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Do Fielders Know Where to Go to Catch the Ball or Only How
to Get There?

Peter McLeod
Oxford University

Zoltan Dienes
Sussex University

Skilled fielders were filmed as they ran backward or forward to catch balls projected toward
them from a bowling machine 45 m away. They ran at a speed that kept the acceleration of
the tangent of the angle of elevation of gaze to the ball at 0. This algorithm does not tell
fielders where or when the ball will land, but it ensures that they run through the place where
the ball drops to catch height at the precise moment that the ball arrives there. The algorithm
leads to interception of the ball irrespective of the effect of wind resistance on the trajectory
of the ball.

The everyday nature of the act of running to catch a ball
can obscure the remarkable predictive ability that it re-
quires. Figure 1 shows the trajectories of three balls pro-
jected at 45° and approximately 22, 24, and 26 m/s toward
a stationary fielder 45 m away. They will land 5 m in front
of, at, or 5 m behind the fielder, respectively. The solid line
shows the trajectory of each ball in the first 840 ms; the
dashed line shows the rest of the flight. Within 840 ms, most
competent fielders would have started running forward for
the ball on the lower trajectory and backward for the ball on
the higher trajectory.1 Yet, the only difference between
these two flights at this time is the difference between the
longest and shortest solid lines. How is the fielder able to
work out where to go from so little information?

Precise calculation of the trajectory is not possible be-
cause the essential ball flight parameters of projection angle,
velocity, and wind resistance are available to the fielder
only as, at best, crude estimates. Nor, given the infinite
variation of trajectory, does it seem possible that learning to
catch involves learning individual trajectories. An alterna-
tive is that an algorithm exists that links the visual infor-
mation obtained from watching the ball's flight to a running
speed that will bring the fielders to the correct place, irre-
spective of their starting position or the ball's trajectory.
Learning to catch would involve the discovery of this
algorithm.
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Chapman (1968) analyzed the visual information avail-
able to a fielder watching a ball approaching in parabolic
flight. He showed that if a is the angle of elevation of gaze
from the fielder to the ball, then the acceleration of the
tangent of a, d2(tan a)/dt2, will be zero if, and only if, the
fielder is standing at the place where the ball will land. He
also suggested that this might be the basis of an interception
algorithm. A fielder who starts at a place other than where
the ball will land and runs at a constant velocity that keeps
d2(tan a)/dt2 at zero will arrive at the correct place to make
the catch at the same time as the ball.

However, because Chapman's (1968) work is based on
the information provided by watching an object in parabolic
flight, it is not clear what relevance it has to catching. Wind
resistance ensures that objects in the real world do not
follow parabolic trajectories. The departure from parabolic
flight can be substantial at the speeds encountered in ball
games. For example, Brancazio (1985) estimated that the
effect of wind resistance on a well-hit baseball would be to
reduce the horizontal distance traveled by up to 40% of the
distance it would have achieved in parabolic flight. Further-
more, given identical projection angle and initial velocity,
different objects follow different trajectories because of
their different wind resistances. If catching involves learn-
ing an algorithm that links visual information to running
speed, it must be one that works independently of the effect
of wind resistance on trajectory.

Given Brancazio's (1985) analysis, one might be tempted
to think that demonstrations of geometrical relationships
that could form the basis of algorithms for intercepting balls
in parabolic flight have no relation to real catching. How-
ever, a recent article has suggested otherwise. Michaels and
Oudejans (1992) filmed two people running backward or
forward to catch a ball. From the position of the catcher's

1 In the current study, for example, the fielder started running in
the correct direction within 840 ms for 74% of catches. Michaels
and Oudejans (1992) also found that catchers started to run shortly
after the ball appeared.
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Figure 1. The trajectories of three balls projected at 45° and a velocity (v) of 22.3, 24.0, and 25.7
m/s, respectively, toward a fielder 45 m away. They experienced a deceleration due to aerodynamic
drag proportional to v2. The constant of proportionality was 0.007 m"1, a value typical of objects
such as cricket balls (Daish, 1972).

