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Abstract— Model-free deep reinforcement learning algo-
rithms have been shown to be capable of learning a wide
range of robotic skills, but typically require a very large
number of samples to achieve good performance. Model-based
algorithms, in principle, can provide for much more efficient
learning, but have proven difficult to extend to expressive,
high-capacity models such as deep neural networks. In this
work, we demonstrate that neural network dynamics models
can in fact be combined with model predictive control (MPC)
to achieve excellent sample complexity in a model-based rein-
forcement learning algorithm, producing stable and plausible
gaits that accomplish various complex locomotion tasks. We
further propose using deep neural network dynamics models
to initialize a model-free learner, in order to combine the
sample efficiency of model-based approaches with the high task-
specific performance of model-free methods. We empirically
demonstrate on MuJoCo locomotion tasks that our pure model-
based approach trained on just random action data can follow
arbitrary trajectories with excellent sample efficiency, and that
our hybrid algorithm can accelerate model-free learning on
high-speed benchmark tasks, achieving sample efficiency gains
of 3−5× on swimmer, cheetah, hopper, and ant agents. Videos
can be found at https://sites.google.com/view/mbmf

I. INTRODUCTION

Model-free deep reinforcement learning algorithms have

been shown to be capable of learning a wide range of tasks,

ranging from playing video games from images [1], [2]

to learning complex locomotion skills [3]. However, such

methods suffer from very high sample complexity, often

requiring millions of samples to achieve good performance [3].

Model-based reinforcement learning algorithms are generally

regarded as being more efficient [4]. However, to achieve

good sample efficiency, these model-based algorithms have

conventionally used either simple function approximators [5]

or Bayesian models that resist overfitting [6] in order to

effectively learn the dynamics using few samples. This

makes them difficult to apply to a wide range of complex,

high-dimensional tasks. Although a number of prior works

have attempted to mitigate these shortcomings by using

large, expressive neural networks to model the complex

dynamical systems typically used in deep reinforcement

learning benchmarks [7], [8], such models often do not

perform well [9] and have been limited to relatively simple,

low-dimensional tasks [10].

In this work, we demonstrate that multi-layer neural net-

work models can in fact achieve excellent sample complexity

in a model-based reinforcement learning algorithm. The

Fig. 1: Our method can learn a dynamics model that enables a simulated
quadrupedal robot to autonomously follow user-defined waypoints. Training
for this task used 7e5 time steps (collected without any knowledge of the
test-time navigation task), and the learned model can be reused at test time
to follow arbitrary desired trajectories.

resulting models can then be used for model-based control,

which we perform using model predictive control (MPC)

with a simple random-sampling shooting method [11]. We

demonstrate that this method can acquire effective locomotion

gaits for a variety of MuJoCo benchmark systems [8],

including the swimmer, half-cheetah, hopper, and ant. Fig. 1

shows that these models can be used at run-time to execute

a variety of locomotion tasks such as trajectory following,

where the agent executes a path through a given set of sparse

waypoints that represent desired center-of-mass positions.

Additionally, each systems uses less than four hours worth

of data, indicating that the sample complexity of our model-

based approach is low enough to be applied in the real

world, and is dramatically lower than pure model-free learners.

In particular, when comparing our model-based approach’s

ability to follow arbitrary desired trajectories with a model-

free approach’s ability to learn just a competent moving

forward gait, our results show that the model-based method

uses only 3%, 10%, and 14% of the data that is used by

a model-free approach (for half-cheetah, swimmer, and ant,

respectively). Relatedly, our model-based method can achieve

qualitatively good moving forward gaits for the swimmer,

cheetah, hopper, and ant using 20− 80× fewer data points

than is required by a model-free approach.

Although such model-based methods are drastically more

sample efficient and more flexible than task-specific poli-

cies learned with model-free reinforcement learning, their

asymptotic performance is usually worse than model-free

learners due to model bias. Model-free algorithms are not

limited by the accuracy of the model, and therefore can

achieve better final performance, though at the expense of
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much higher sample complexity [4], [12]. To address this

issue, we use our model-based algorithm, which can quickly

achieve moderately proficient behavior, to initialize a model-

free learner, which can slowly achieve near-optimal behavior.

