
1

Trajectory Generation and Control for Precise
Aggressive Maneuvers with Quadrotors

Daniel Mellinger, Nathan Michael, Vijay Kumar

GRASP Laboratory,
University of Pennsylvania,
Philadelphia, PA 19104, USA
{dmel,nmichael,kumar}@seas.upenn.edu

Summary. We study the problem of designing dynamically feasible trajectories and con-
trollers that drive a quadrotor to a desired state in state space. We focus on the development
of a family of trajectories defined as a sequence of segments, each with a controller param-
eterized by a goal state. Each controller is developed from the dynamic model of the robot
and then iteratively refined through successive experimental trials to account for errors in the
dynamic model and noise in the actuators and sensors. We show that this approach permits
the development of trajectories and controllers enabling aggressive maneuvers such as fly-
ing through narrow, vertical gaps and perching on inverted surfaces with high precision and
repeatability.

1.1 Introduction

In this paper we study the problem of designing dynamically feasible trajectories and
controllers that drive a quadrotor to a desired state (position, orientation, linear and
angular velocity) in state space. We focus on the development of a family of trajec-
tories defined as a sequence of segments, each with a controller parameterized by a
goal state. Each controller is developed from the dynamic model of the robot, and
then iteratively refined through successive experimental trials to account for errors
in the dynamic model and noise in the actuators and sensors. We show that this ap-
proach permits the development of trajectories and controllers enabling aggressive
maneuvers such as flying through narrow, vertical gaps and perching on inverted
surfaces with high precision and repeatability.

Aggressive maneuvers with aerial robots is an area of active research with con-
siderable effort focusing on strategies for generating sequences of controllers that
stabilize the robot to a desired state. In [1, 2], Gillula et al. present an optimization-
based control design methodology that generates a sequence of stabilizing controllers
that drive a robot to a hover state after entering a flipping maneuver. The authors are
able to provide guarantees of recovery from a flipping maneuver based on the robot
model and present experimental results to validate their approach. Tedrake proposes



an alternate optimization-based design methodology with similar guarantees but does
so by using a guided sparse sampling of the state space and creating sequences of sta-
bilizing controllers that drive the system to a desired state based on this sampling [3].

Impressive results are also shown using methods based on reinforcement learn-
ing or iterative adaptation of the control law. In [4], Lupashin et al. propose a control
law with initial parameters for flipping a quadrotor multiple times. The control law is
executed many times and corrected after each trial toward the desired performance.
A similar strategy is presented in [5,6], where the authors develop a minimal control
law model and refine the model based on data collected from an expert human oper-
ator executing the aggressive maneuver. In both cases, system models are based on
first principles.

In contrast to the work presented in [1]– [6], we address the challenge of design-
ing trajectories in the full, 12-dimensional state space with an underactuated robot
with four actuators. Specifically, we consider goal states parameterized by an arbi-
trary position, linear velocity, pitch, two angles of orientation and their derivatives.
We depart from the optimization-based methods described in [1–3] because these
methods do not appear to scale to 12 dimensions. Additionally, it is unclear how to
incorporate differences between the first-principles model and actual model in these
methods. The apprenticeship methods in [5, 6] require an expert human operator to
generate data for model and control identification and therefore limit the ability of
the control law to handle cases not considered a priori by the human operator.

We develop a system model based on first principles (Sect. 1.2) and feedback
control laws for families of trajectories (Sect. 1.3). A trajectory consists of a se-
quence of trajectory segments and associated controllers, each of which are refined in
simulation and experimentation (Sect. 1.4). Experimental evaluation of the approach
shows that with limited experimental refinement (four trials of parameter adaptation)
we are able to generate controllers that show repeatability and precision (Sect. 1.6).

1.2 Modeling

1.2.1 Dynamic Model

The coordinate systems and free body diagram for the quadrotor are shown in
Fig. 1.1(b). The world frame, W , is defined by axes xW , yW , and zW with zW
pointing upward. The body frame, B, is attached to the center of mass of the quadro-
tor with xB coinciding with the preferred forward direction and zB perpendicular to
the plane of the rotors pointing vertically up during perfect hover (see Fig. 1.1(b)).
Rotor 1 is on the positive xB-axis, 2 on the positive yB-axis, 3 on the negative xB-
axis, 4 on the negative yB-axis. We use Z-X-Y Euler angles to model the rotation
of the quadrotor in the world frame. To get from W to B, we first rotate about zW
by the yaw angle, ψ, then rotate about the intermediate x-axis by the roll angle, φ,
and finally rotate about the yB axis by the pitch angle, θ. The rotation matrix for
transforming coordinates from B toW is given by