head and of the ball, they were able to calculate the optic
height of the ball throughout its flight. (The optic height is
the position of the ball's image on an imaginary plane a
fixed distance in front of the fielder's eye.) They showed
that when fielders moved to make a catch, optic height
increased with roughly constant velocity until just before
the catch. Optic height is equivalent to the tangent of the
angle of gaze, and constant velocity implies zero accelera-
tion. Therefore, their result appears to offer support for
Chapman's (1968) proposal that interception is ensured by
running at a speed that maintains the acceleration of the
tangent of the angle of gaze at zero.2

Before one concludes that Chapman (1968) was correct, we
must elaborate on Michaels and Oudejans's (1992) result.
First, their main experiment presented data from only 10 catch-
es: 7 from one fielder and 3 from another. Second, they offered
no statistical test of the linearity of the plots of optic height
against time (i.e., of the claim that optic height increases at
constant velocity). Third, although it is possible to fit a straight
line by eye to the early parts of the plots of optic height against
time for each catch, in the majority of catches there is a
departure from linearity in the second half of the flight.3 They
did not show whether Chapman's strategy will lead to inter-
ception (and that these deviations are unimportant) or whether
the deviations are a necessary corrective process because
Chapman's strategy does not actually get the fielder close
enough to the ball to catch it (because of the effects of wind
resistance). Finally, Michaels and Oudejans did not analyze the
fielders' running velocity. Chapman's analysis requires not
only that fielders should keep the velocity of optic height
constant as they run but also that they find the constant running
velocity at which this happens. If Chapman's analysis explains
how fielders get to the right place at the right time, this
condition must be met too.

The aim of the experiments reported here was to extend
Michaels and Oudejans's (1992) analysis of whether run-
ning speed is controlled by an algorithm linked to some
function of the angle of elevation of gaze to cover the four

points above. We measured the running speed and the angle
of elevation of gaze as skilled fielders ran to catch a ball.
Successful interception usually requires the fielder to judge
whether the ball is going to the left or the right as well as
whether it is going to drop in front or behind. Visual cues
that are available to make the left-right judgment have been
identified (Regan, Beverley, & Cynader, 1979; see also
Regan, 1993; Regan & Kanshal, 1994). Like Michaels and
Oudejans, we considered the remaining problem of whether
the fielder should move backward or forward to catch the
ball. For simplicity, all our experiments involved balls pro-
jected in a vertical plane between the point of projection and
the fielder so that the fielder did not have to move left or
right. The algorithm that we show that fielders use in this
situation works equally well in the more general case where
the fielder must decide whether to move left or right as well
as backward or forward.

Experiment 1

Method

Participants

Six skillful ball catchers participated. One was a professional
soccer player, 1 played cricket at the professional level, and the
remaining 4 were keen amateur cricket players. All were male.

2 Optic height and the tangent of the angle of gaze are mathe-
matically equivalent quantities, so the choice of one rather than the
other may seem arbitrary. Angle of gaze is available directly to a
fielder who looks at the ball; optic height is available directly to a
fielder who maintains fixation on the point from which the ball
was projected. Because fielders look at the ball when trying to
catch it, not at the point of projection, it seems more appropriate to
choose a function of the angle of gaze as the basis for the analysis.

3 There is also a catastrophic departure, just before the catch,
that occurs too late to be relevant to the question of how the fielder
arrives at the right place to make the catch.



RUNNING TO CATCH THE BALL 533

Catching

The fielder stood approximately 45 m from a bowling machine,
which projected a hard white ball into the air directly toward him
at a projection angle of 45°. For different deliveries the speed was
varied randomly over a range of about 20-25 m/s so that the ball
would unpredictably go over his head or fall short, with a range of
about 0 m around his starting position. About 50 balls were
fired at each fielder. He ran backward or forward or stayed where
he was, trying to catch each ball.