The learned model-based controller provides good rollouts,

which enable supervised initialization of a policy that can

then be fine-tuned with model-free algorithms, such as policy

gradients. We empirically demonstrate that the resulting

hybrid model-based and model-free (Mb-Mf) algorithm can

accelerate model-free learning, achieving sample efficiency

gains of 3− 5× on the swimmer, half-cheetah, hopper, and

ant.

The primary contributions of our work are the following: (1)

we demonstrate effective model-based reinforcement learning

with neural network models for several contact-rich simulated

locomotion tasks from standard deep reinforcement learning

benchmarks, (2) we empirically evaluate a number of design

decisions for neural network dynamics model learning, and

(3) we show how a model-based learner can be used to

initialize a model-free learner to achieve high rewards while

significantly reducing sample complexity.

II. RELATED WORK

Deep reinforcement learning algorithms based on Q-

learning [13], [2], [9], actor-critic methods [14], [15], [16],

and policy gradients [3], [17] have been shown to learn very

complex skills in high-dimensional state spaces, including

simulated robotic locomotion, driving, video game playing,

and navigation. However, the high sample complexity of

purely model-free algorithms has made them difficult to use

for learning in the real world, where sample collection is

limited by the constraints of real-time operation. Model-based

algorithms are known in general to outperform model-free

learners in terms of sample complexity [4], and in practice

have been applied successfully to control both simulated

and real-world robotic systems, such as pendulums [6],

legged robots [18], swimmers [19], and manipulators [20].

However, the most efficient model-based algorithms have used

relatively simple function approximators, such as Gaussian

processes [6], [21], [22], time-varying linear models [5],

[23], [24], and mixtures of Gaussians [25]. PILCO [6], in

particular, is a model-based policy search method which

reports excellent sample efficiency by learning probabilistic

dynamics models and incorporating model uncertainty into

long-term planning. These methods have difficulties, however,

in high-dimensional spaces and with nonlinear dynamics. The

most high-dimensional task demonstrated with PILCO that we

could find has 11 dimensions [19], while the most complex

task in our work has 49 dimensions and features challenging

properties such as frictional contacts. To the best of our

knowledge, no prior model-based method utilizing Gaussian

processes has demonstrated successful learning for locomotion

tasks with complex contact physics, though several works

have proposed to learn the dynamics [26].

Although neural networks have been widely used in earlier

work to model plant dynamics [27], [28], more recent

model-based algorithms have achieved only limited success

in applying such models to the more complex benchmark

tasks that are commonly used in deep reinforcement learning.

Several works have proposed to use deep neural network

models for building predictive models of images [29], but

these methods have either required extremely large datasets

for training [29] or were applied to short-horizon control

tasks [30]. In contrast, we consider long-horizon simulated

locomotion tasks, where the high-dimensional systems and

contact-rich environment dynamics provide a considerable

modeling challenge. [10] proposed a relatively complex

time-convolutional model for dynamics prediction, but only

demonstrated results on low-dimensional (2D) manipulation

tasks. [31] extended PILCO [6] using Bayesian neural

networks, but only presented results on a low-dimensional

cart-pole swingup task, which does not include contacts.

Aside from training neural network dynamics models for

model-based reinforcement learning, we also explore how

such models can be used to accelerate a model-free learner.

Prior work on model-based acceleration has explored a variety

of avenues. The classic Dyna [32] algorithm proposed to use a

model to generate simulated experience that could be included

in a model-free algorithm. This method was extended [33],

[34] to work with deep neural network policies, but performed

best with models that were not neural networks [9]. Model

learning has also been used to accelerate model-free Bellman

backups [35], but the gains in performance from including the

model were relatively modest. Prior work has also used model-

based learners to guide policy optimization through supervised

learning [36], but the models that were used were typically

local linear models. In a similar way, we also use supervised

learning to initialize the policy, but we then fine-tune this

policy with model-free learning to achieve the highest returns.

Our model-based method is more flexible than local linear

models, and it does not require multiple samples from the

same initial state for local linearization.