R =

cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ
cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ
−cφsθ sφ cφcθ

 ,
where cθ and sθ denote cos(θ) and sin(θ), respectively, and similarly for φ and ψ.
The position vector of the center of mass in the world frame is denoted by r. The
forces on the system are gravity, in the −zW direction, and the forces from each of
the rotors, Fi, in the zB direction. The equations governing the acceleration of the
center of mass are

mr̈ =

 0
0
−mg

 +R

 0
0

ΣFi

 . (1.1)

The components of angular velocity of the robot in the body frame are p, q, and r.
These values are related to the derivatives of the roll, pitch, and yaw angles according
to pq

r

 =

cθ 0 −cφsθ
0 1 sφ
sθ 0 cφcθ

φ̇θ̇
ψ̇

 .
In addition to forces, each rotor produces a moment perpendicular to the plane of
rotation of the blade, Mi. Rotors 1 and 3 rotate in the −zB direction while 2 and 4
rotate in the zB direction. Since the moment produced on the quadrotor is opposite
the direction of rotation of the blades, M1 and M3 act in the zB direction while
M2 and M4 act in the −zB direction. We let L be the distance from the axis of
rotation of the rotors to the center of the quadrotor. The moment of inertia matrix
referenced to the center of mass along the xB−yB−zB axes, I , is found by weighing
individual components of the quadrotor and building a physically accurate model in
SolidWorks. 1 The angular acceleration determined by the Euler equations is
1 The off-diagonal terms of I are nearly zero since xB − yB − zB are close to the principal

axes of the quadrotor.

(a) (b)

Fig. 1.1. (a) Quadrotor used in experiments. (b) Coordinate systems and forces/moments act-
ing on the quadrotor.



I

ṗq̇
ṙ

 =

 L(F2 − F4)
L(F3 − F1)

M1 −M2 +M3 −M4

−
pq
r

× I
pq
r

 . (1.2)

1.2.2 Motor Model

Each rotor has an angular speed ωi and produces a vertical force Fi according to

Fi = kFω
2
i . (1.3)

Experimentation with a fixed rotor at steady state shows that kF ≈ 6.11×10−8 N
rpm2 .

The rotors also produce a moment according to

Mi = kMω
2
i . (1.4)

The constant, kM , is determined to be about 1.5 × 10−9 Nm
rpm2 by matching the per-

formance of the simulation to the real system.
The results of a system identification exercise suggest that the rotor speed is

related to the commanded speed by a first-order differential equation

ω̇i = km(wdesi − wi).

This motor gain, km, is found to be about 20 s−1 by matching the performance of
the simulation to the real system. The desired angular velocities, ωdesi , are limited to
a minimum and maximum value determined through experimentation to be approxi-
mately 1200 rpm and 7800 rpm.

1.3 Control

Here we present methods used to control the robot (a) to a desired attitude; (b) to
hover in place; and (c) along a three-dimensional trajectory with specified position
and linear velocity. We design a sequence of these controllers to generate the de-
sired trajectories in the next section. The controllers presented in this section are also
discussed in [7].

1.3.1 Attitude Control

The goal of this controller is to reach a desired attitude with a specified angular
velocity. The vector of desired rotor speeds can be written as a linear combination of
four terms 

ωdes1

ωdes2

ωdes3

ωdes4

 =


1 0 −1 1
1 1 0 −1
1 0 1 1
1 −1 0 −1



ωh +∆ωF
∆ωφ
∆ωθ
∆ωψ

 , (1.5)



where the nominal rotor speed required to hover in steady state is ωh, and the devia-
tions from this nominal vector are ∆ωF , ∆ωφ, ∆ωθ, and ∆ωψ . ∆ωF results in a net
force along the zB axis, while ∆ωφ, ∆ωθ, and ∆ωψ produce moments causing roll,
pitch, and yaw, respectively. We use proportional derivative control laws that take the
form

∆ωφ = kp,φ(φdes − φ) + kd,φ(pdes − p)
∆ωθ = kp,θ(θ

des − θ) + kd,θ(q
des − q)

∆ωψ = kp,ψ(ψdes − ψ) + kd,ψ(rdes − r).
(1.6)

Substituting (1.6) into (1.5) yields the desired rotor speeds.