Measurement

Fielder's position and velocity. Figure 2 shows a bird's-eye
view of the experimental setup. The fielder ran backward and
forward along an imaginary line between himself and the bowling
machine to catch the ball. As he ran, he was tracked by a video
camera. This had an electronic shutter, set to take images in 2 ms,
producing a blur-free image of the fielder. Beyond the fielder was
a wall marked in units of 36 cm. In frame-by-frame replay of the
video, the position of the back of the fielder's head could be
estimated to about 5 cm on the wall. Given the distance between
camera, fielder, and wall, this uncertainty in measurement corre-
sponded to an estimate of the position of the fielder accurate to
about 3 cm. The fielder's position was sampled every 120 ms.
The positional estimates from the frame-by-frame analysis were
smoothed with a Hanning window, each position being recalcu-

OnO Bowling
V Machine

lated as half of itself plus one quarter of each of its immediate
neighbors. The smoothed position estimates were differentiated to
give the fielder's velocity.

Position of the ball. The position of the ball in flight was not
recorded on video (except in the final frames when the fielder was
about to catch it), but it was possible to analytically estimate its
position throughout the flight. The initial velocity and projection
angle of the ball were known. The distance it traveled was known
because its position was recorded on the video as it appeared
against the structured background just before it was caught. The
flight duration was known (to within 0 ms, the duration of the
video frame) because a marker appeared on the video at the
moment the ball left the bowling machine and the moment when
the ball was caught was recorded on the video.

These four values were used to compute the trajectory of the
ball, assuming parabolic flight modified by an aerodynamic drag
factor, proportional to the square of the ball's velocity. The value
of the drag factor was estimated by finding the value that gave the
lowest summed mean squared difference between observed and
predicted values of flight distance and flight time. With the best fit
value for wind resistance, the errors were about 3% in estimating
flight duration and 1% in estimating flight extent. The values we
obtained were similar to that given by Daish (1972) for a cricket
ball. Given drag, initial velocity, and projection angle, it was
possible to calculate the height of the ball and its distance from the
bowling machine at any time during the flight. (A detailed account
of the method is given in the article by Dienes and McLeod, 1993.)

Angle of gaze. The initial positions of the fielder and the ball
were known. The position of the fielder after Time t was measured
from the video, and the position of the ball after Time t was
calculated as described above. The angle of gaze from the fielder
to the ball follows directly.

Balls
flight

Results

Tracking
Camera Fielders

start position

Figure 2. The experimental setup as viewed from above. As the
fielder ran to catch the ball, he was tracked by the video camera.
Given that he was running in a straight line toward or away from
the bowling machine, his real position could be calculated from the
position that he had reached against the structured background.

Running Speed

The left side of Figure 3 shows six typical examples of
running data from 1 fielder. His velocity as he ran to catch
the ball is plotted against time, each curve ending at the time
when the ball was caught. Each curve is labeled with the
distance he ran, a negative sign indicating that he ran
backward. (All fielders showed qualitatively similar pat-
terns. Combining data to show average running patterns, or
to compute the variance of the running patterns, is prob-
lematic because the fielders ran different distances and
paused for different lengths of time before starting to run.)

Figure 3 demonstrates two effects shown by all fielders.4

First, they were always moving when they caught the ball
(except when they had no more than 1-2 m to cover to make
the catch). (Although Michaels and Oudejans, 1992, did not
comment on this effect, it can be seen from their Figure 4
that they found the same result. In all of the catches where
the fielder moved more than about 2 m, she was moving

4 The fielder shown in Figure 3 also showed one effect not
shown by all fielders. He always took one or two steps forward
before moving backward. This may reflect the fact that in cricket,
deep fielders (i.e., ones fielding at some distance from the bat)
usually walk toward the batsman as the ball is bowled. However,
we do not know why some of our participants did this and others
did not.
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Figure 3. The left panel shows the fielder's running speed as a function of time as he ran forward
to catch balls 8.8, 5.5, or 2.7 m in front of his starting position or as he ran backward to catch balls
2.8, 4.3, or 8.1 m behind his starting position. (He actually started running about 0.5 s after the ball
appeared. His velocity is shown as greater than zero slightly earlier as a result of the smoothing
algorithm being applied to the raw position data before the velocity was calculated.) The right panel
shows d2(tan a)/dt , where a is the angle of elevation of gaze from the fielder to the ball. The solid
line shows the value that we calculated the fielder saw as he ran with the velocity shown on the left
of the figure; the dashed lines show the value that he would have seen if he had run at a constant
velocity, which was either too fast or too slow so that he missed the ball by 2 m.

when she caught the ball.) Thus, the fielder does not run to
the point where the ball will fall and then wait for it but
rather runs through the point where the ball will fall at the
exact moment that it arrives there. A fielder who knew
where the ball was going to fall would presumably run to
that point and wait for it to arrive. So, it is possible that the
fielder does not know where the ball wil l fall when running.