III. PRELIMINARIES

The goal of reinforcement learning is to learn a policy

that maximizes the sum of future rewards. At each time

step t, the agent is in state st ∈ S, executes some action

at ∈ A, receives reward rt = r(st,at), and transitions to

the next state st+1 according to some unknown dynamics

function f : S × A → S. The goal at each time step is to

take the action that maximizes the discounted sum of future

rewards, given by
∑∞

t′=t γ
t′−tr(st′ ,at′), where γ ∈ [0, 1] is

a discount factor that prioritizes near-term rewards. Note that

performing this policy extraction requires either knowing the

underlying reward function r(st,at) or estimating the reward

function from samples [37]. In this work, we assume access

to the underlying reward function, which we use for planning

actions under the learned model.

In model-based reinforcement learning, a model of the

dynamics is used to make predictions, which are then used

for action selection. Let f̂θ(st,at) denote a learned discrete-

time dynamics function, parameterized by θ, that takes the

current state st and action at and outputs an estimate of the

next state at time t + Δt. This model can then be used to
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predict the outcomes of various action sequences, and then

actions can be selected by choosing the sequence that results

in the highest predicted total reward. In practice, it is often

desirable to solve this optimization at each time step, execute

only the first action at from the sequence, and then replan

at the next time step with updated state information. Such

a control scheme is often referred to as model predictive

control (MPC), and it is known to compensate well for errors

in the model.

IV. MODEL-BASED DEEP REINFORCEMENT LEARNING

We now present our model-based deep reinforcement

learning algorithm. We detail our learned dynamics function

f̂θ(st,at) in Sec. IV-A, how to train the learned dynamics

function in Sec. IV-B, how to extract a policy using our

learned dynamics function in Sec. IV-C, and how to use rein-

forcement learning to further improve our learned dynamics

function in Sec. IV-D.

A. Neural Network Dynamics Function

We parameterize our learned dynamics function f̂θ(st,at)
as a deep neural network, where the parameter vector θ
represents the weights of the network. A straightforward

parameterization for f̂θ(st,at) would take as input the current

state st and action at, and output the predicted next state ŝt+1.

However, this function can be difficult to learn when the states

st and st+1 are too similar and the action has seemingly little

effect on the output; this difficulty becomes more pronounced

as the time between states Δt becomes smaller and the state

differences do not indicate the underlying dynamics well.

We overcome this issue by instead learning a dynamics

function that predicts the change in state st over the time step

duration of Δt. Thus, the predicted next state is as follows:

ŝt+1 = st+ f̂θ(st,at). Note that increasing this Δt increases

the information available from each data point, and can help

with not only dynamics learning but also with planning using

the learned dynamics model (Sec. IV-C). However, increasing

Δt also increases the discretization and complexity of the

underlying continuous-time dynamics, which can make the

learning process more difficult.

B. Training the Learned Dynamics Function

Collecting training data: We collect training data by

sampling starting configurations s0 ∼ p(s0), executing ran-

dom actions at each timestep, and recording the resulting

trajectories τ = (s0,a0, · · · , sT−2,aT−2, sT−1) of length T .

We note that these trajectories are very different from the

trajectories the agents will end up executing when planning

with this learned dynamics model and a given reward function

r(st,at) (Sec. IV-C), showing the ability of model-based

methods to learn from off-policy data.

Data preprocessing: We slice the trajectories {τ} into

training data inputs (st,at) and corresponding output labels

st+1−st. We then subtract the mean of the data and divide by

the standard deviation of the data to ensure the loss function

weights the different parts of the state (e.g., positions and

velocities) equally. We also add zero mean Gaussian noise

to the training data (inputs and outputs) to increase model

robustness. The training data is then stored in the dataset D.

Training the model: We train the dynamics model

f̂θ(st,at) by minimizing the error

E(θ) = 1

|D|
∑

(st,at,st+1)∈D

1

2
‖(st+1 − st)− f̂θ(st,at)‖2 (1)

using stochastic gradient descent. While training on the

training dataset D, we also calculate the mean squared error

in Eqn. 1 on a validation set Dval, composed of trajectories

not stored in the training dataset.

Although this error provides an estimate of how well our

learned dynamics function is at predicting next state, we

would in fact like to know how well our model can predict

further into the future because we will ultimately use this

model for longer-horizon control (Sec. IV-C). We therefore

calculate H-step validation errors by propagating the learned

dynamics function forward H times to make multi-step open-

loop predictions. For each given sequence of true actions

(at, . . . at+H−1) from Dval, we compare the corresponding

ground-truth states (st+1, . . . st+H) to the dynamics model’s

multi-step state predictions (ŝt+1, . . . ŝt+H), calculated as

E(H)
val =

1

Dval

∑
Dval

1

H

H∑
h=1

1

2
‖st+h − ŝt+h‖2 :

ŝt+h =

{
st h = 0

ŝt+h−1 + f̂θ(ŝt+h−1,at+h−1) h > 0
(2)

This H-step validation is used to analyze our experimental

results, but otherwise not used during training.