1.3.2 Hover Controller

The goal of this controller is to reach a desired position and yaw angle with zero
linear and angular velocities. Here we use pitch and roll angle to control position in
the xW and yW plane,∆ωψ to control yaw angle, and∆ωF to control position along
zW . We let rT (t) and ψT (t) be the trajectory and yaw angle we are trying to track.
Note that ψT (t) = ψ0 for the hover controller. The command accelerations, r̈desi , are
calculated from PID feedback of the position error, ei = (ri,T − ri), as

(r̈i,T − r̈desi ) + kd,i(ṙi,T − ṙi) + kp,i(ri,T − ri) + ki,i

∫
(ri,T − ri) = 0,

where ṙi,T = r̈i,T = 0 for hover. We linearize (1.1) to get the relationship between
the desired accelerations and roll and pitch angles

r̈des1 = g(θdes cosψT + φdes sinψT )

r̈des2 = g(θdes sinψT − φdes cosψT )

r̈des3 =
8kFωh
m

∆ωF .

These relationships are inverted to compute the desired roll and pitch angles for the
attitude controller as well as ∆ωF from the desired accelerations

φdes =
1

g
(r̈des1 sinψT − r̈des2 cosψT ) (1.8a)

θdes =
1

g
(r̈des1 cosψT + r̈des2 sinψT ) (1.8b)

∆ωF =
m

8kFωh
r̈des3 . (1.8c)

We use two sets of position gains (kp,i, kp,i, and ki,i) for the Hover Controller. The
first set of gains are designed to minimize steady state error, resulting in a stiff po-
sition controller. We call this the “Stiff Hover Control”. The second set of gains are
smaller in order to increase the region of convergence. These gains result in a slower,
more damped response and we call this the “Soft Hover Control.”



1.3.3 3D Trajectory Control

The trajectory controller is used to follow 3D trajectories with modest accelerations
so the linearization about the hover state is still acceptable. We use an approach
similar to that described in [8] but extend it from 2D to 3D trajectories. We have a
method for calculating the closest point on the trajectory, rT , to the current position,
r. Let the unit tangent vector of the trajectory associated with that point be t̂ and the
desired velocity vector be ṙT . We define the position and velocity errors as

ep = ((rT − r) · n̂)n̂ + ((rT − r) · b̂)b̂

and
ev = ṙT − ṙ.

Note that here we ignore position error in the tangent direction by only considering
position error in the normal, n̂, and binormal, b̂, directions.

We calculate the commanded acceleration, r̈i,des, from PD feedback of the posi-
tion and velocity errors:

r̈desi = kp,iei,p + kd,iei,v + r̈i,T .

Note that the r̈i,T terms represent feedforward terms on the desired accelerations. At
low accelerations these terms can be ignored but at larger accelerations they can sig-
nificantly improve controller performance. Finally we use (1.8a)–(1.8c) to compute
the desired roll and pitch angles as well as ∆ωF .

1.4 Trajectory Generation and Parameter Adaptation

1.4.1 Trajectory Description

We design a sequence of controllers to reach a goal state,G, with a specified position,
xG, velocity, vG, yaw angle, ψG, and pitch angle, θG, with zero angular velocity and
roll angle. The sequence consists of 5 phases:

• Phase 1 - hover control (stiff) to a desired position (Sect. 1.3.2);
• Phase 2 - control to desired velocity vector (Sect. 1.3.3);
• Phase 3 - control to desired pitch angle (Sect. 1.3.1);
• Phase 4 - control to zero pitch angle;
• Phase 5 - hover control (soft) to a desired position.

The yaw angle is controlled to be ψG during all phases. In phase 2, the robot controls
along a 3D line segment at a commanded velocity towards a “launch point.” Phase 3
is initiated when the quadrotor passes the plane perpendicular to the desired velocity
at the launch point. In phase 3, the robot’s attitude is controlled to a commanded
pitch angle and a roll angle of zero. Note that during phase 3, a constant net thrust is
commanded. Phase 4 and 5 are recovery phases. In phase 4, we use the attitude con-
troller to control to a pitch and roll angle of zero. In phase 5, a soft hover controller
is used to stabilize to a position in space with zero velocity.