This possibility suggests a solution to the problem, illus-
trated by Figure 1, that when the fielder starts to run, there
appears to be insufficient information to work out where the
ball will land. This lack of information is paradoxical if the
fielder is assumed to know where the ball will land when
starting to run. However, if it turns out that the fielder does
not know where the ball will land, the problem disappears.
There may be sufficient information in the first few hundred

milliseconds of the ball's flight to tell the fielder in which
direction to start running, even though there is not enough to
tell where or when the ball will land.

The second point made by Figure 3 is that the running
patterns for different distances had nothing in common.
Long runs involved continuous acceleration, medium dis-
tances involved acceleration and then constant velocity, and
short distances involved acceleration and then deceleration.
The requirement of Chapman's (1968) analysis, that fielders
should run at constant velocity, did not hold. A variant of
Chapman's proposal that might allow for this has been put
forward by Babler and Dannemiller (1993). They suggested
that the fielder starts running at the constant velocity that
zeros optic acceleration, as Chapman suggested. When,
owing to the nonparabolic flight, optic acceleration starts to
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increase or decrease, the fielder finds a new velocity that
zeros it, and so on, repeatedly throughout the flight. The
idea, in effect, is that a nonparabolic flight could be approx-
imated by a series of roughly parabolic sections. Thus, even
a fielder following Chapman's method might not run at the
same speed throughout the catch. Although Babler and
Dannemiller's proposal seems intuitively reasonable, they
gave no proof of the effectiveness of this algorithm. Nor
does it resolve the problem, inherent in Chapman's strategy,
of how the fielder finds the constant running speed that
results in zero optic acceleration. Whether the strategy could
work in principle, it is difficult to see either of the catches
at the longest distance, with continuous acceleration
throughout the flight, offering support even for this modi-
fied version of Chapman's proposal.

Angle of Gaze

The right side of Figure 3 shows the value of d2(tan a)/dt2

(where a is the angle of elevation of gaze from the fielder
to the ball) that the fielder would have seen as he watched
the ball during each run up to 240 ms before the catch was
made.5 It appears that he waited for about 0.5 s and then
started to run, accelerating until he reached a speed where
d2(tan a)/dt2 = 0. Then, he modulated his speed up to the
point of catching the ball. If he was running forward, he ran
faster if d2(tan a)/dt2 became negative and more slowly if it
became positive, and if he was running backward, vice
versa.

Clearly, d2(tan a)/dt2 is maintained close to zero, but is it
close enough to ensure that the ball is caught? This can be
assessed by considering what the value would be if the
fielder just failed to reach the ball. Given that arm reach is
about 1 m and allowing for a jump or lunge as the ball is
caught, the fielder would just be unable to catch the ball if
he was about 2 m away from the ball when it reached
catching height. The dashed lines show the value of d2(tan
a)/dt2 that the fielder would have observed had he run at a
constant speed that would have taken him to a point either
2 m short of or 2 m beyond the place where the ball would
fall. It can be seen that in every flight the value of d2(tan
a)/dt2 actually experienced by the fielder would take him to
less than 2 m from the place where the ball would fall. The
deviations of d2(tan a)/dt2 from zero were insufficient to
prevent the fielder from intercepting the ball.

To test the claim that d2(tan a)/dt2 = 0, we plotted
regression lines of d2(tan a)/dt2 against time, from the time
when the fielder started running until 240 ms before he
made the catch. For a random sample of 15 successful
catches by the fielder whose data are shown in Figure 3, the
medians of the absolute values of the intercepts and the
slopes of these regression lines (i.e., taking the median of
the absolute value and ignoring the sign) were 0.02 s~2

(signed range from -0.07 to 0.07) and 0.02 s~3 (signed
range from -0.04 to 0.10), respectively. In only one flight
was the value of either slope or intercept reliably different
(at the 5% level) from zero. A random sample of 27 suc-
cessful catches from the other fielders showed a similar

result: The median values of the absolute intercepts and
slopes were 0.04 s~2 (signed range from -0.08 to 0.09) and
0.04 s~3 (signed range from —0.04 to 0.09), respectively.
Only 2 of the catches gave either a slope or an intercept
reliably different from zero.