C. Model-Based Control

In order to use the learned model f̂θ(st,at), together with

a reward function r(st,at) that encodes some task, we for-

mulate a model-based controller that is both computationally

tractable and robust to inaccuracies in the learned dynamics

model. Expanding on the discussion in Sec. III, we first

optimize the sequence of actions A
(H)
t = (at, · · · , at+H−1)

over a finite horizon H , using the learned dynamics model

to predict future states:

A
(H)
t = argmax

A
(H)
t

t+H−1∑
t′=t

r(ŝt′ ,at′) :

ŝt = st, ŝt′+1 = ŝt′ + f̂θ(ŝt′ ,at′). (3)

Calculating the exact optimum of Eqn. 3 is difficult due to

the dynamics and reward functions being nonlinear, but many

techniques exist for obtaining approximate solutions to finite-

horizon control problems that are sufficient for succeeding

at the desired task. In this work, we use a simple random-

sampling shooting method [38] in which K candidate action

sequences are randomly generated, the corresponding state

sequences are predicted using the learned dynamics model,

the rewards for all sequences are calculated, and the candidate

action sequence with the highest expected cumulative reward

is chosen. Rather than have the policy execute this action
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Algorithm 1 Model-based Reinforcement Learning

1: gather dataset DRAND of random trajectories

2: initialize empty dataset DRL, and randomly initialize f̂θ
3: for iter=1 to max_iter do
4: train f̂θ(s, a) by performing gradient descent on Eqn. 1,

using DRAND and DRL

5: for t = 1 to T do
6: get agent’s current state st
7: use f̂θ to estimate optimal action sequence A

(H)
t

(Eqn. 3)

8: execute first action at from selected action sequence

A
(H)
t

9: add (st,at) to DRL

10: end for
11: end for

sequence in open-loop, we use model predictive control

(MPC): the policy executes only the first action at, receives

updated state information st+1, and recalculates the optimal

action sequence at the next time step. Note that for higher-

dimensional action spaces and longer horizons, random

sampling with MPC may be insufficient, and investigating

other methods [39] in future work could improve performance.

Note that this combination of predictive dynamics model

plus controller is beneficial in that the model is trained only

once, but by simply changing the reward function, we can

accomplish a variety of goals at run-time, without a need for

live task-specific retraining.

D. Improving Model-Based Control with Reinforcement
Learning

To improve the performance of our model-based learning

algorithm, we gather additional on-policy data by alternating

between gathering data with our current model and retraining

our model using the aggregated data. This on-policy data ag-

gregation (i.e., reinforcement learning) improves performance

by mitigating the mismatch between the data’s state-action

distribution and the model-based controller’s distribution [40].

Alg. 1 and Fig. 2 provide an overview of our model-based

reinforcement learning algorithm.

First, random trajectories are collected and added to dataset

DRAND, which is used to train f̂θ by performing gradient

descent on Eqn. 1. Then, the model-based MPC controller

(Sec. IV-C) gathers T new on-policy datapoints and adds

these datapoints to a separate dataset DRL. The dynamics

function f̂θ is then retrained using data from both DRAND and

DRL. Note that during retraining, the neural network dynamics

function’s weights are warm-started with the weights from

the previous iteration. The algorithm continues alternating

between training the model and gathering additional data

until a predefined maximum iteration is reached. We evaluate

design decisions related to data aggregation in our experiments

(Sec. VI-A).

Fig. 2: Illustration of Algorithm 1. On the first iteration, random actions
are performed and used to initialize DRAND. On all following iterations,
this iterative procedure is used to train the dynamics model, run the MPC
controller for action selection, aggregate data, and retrain the model.