1.4.2 Initial Parameter Selection

The pitch tracking controller used in phase 3 is tuned so that the settling time is
approximately 0.4 seconds and response is close to critically damped in response to
a step input between 45◦ and 120◦. For this reason, we design the system to reach
state G 0.4 seconds after starting phase 3. We find the position of the launch point,
xL, and the velocity vector at the launch point, vL, necessary to achieve the desired
state G. This is accomplished via backwards integration of the equations of motion
(1.1) from G to L assuming the pitch angle tracks a critical damping trajectory with
a settling time 0.4 seconds, the yaw angle is ψG, the roll angle is zero, and the net
thrust is equal to the desired thrust. During phase 2, the quadrotor starts at xS and
follows the line segment from xS to xL with velocity vL. So the start position, xS , is
found by drawing a line segment of length l , typically 1 m, in the direction of −vL
from xL.

1.4.3 Parameter Adaptation

The real quadrotor does not perform exactly the same as the model. The system will
not reach the exact launch point, xL, or have the exact desired velocity, vL, at the
launch point. Additionally the quadrotor will not have an exactly zero pitch angle
at the launch point and the angle performance will not be exactly critically damped
with a settling time of 0.4 seconds. These deviations are caused by air drag, rotor
dynamics, and actuator saturation limits. It is difficult to model these effects precisely
so we iterate on experimental trials to achieve the goal state G. The initial parameter
solution is run on the system once. Then we iterate na times on the commanded pitch
angle during phase 3. We let the commanded pitch angle at iteration k be θkC . We let
θkact be the actual pitch angle achieved 0.4 seconds after entering phase 3 during
iteration k and update with a step size parameter, γθ ≤ 1, as follows

θk+1
C = θkC + γθ(θG − θkact) (1.9)

The pitch angle achieved during phase 3 is not strongly affected by the velocity
commanded during phase 2, so we can iterate on the commanded velocity without
significantly affecting the pitch angle. We use the same strategy as for pitch angle
and iterate nv more times on velocity:

vk+1
C = vkC + γv(vG − vkact) (1.10)

Finally, we run the final parameters for nx trials and let x̄act be the average position
achieved 0.4 seconds after entering phase 3 during the trials. The entire trajectory is
then simply shifted by the difference between the desired position, xG, and the actual
position, x̄act, as follows

xL = xL + (xG − x̄act)
xS = xS + (xG − x̄act)

Note that the gains for all the controllers are designed ahead of time. During param-
eter adaptation only the commanded pitch angle and the three components of the
commanded velocity are modified.



x
y

z

1

2

3

4

5
θ

(a) Vertical opening

x
y

z

1

4

5

3

2

(b) Horizontal opening
x

y

z

3

1 2

θ

(c) Perching

Fig. 1.2. The four experimental scenarios considered in this work. Flying downward and up-
ward through a horizontal opening are both shown in Fig. 1.2(b), where the stages of the
robot’s progression are reversed for the latter. Note that in Figs. 1.2(a) and 1.2(c), θ denotes
the varied window and perching orientation.

1.5 Experiment Design and Implementation Details

In this work we present a systematic approach for designing trajectories and associ-
ated controllers that permit aggressive maneuvers with quadrotor robots. We consider
four experimental scenarios:

• flying through a vertical opening at varying angles;
• flying downward through a horizontal opening;
• flying upward through a horizontal opening;
• perching on a target at varying angles.

Note that adhesion during perching is achieved by placing Velcro on the underside
of the quadrotor and on a target location. Graphics depicting the four scenarios are
shown in Fig. 1.2. The first and last scenarios include cases at various angles. For
each of the cases, the quadrotor executed 15 trials of the trajectory after completing 2
iterations of (1.9) and 4 iterations of (1.10). We report the results of these experiments
in Sect. 1.6.

The hardware, software, and implementation details of the experiments follows.
The pose of the quadrotor is observed using a VICON motion capture system at
225 Hz [9]. The position is numerically differentiated to compute the linear veloc-
ity of the robot. These values are available to MATLAB via ROS [10] and a ROS-
MATLAB bridge [11]. All commands are computed in MATLAB using the latest state
estimate at the rate of the VICON. The commands in MATLAB are bridged to ROS
and the most recent command is sent to the robot via ZIGBEE at a fixed rate of
100 Hz. This fixed rate is due to the limited bandwidth of ZIGBEE (57.6 kbps). Com-
mands sent to the robot consist of the gains and desired attitude, desired angular
velocities, and thrust values described in Sect. 1.3.1.