Experiment 2

Experiment 1 showed that when the fielder had less far to
run he ran more slowly, rather than running to the point
where the ball would fall and waiting for it (see the running-
speed data in Figure 3). If he knew where to go, running
more slowly and arriving just in time to catch the ball would
seem a pointlessly risky strategy. Why not go to the right
place and wait? However, if the fielder does not know
where the ball will land but is following a strategy that will
get him to the right place at the right time, it is inevitable
that he will run more slowly if he has more time. Experi-
ment 2 was a direct test of this possibility.

Method

The projection angle of the ball was increased to 64°. With an
initial projection velocity of 24 m/s, it now fell about 36 m from
the bowling machine, a distance similar to the balls projected at
45° and 20 m/s in Experiment 1. However, because the trajectory
was higher, the ball took longer to get there. If the fielder knew
where he was going, he could go there and wait for the ball on the
higher, longer trajectory. But if he was following a strategy that
would lead him to arrive at the same time as the ball, he would run
more slowly.

Results

Running Speed

Figure 4 (upper panel) shows the fielder's speed for six
different catches as he ran 8-10 m to catch the balls on the
two different trajectories. The upper curve shows his mean
speed for three catches when the ball was projected at 45°;
the lower curve shows his mean speed for three catches
when the ball was projected at 64°. The bars show the range
of speed over the three runs. It can be seen that the sepa-
ration of the curves representing the means is an accurate
reflection of the individual catches because there is no
overlap between me individual curves from the two groups.
The curves end at the point where the fielder made the
catch. In both cases, he arrived at the point where the ball
fell at the same time as the ball (i.e., he had a positive
velocity at the moment that he made the catch). With the

5 Like Michaels and Oudejans (1992), we usually found a cat-
astrophic jump in d2(tan a)/dt2 over the last two data points. The
sudden change in a that gave rise to this effect was caused, at least
in part, by the fact that the ball was not caught at the point that was
taken to represent the origin of the fielder's angle of gaze. The
sudden change in a may well have had some role in the terminal
reach adjustment immediately before the catch, but it occurred too
late to be relevant to the question of how the fielder got close
enough to the ball to make the catch, so we ignored it.
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Figure 4. The fielder ran to catch balls landing 8-10 m in front
of him. The ball had an initial projection angle of 45° (flight time
about 3 s) or 64° (flight time about 4 s). The top panel shows the
fielder's running speed as a function of time as he ran to catch the
ball. Each curve is the mean of three runs. The bars show the range
of velocities across the three runs. In the bottom panel, the solid
lines show d2(tan a)/dt2 for each run, and the dashed lines show
what the value would have been if he had run at constant velocity
to a point 2 m short of or 2 m beyond the point where the ball fell.

longer trajectory, he ran more slowly. This finding supports
the conclusion of Experiment 1: The strategy he used got
him to the right place at the right time. However, it does not
appear to tell him where that place is in advance.

Angle of Gaze

Figure 4 (lower panel) plots the value of d2(tan a)/dt2 for
each run. The solid lines are the values of d2(tan a)/dt2 that
the fielder would have seen as he ran (averaged over the
three flights). The dashed lines show what he would have
seen if he had run at constant velocity to a point 2 m short
of or 2 m beyond the place where the ball fell.

The upper panel of Figure 4 shows that two quite different
running patterns were produced to get the fielder to the
same place when the ball's trajectory was changed. What
they have in common is that the fielder ran at a speed that
kept d2(tan a)/dt2 close to zero. Regression lines of d2(tan
a)/dt2 against time, plotted for the individual catches, show
only one catch for which either intercept or slope was
reliably different from zero. For the 45° projection angle,
the medians of the absolute values of the intercepts and the
slopes were 0.04 s"2 (range from -0.07 to 0.04) and 0.02
s~J (range from 0.02 to 0.04), respectively. For the 64°
projection angle, the medians of the absolute values of the
intercepts and the slopes were 0.07 s~2 (range from —0.07
to 0.09) and 0.04 s~*  (range from -0.04 to 0.05), respec-
tively.