V. MB-MF: MODEL-BASED INITIALIZATION OF

MODEL-FREE REINFORCEMENT LEARNING ALGORITHM

The model-based reinforcement learning algorithm de-

scribed above can learn complex gaits using very small

numbers of samples, when compared to purely model-free

learners. However, on benchmark tasks, its final performance

still lags behind purely model-free algorithms. To achieve the

best final results, we can combine the benefits of model-based

and model-free learning by using the model-based learner to

initialize a model-free learner. We propose a simple but highly

effective method for combining our model-based approach

with off-the-shelf, model-free methods by training a policy to

mimic our learned model-based controller, and then using the

resulting imitation policy as the initialization for a model-free

reinforcement learning algorithm.

A. Initializing the Model-Free Learner

We first gather example trajectories with the MPC controller

detailed in Sec. IV-C, which uses the learned dynamics

function f̂θ that was trained using our model-based re-

inforcement learning algorithm (Alg. 1). We collect the

trajectories into a dataset D∗, and we then train a neural

network policy πφ(a|s) to match these “expert” trajectories

in D∗. We parameterize πφ as a conditionally Gaussian

policy πφ(a|s) ∼ N (μφ(s),Σπφ
), in which the mean is

parameterized by a neural network μφ(s), and the covariance

Σπφ
is a fixed matrix. This policy’s parameters are trained

using the behavioral cloning objective

min
φ

1

2

∑
(st,at)∈D∗

||at − μφ(st)||22, (4)

which we optimize using stochastic gradient descent. To

achieve desired performance and address the data distribution

problem, we applied DAGGER [40]: This consisted of

iterations of training the policy, performing on-policy rollouts,

querying the “expert” MPC controller for “true” action labels

for those visited states, and then retraining the policy.

B. Model-Free Reinforcement Learning

After initialization, we can use the policy πφ, which

was trained on data generated by our learned model-based

controller, as an initial policy for a model-free reinforcement

learning algorithm. Specifically, we use trust region policy
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(a) Swimmer left turn (b) Swimmer right turn (c) Ant left turn (d) Ant right turn

Fig. 3: Trajectory following samples showing turns with swimmer and ant, with blue dots representing the center-of-mass positions that were specified as
the desired trajectory. For each agent, we train the dynamics model only once on random trajectories, but use it at run-time to execute various desired
trajectories.

optimization (TRPO) [3]; such policy gradient algorithms

are a good choice for model-free fine-tuning since they do

not require any critic or value function for initialization [41],

though our method could also be combined with other model-

free RL algorithms.

TRPO is also a common choice for the benchmark tasks

we consider, and it provides us with a natural way to

compare purely model-free learning with our model-based

pre-initialization approach. Initializing TRPO with our learned

expert policy πφ is as simple as using πφ as the initial policy

for TRPO, instead of a standard randomly initialized policy.

Although this approach of combining model-based and model-

free methods is extremely simple, we demonstrate the efficacy

of this approach in our experiments.

VI. EXPERIMENTAL RESULTS

We evaluated our model-based reinforcement learning

approach (Alg. 1) on agents in the MuJoCo [8] physics engine.

The agents we used were swimmer (S ∈ R
16,A ∈ R

2),

hopper (S ∈ R
17,A ∈ R

3), half-cheetah (S ∈ R
23,A ∈ R

6),

and ant (S ∈ R
41,A ∈ R

8). Relevant parameter values and

implementation details are listed in the Appendix, and videos

of all our experiments are provided online1.

(a) Swimmer (b) Cheetah (c) Ant (d) Hopper

Fig. 4: Benchmark systems used in this paper. Agents on which we efficiently
learn locomotion gaits, as well as combine our model-based approach with
a model-free one to demonstrate fine-tuning performance.

A. Evaluating Design Decisions for Model-Based Reinforce-
ment Learning

We first evaluate various design decisions for model-based

reinforcement learning with neural networks using empirical

evaluations with our model-based approach (Sec. IV). We

explored these design decisions for the task of running

forward as quickly as possible with the swimmer and half-

cheetah agents; the other agents exhibited similar trends, and

are therefore omitted for brevity. After each design decision

was evaluated, we used the best outcome of that evaluation

for the remainder of the evaluations.

(A) Training steps. Fig. 5a shows varying numbers of

gradient descent steps taken during the training of the learned

1https://sites.google.com/view/mbmf

dynamics function. As expected, training for too few epochs

negatively affects learning performance, with 20 epochs

causing swimmer to reach only half of the other experiments’

performance.