The robot (Fig. 1.1(a)) is sold commercially [12]. The quadrotor follows a stan-
dard four-propeller design and is equipped with two embedded processors running at



Fig. 1.3. Latencies (ms) in experimental system. The motion capture system operates at
225Hz. Quadrotor pose and velocity data is received and bridged to Matlab. Commands are
computed in Matlab and the latest command is sent to the robot via Zigbee at 100Hz (throttled
due to bandwidth limitations). Commands are received on the robot; the high-level (HL) em-
bedded micro-processor computes direct motor commands using (1.5) and (1.6), then sends
the motor commands to the lower-level (LL) processor. Our custom firmware runs on the HL
processor and the proprietary firmware runs on the LL processor. The motor response time
is denoted as tr . Negligible times (< 0.01ms) are not noted. The worst case response of the
system from observation to motors rotating based on the observation is approximately 85ms
with tr as the dominant limiting factor.

1 kHz (denoted as high-level (HL) and low-level (LL)), an IMU (running at 300 Hz),
and other sensors not required for this work. The HL processor runs our custom
firmware, receives commands via ZIGBEE, and sends motor commands to the LL
processor to execute those commands. The LL processor provides attitude estimates
to the HL processor. A comparison between attitude estimates and VICON shows
very similar results. Latencies and data flow are shown in Fig. 1.3.

1.6 Results

Nine cases of the four scenarios shown in Fig. 1.2 were tested. All of the cases use a
desired yaw angle, ψG, of 90◦. The details of these cases are shown in Table 1.1. In
all of the vertical window cases (1-4) the desired velocity is 2 m/s through the win-
dow and zero in the other directions. This speed is large enough for the quadrotor
to coast through the window at the desired angle. For descending though the hori-
zontal window (case 5), the desired downward speed is 1.5 m/s and zero in the other
directions. This speed has to be small enough to give the quadrotor time to recover
after passing through the window. Ascending through the horizontal window (case 6)



Fig. 1.4. Images from representative experimental trials. Figures 1.4(a-d) present a trial of
the quadrotor passing through a vertical window at 90◦ (case 4). Figures 1.4(e-h) show
the quadrotor descending through a horizontal window (case 5). Figures 1.4(i-l) show the
quadrotor perching on a 120◦ surface (case 9). Videos of the experiments are available at
http://tinyurl.com/quadrotorcontrol.

Case Description vG (x,y,z) (m/s)
1 Vertical Window at 45◦ (2, 0, 0)
2 Vertical Window at 60◦ (2, 0, 0)
3 Vertical Window at 75◦ (2, 0, 0)
4 Vertical Window at 90◦ (2, 0, 0)
5 Down Through Horizontal Window at 90◦ (0, 0, -1.5)
6 Up Through Horizontal Window at 90◦ (0, 0.4, 2.2)
7 Perch at 60◦ (0, 0.8cos(30), -0.8sin(30))
8 Perch at 90◦ (0, 0.8, 0)
9 Perch at 120◦ (0, 0.8cos(30), 0.8sin(30))

Table 1.1. Descriptions of tested cases.

is the most difficult case because the quadrotor must achieve enough vertical speed
to coast upward through the window. For each of the perching cases (7-9), the de-
sired velocity was set to be 0.8 m/s normal to the perching surface. This speed is
large enough to guarantee adhesion given proper alignment of the quadrotor to the
perching surface. Representative images from cases 4, 5, and 9 are shown in Fig. 1.4.

The performance of the iteration scheme is shown for a representative case (case
8) in Fig. 1.5. After the first iteration the initial angle error drops from 10◦ to less
than 2◦ for the rest of the iterations. The velocity adaptation begins after iteration 3.
The velocity error improves significantly in iteration 4 and continues to stay low for

http://tinyurl.com/quadrotorcontrol


1 2 3 4 5 6 70

2

4

6

8

10

12

Iteration

Pi
tc

h 
An

gl
e 

Er
ro

r (
de

g)

(a)

1 2 3 4 5 6 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration

Ve
lo

ci
ty

 E
rro

r (
m

/s
)

 

 

x
y
z

(b)

Fig. 1.5. Pitch angle and velocity improvement after iterating when perching at 90◦ (case 8).

1 2 3 4 5 6 7 8 940

60

80

100

120

140

Pi
tc

h 
An

gl
e 

(d
eg

)

Case

(a)

1 2 3 4 5 6 7 8 9−2

−1

0

1

2

3

Ve
lo

ci
ty

 (m
/s

)

Case

(b)

Fig. 1.6. Mean pitch angles (a) and velocities (b) for 15 trials of each case. The error bars rep-
resent three standards deviations and the black bars are the desired pitch angles and velocities.
In (b) the x, y, and z velocities are shown in red, green, and blue, respectively.

the remainder of the iterations. After performing the iteration scheme for each of the
cases, 15 trials with the same parameters are run for each case. A summary of the
data collected from the 15 trials for all of the cases is shown in Figs. 1.6 and 1.7(b).
For a representative case (case 3) the standard deviation on the achieved angle is
0.9◦ and the standard deviations on the velocity and position are around 8 cm/s and
2 cm, respectively, for all axes. To illustrate the trajectory for this case and the other
vertical window cases (1-4), a single trial for each is shown in Fig. 1.7(a).

