propagation
described in Methods. In the absence of wind (Fig. 1a), Pt(r) is
rotationally symmetric around the starting point and the searcher
starts spiralling around it (as is observed with sea urchin sperm30).
Interestingly, in the absence of hits the radius of the spiral increases in
a scale invariant manner, making an approximately Archimedean
spiral. As time progresses and information is gathered along the
trajectory, the direction towards the source emerges as the preferen-
tial one, finally leading the searcher to the source. In the presence of
wind (Fig. 1b), the search alternates phases of consistent progression
upwind with phases of wider crosswind excursion and even down-
wind movements similar to the classical casting and zigzagging pat-
terns observed during bird and moth flights8.

To quantify the performance of the proposed search algorithm, we
examine (Fig. 2a) the scaling of the average search time with the
initial distance to the source for the model without wind (the most
difficult one). The linear dependence found for large initial distances
should be contrasted with the exponential dependence needed to
average out the concentration noise (see Supplementary Infor-
mation). Furthermore, random walking searchers would often attain
the boundaries of the box where the search is taking place. The
corresponding probability distribution of search times would have
a long tail, decaying as 1/T2, contrary to the exponential decay shown
in Fig. 2b. Figure 2c shows the relation between search times and the
entropy of the posterior field Pt(r0), which supports the theoretical
bound mentioned above.

Figure 3 presents an infotactic path generated in a simulation using
experimental measurements of dye concentration in a turbulent
flow7. Hits occur when the searcher encounters concentration above
a threshold, which we chose sufficiently high to keep the number of
hits low. Simulations indicate that the infotactic strategy is robust
with respect to the searcher’s model of the turbulent medium and to
fluctuations and inhomogeneities of the medium. Indeed, even the
simplistic hypothesis of time-independent odour encounters does
not hinder the search. Modelling of the turbulent medium might
be further improved by accounting for temporal correlations of
odour plume encounter and velocity fluctuations (see Supplemen-
tary Information).

We have presented an olfactory search algorithm that works in the
dilute limit corresponding to weak sources in realistic flows. These
are the conditions encountered in applications of olfactory robots
and by various living creatures. When comparing our results with the
behaviour of living creatures, we need to bear in mind that similarity
in trajectories does not imply identity of causal mechanisms and
decision processes10,15. Still, it is worth remarking that the olfactory
search motion observed with moths and birds exhibits a pattern of
extended crosswind casts and zigzags similar to the one generated in
Fig. 1b by the general principle of local maximization of information
gain. We note that the dilute limit also describes the case of ‘odour’
diffusion at the molecular scale provided that the searcher can detect
single molecules. This situation may apply, for example, in the case of
sea urchin sperm, which responds to a single molecule of resact,
a chemoattractant peptide30. It is difficult to imagine a single cell

Figure 3 | Simulation of infotaxis using mixing flow experimental data7.
Snapshots (false colours; red corresponds to high concentrations) of dye
concentration levels are acquired from mixing flow experimental data, and
the trajectory of the searcher is numerically simulated in the resulting
sequence of fields. Snapshots and trajectories are shown at four successive
times in panels a–d. Light blue regions correspond to concentrations below

the detection threshold. The black star denotes an isolated odour detection
event. The infotactic strategy is robust with respect to fluctuations and
inhomogeneities of the medium (for example, of the wind direction) and its
modelling by the searcher. Robustness stems from the tracking of
information rather than estimated maximum likelihood locations.
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performing complex computations like those required for infotaxis,
as described above. It will be interesting to explore heuristic approx-
imations simple enough to be plausible for single cells. Finally, we
note that the general information-theoretic approach described
above in the olfactory search context applies more broadly to any
situation where competing demands of exploration and exploitation
must be efficiently balanced.

METHODS
Estimation of the posterior probability distribution. The probability distri-
bution posterior to experiencing a trace T t of uncorrelated odour encounters is
given by:

Pt r0ð Þ~
Lr0
T tð ÞÐ

Lx T tð Þdx
~

exp {
Ð t

0 R r t 0ð Þ r0jð Þdt 0
$ %

PH
i~1R r tið Þ r0jð Þ

Ð
exp {

Ð t
0 R r t 0ð Þ xjð Þdt 0

$ %
PH

i~1R r tið Þ xjð Þdx
ð2Þ

Here, H is the number of hits along the trajectory, the tis are the corresponding
times andLr0

(T t ) is the likelihood of observing the traceT t of odour encounters
for a source located at r0. This expression is supplemented by the prescription
that visited regions where the source was not found have zero probability. Note
that Pt1Dt(r0) factorizes as Pt(r0) times a term that depends on the hits received in
the Dt interval. Thus, keeping track of the whole trajectory and the history of
detections is not required. The expression for Pt(r0) is derived by taking the mean
‘hit’ rate during an infinitesimal interval dt to be R(rjr0)dt and the number of hits
to be Poisson distributed. The function R(rjr0) appearing in equation (2)
denotes the mean rate of hit encounters at position r for a source located at r0.
For the model where detectable ‘particles’ are emitted by the source at rate R,
have a finite lifetime t, propagate with isotropic effective diffusivity D (which
parameterizes the combined effect of turbulent and molecular diffusion) and are
(possibly) advected by a mean current or wind V, the function can be computed
analytically, as described in Supplementary Information. The result for the three
dimensional case is:

R r r0jð Þ~ aR

r{r0j j
e{

r{r0j j
l e{

y{y0ð ÞV
2D ; l~
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1z V 2t
4D

s
ð3Þ

where a is the size of the searcher, and the coordinates are chosen to have the
wind blowing along the y axis in the negative direction. A similar expression
holds in two dimensions. In both cases, the rate function decreases exponentially
at large distances (anisotropically in the presence of wind). For experimental
data on mixing flows, the parameters in the rate function are estimated from the
data as detailed in Supplementary Information.
Mixing flow experiment and simulation parameters. Parameters used in the
simulations are as follows. Figs 1a and 2: emission rate of the source R 5 1,
particle lifetime t 5 2,500 and diffusivity D 5 1. The typical travel distance dur-
ing a lifetime is approximately

ffiffiffiffiffiffi
Dt
p

~50. The search space is a grid 512 3 512,
and equation (1) was evaluated for five possible actions at each time step (moves
to the four neighbours and standing still). Figure 1b: wind blows downwards
with unit speed, the emission rate R 5 1/2 and the lifetime of particles t 5 150,
the initial vertical separation to the source. Figure 3: experimental data are
generated injecting dye by a 8 mm tube in the far field of a jet, a large-scale
(integral scale ,10 cm) sustained turbulent flow. The pictures in the figure show
the random advection of the dye downstream of the injection point (for about
three integral scales). Dye is passively transported by the flow, as odours are.
Odour detection events correspond to encounters with dye concentrations above
a threshold fixed at about five times the average intensity level. The mean velocity
(pointing downward in Fig. 3) is about 4 cm s21 (its measurement by olfactory
robots might be realized using standard anemometers), and the root-mean-
square velocity is about 30% of the mean velocity, giving a Reynolds number
of ,103. Snapshots of the field are acquired at a frequency of 200 Hz. Coherent
odour patches make the searcher spiral around the location of the encounters
due to correlations among the detections. Yet, the resulting search process is just
twice as long as for a model with independent hits, and might be further accel-
erated by accounting for time-correlations, as detailed in Supplementary
Information.
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