(B) Dataset aggregation. Fig. 5b shows varying amounts of

(initial) random data versus (aggregated) on-policy data used

within each mini-batch of stochastic gradient descent when

training the learned dynamics function. We see that training

with at least some aggregated on-policy rollouts significantly

improves performance, revealing the benefits of improving

learned models with reinforcement learning. However, our

method still works well with even just 30% of each mini-

batch coming from on-policy rollouts, showing the advantage

of model-based reinforcement learning being off-policy.

(C) Controller. Fig. 5c shows the effect of varying the

horizon H and the number of random samples K used at each

time step by the model-based controller. We see that too short

of a horizon is harmful for performance, perhaps due to greedy

behavior and entry into unrecoverable states. Additionally,

the model-based controller for half-cheetah shows worse

performance for longer horizons. This is further revealed

below in Fig. 6, which illustrates a single 100-step validation

rollout (as explained in Eqn. 2). We see here that the open-

loop predictions for certain state elements, such as the center

of mass x position, diverge from ground truth. Thus, a large H
leads to the use of an inaccurate model for making predictions,

which is detrimental to task performance. Finally, with regards

to the number of randomly sampled trajectories evaluated,

we expect this value needing to be higher for systems with

higher-dimensional action spaces.

(D) Number of initial random trajectories. Fig. 5d shows

varying numbers of random trajectories used to initialize our

model-based approach. We see that although a higher amount

of initial training data leads to higher initial performance,

data aggregation allows low-data initialization runs to reach

a high final performance level, highlighting how on-policy

data from reinforcement learning improves sample efficiency.

B. Trajectory Following with the Model-Based Controller

For the task of trajectory following, we evaluated our model-

based reinforcement learning approach on the swimmer, ant,

and half-cheetah environments (Fig. 3). Note that for these

tasks, the dynamics model was trained using only random

initial trajectories and was trained only once per agent, but

the learned model was then used at run-time to accomplish

different tasks. These results show that the models learned
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Fig. 5: Analysis of design decisions for our model-based reinforcement learning approach. (a) Training steps, (b) dataset training split, (c) horizon and
number of actions sampled, (d) initial random trajectories. Training for more epochs, leveraging on-policy data, planning with medium-length horizons and
many action samples were the best design choices, while data aggregation caused the number of initial trajectories that have little effect.

using our method are general enough to accommodate new

tasks at test time, including tasks that are substantially more

complex than anything that the robot did during training, such

as following a curved path or making a U-turn. Furthermore,

we show that even with the use of such a naïve random-

sampling controller, the learned dynamics model is powerful

enough to perform a variety of tasks.

The reward function we use requires the robot to track the

desired x/y center of mass positions. This reward consists

of one term to penalize the perpendicular distance away

from the desired trajectory, and a second term to encourage

forward movement in the direction of the desired trajectory.

The reward function does not tell the robot anything about

how the limbs should be moved to accomplish the desired

center of mass trajectory. The model-based algorithm must

discover a suitable gait entirely on its own. Further details

about this reward are included in the appendix.

C. Mb-Mf Approach on Benchmark Tasks

We now compare our pure model-based approach with a

pure model-free method on standard benchmark locomotion

tasks, which require a simulated robot (swimmer, half-cheetah,

hopper, or ant) to learn the fastest forward-moving gait

possible. The model-free approach we compare with is the

rllab [42] implementation of trust region policy optimization

(TRPO) [3], which has obtained state-of-the-art results on

these tasks.

We note that due to short-horizon planning as well as

having finite sample sizes, this optimization for performing

action selection will be suboptimal even with a perfect

dynamics model. However, as shown in Fig. 5c, shorter

horizons tend to perform better with learned models, since

they minimize the ability of the optimizer to exploit an

imperfect learned model.

For our model-based approach, we used the OpenAI

gym [7] standard reward functions (described in the appendix)

for action selection in order to allow us to compare perfor-

mance to model-free benchmarks. These reward functions

primarily reward speed, and are especially difficult for our

model-based method due to the myopic nature of the short-

horizon MPC that we employ for action selection; therefore,

the results of our model-based algorithm on all following

plots are lower than would be if we designed our own reward

function (for instance, a straight-line trajectory-following

reward function).