1.7 Conclusion and Future Work

In this paper we study the problem of designing dynamically feasible trajectories
and controllers that drive a quadrotor to a desired state in state space. We focus on
the development of a family of trajectories defined as a sequence of segments, each
with a controller parameterized by a goal state. Each controller is developed from the
dynamic model of the robot and then iteratively refined through successive experi-



(a)

1 2 3 4 5 6 7 8 90

1

2

3

4

5

6

Case

Po
si

tio
n 

Er
ro

r S
ta

nd
ar

d 
D

ev
ia

tio
n 

(c
m

)

 

 

x
y
z

(b)

Fig. 1.7. (a) Experimental data from a single trial for cases 1-4, the vertical window maneu-
ver at 45◦, 60◦, 75◦, and 90◦ (left to right). The gray lines represent the orientation of the
quadrotor. (b) Standard deviations on goal positions for 15 trials for each case.

mental trials to account for errors in the dynamic model and noise in the actuators and
sensors. Four scenarios are tested experimentally as considered by nine case studies
with fifteen trials of each case study. The scenarios include flying through narrow,
vertical and horizontal openings and perching on an inverted surface. We show that
our approach results in repeatable and precise control along trajectories that demand
velocities and accelerations that approach the limits of the vehicle’s capabilities.

Much of our approach is moving toward planning for dynamically feasible tra-
jectories that require more sequences of controllers than the number shown here (at
most five in this work). We believe that by representing families of trajectories by
specialized controllers the high-dimensionality of the planning problem may be re-
duced and so we are actively pursuing this area of research. We are also pursuing the
extension of our approach to external disturbances such as a gust of wind. Finally,
we are interested in considering more advanced methods for optimizing and adapting
the trajectory parameterizations to deal with differences between the analytic model
and reality.

References

1. J. H. Gillula, H. Huang, M. P. Vitus, and C. J. Tomlin, “Design and analysis of hybrid
systems, with applications to robotic aerial vehicles,” in Proc. of the Int. Symposium of
Robotics Research, Lucerne, Switzerland, Sept. 2009.

2. ——, “Design of guaranteed safe maneuvers using reachable sets: Autonomous quadro-
tor aerobatics in theory and practice,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, Anchorage, AK, May 2010, pp. 1649–1654.

3. R. Tedrake, “LQR-Trees: Feedback motion planning on sparse randomized trees,” in
Proc. of Robotics: Science and Systems, Seattle, WA, June 2009.

4. S. Lupashin, A. Schollig, M. Sherback, and R. D’Andrea, “A simple learning strategy
for high-speed quadrocopter multi-flips,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, Anchorage, AK, May 2010, pp. 1642–1648.



5. J. Tang, A. Singh, N. Goehausen, and P. Abbeel, “Parameterized maneuver learning for
autonomous helicopter flight,” in Proc. of the IEEE Int. Conf. on Robotics and Automa-
tion, Anchorage, AK, May 2010, pp. 1142–1148.

6. P. Abbeel, “Apprenticeship learning and reinforcement learning with application to
robotic control,” Ph.D. dissertation, Stanford University, Stanford, CA, Aug. 2008.

7. N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multiple micro UAV
testbed,” IEEE Robotics and Automation Magazine, vol. 17, no. 3, pp. 56 –65, Sept. 2010.

8. G. Hoffmann, S. Waslander, and C. Tomlin, “Quadrotor helicopter trajectory tracking
control,” in AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu,
Hawaii, Apr. 2008.

9. “Vicon Motion Systems, Inc.” http://www.vicon.com.
10. “Robot Operating System (ROS),” http://www.ros.org.
11. “ROS-Matlab Bridge,” http://github.com/nmichael/ipc-bridge.
12. “Ascending Technologies, GmbH,” http://www.asctec.de.


	1 Trajectory Generation and Control for Precise Aggressive Maneuvers with Quadrotors
	Daniel Mellinger, Nathan Michael, Vijay Kumar