Even with the extremely simplistic standard reward func-

tions, our method can very quickly learn a gait that makes

forward progress. The swimmer, for example, can quickly

achieve qualitatively good moving forward behavior at 20×
faster than the model-free method. However, the final achieved

reward attained by the pure model-based variant of our

approach does not match the final performance of state-

of-the-art model-free learners, due to an imperfect learned

model and the previously discussed sources of suboptimality.

When we integrate model-free finetuning (Fig. 7), however,

the asymptotic performance improves to the level of purely

model-free learning. In the case of the hopper, our pure

model-based approach learns to perform a double or triple

hop very quickly in 1× 104 steps, but performance plateaus

as the reward signal of just forward velocity is not enough

for the limited-horizon controller to keep the hopper upright

for longer periods of time. Our hybrid Mb-Mf approach
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takes these quickly-learned gaits and performs model-free

fine-tuning in order to achieve high task rewards, achieving

3−5× sample efficiency gains over pure model-free methods

for all agents.

VII. DISCUSSION

We presented a model-based reinforcement learning algo-

rithm that is able to learn neural network dynamics functions

for complex simulated locomotion tasks using a small number

of samples. Although a number of prior works have explored

model-based learning with neural network dynamics models,

our method achieves excellent performance on a number of

challenging locomotion problems that exceed the complexity

demonstrated in prior methods.

We described a number of important design decisions for

effectively and efficiently training neural network dynamics

models, and we presented detailed experiments that evaluated

these design parameters. Our method quickly discovered a

dynamics model that led to an effective gait; that model could

be applied to different trajectory following tasks at run-time,

or the initial gait could then be fine-tuned with model-free

learning to achieve high task rewards on benchmark Mujoco

agents.

In addition to looking at the difference in sample com-

plexity between our hybrid Mb-Mf approach and a pure

model-free approach, there are also takeaways from the

model-based approach alone. Our model-based algorithm

cannot always reach extremely high rewards on its own,

but it offers practical use by allowing quick and successful

discovery of complex and realistic gaits. In general, our

model-based approach can very quickly become competent

at a task, whereas model-free approaches can very slowly

become experts. For example, when we have a small legged

robot with unknown dynamics and we want it to accomplish

tasks in the real-world (such as exploration, construction,

search and rescue, etc.), achieving reliable walking gaits that

can follow any desired trajectory is a superior skill to that of

just running straight forward as fast as possible. Additionally,

consider the ant: A model-free approach requires 5 × 106

points to achieve a steady walking forward gait, but using

just 14% of those data points, our model-based approach

can allow for travel in any direction and along arbitrary

Fig. 6: Given a fixed sequence of controls, we show the resulting true rollout
(solid line) vs. the multi-step prediction from the learned dynamics model
(dotted line) on the half-cheetah agent. Although we learn to predict certain
elements of the state space well, note the eventual divergence of the learned
model on some state elements when it is used to make multi-step open-loop
predictions. However, our MPC-based controller with a short horizon can
succeed in using the model to control an agent.

Fig. 7: Plots show the mean and standard deviation over multiple runs and
compare our model-based approach, a model-free approach (TRPO [3]), and
our hybrid model-based plus model-free approach. Our combined approach
shows a 3 − 5× improvement in sample efficiency for all shown agents.
Note that the x-axis uses a logarithmic scale.

desired trajectories. Training such a dynamics model only

once and applying it to various tasks is compelling; especially

when looking toward application to real robots, this sample

efficiency can bring these methods out of the simulation world

and into the realm of feasibility.

While the simplicity and effectiveness of our Mb-Mf

approach is enticing for ease of practical application, an

interesting avenue for future work is to integrate our model-

based approach more tightly and elegantly with model-free

learners (Q-learning, actor-critic methods), in order to provide

further sample efficiency gains. Another exciting direction for
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future work is to deploy this method on real-world robotic

systems, where the improved sample efficiency would make

it practical to use even under the constraints of real-time

sample collection in the real world. In addition to taking

communication delays and computational limitations into

account, another line of future work includes improving

the MPC controller. In this paper, we chose to use a naïve

random-sampling controller to further emphasize the power

of the learned dynamics models; however, this may not be

feasible on real systems with limited computational power,

or on systems with high-dimensional actions spaces that

would require a large number of actions to sampled. Thus,

further development of a real-time controller via optimization

techniques is compelling future work.
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