Conclusion

The fact that the fielders did not use spare time to run to
the place where the ball would fall and wait suggests that
they did not know where it would fall. However, the exper-
iments did not directly test the fielders' knowledge of where
the ball would fall. It can be concluded that the algorithm
fielders use to intercept the ball is one that ensures they
arrive at the right place at the right time but does not tell
them where or when that is. Whether fielders know where
the ball will land but choose not to use this information as
they run to catch it is a possibility that awaits further
experimentation.

Missing the Ball

We claim that fielders use the sign of d2(tan a)/dt2 as the
input to a servo that controls running speed. When running
backward, they speed up when it is positive and slow down
when it is negative, and when running forward, vice versa.
This strategy is illustrated by seeing what happens when a
fielder fails to run fast enough to catch the ball. Figure 5
compares two catches where the ball landed in roughly the
same place, about 6 m behind the starting position of the
fielder. In one case (open circles), he successfully caught
the ball; in the other (filled circles), he started running
backward too slowly, and the ball went over his head, just
out of reach of his outstretched hand.

The upper panel of Figure 5 shows his velocity. For the
successful catch, he initially accelerated backward, eventu-
ally decelerated, and maintained an approximately constant
velocity until he made the catch. In the unsuccessful case,
he was slower to start and accelerated more slowly but
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Figure 5. Velocity and d2(tan a)/dt2, as in Figure 3, for two
catches where the fielder ran backward. Open circles represent that
he caught the ball; filled circles represent that the ball went over
his head.

continued to accelerate throughout the flight of the ball.
Why did he produce these different running patterns?

The lower panel of Figure 5 shows d2(tan a)/dt2 for each
flight. In both cases, the value started positive (because the
ball was going over the fielder's head) and increased (be-
cause the fielder was initially stationary). Once the fielder
started to run in the appropriate direction, the value came
down. For the successful catch (open circles), it reached
zero, so he stopped accelerating. For the unsuccessful catch
(filled circles), d2(tan a)/dt2 remained positive throughout
the flight, so the fielder continued to accelerate but to no
avail. He started too late and could not run fast enough to
intercept the ball.

General Discussion

We manipulated the time that a fielder had to run for a
catch in two ways. We made the ball fall nearer to or farther
from him (Experiment 1); we made it land at the same place,
but it took longer to get there (Experiment 2). In both
experiments there were apparently complex changes in the
fielder's running speed (see Figures 3 and 4). But in all
cases one thing remained constant: He ran at a speed that
kept the acceleration of the tangent of the angle of elevation
of gaze close to zero. This result was predicted by Chapman
(1968). But we know that Chapman's analysis cannot be
correct. First, it is based on the information available from
watching a parabolic flight. The balls in this experiment
were thrown sufficiently fast to have departed considerably

from parabolic flight.6 Second, Chapman's algorithm as-
sumes that fielders run at constant velocity. Figures 3 and 4
show that typically they do not do so.

A possible resolution is Babler and Dannemiller's (1993)
suggestion that these two problems are linked. They pro-
posed that as the flight departs from parabolic, the fielders
adjust their running velocity, finding a series of new values
of constant velocity throughout the flight successively ze-
roing out optic acceleration. But a fundamental problem still
remains. To discover that Chapman's (1968) strategy works
requires people to view parabolic flights (which they never,
in fact, experience) while running at one particular constant
velocity (or set of constant velocities, if we adopt Babler &
Dannemiller's, 1993, argument). The value of the constant
velocity (or set of velocities) would be different for every
flight they experienced. The implausibility of anyone ever
discovering that Chapman's algorithm led to interception,
coupled with the fact that most children learn to catch just
by watching balls in flight, suggests the need for a different
approach.

How to Intercept a Ball

Consider Figure 6a. A ball is falling, watched by a fielder.
The angle of elevation of gaze from the fielder to the ball is
a. The height of the ball above the ground is y, and the
horizontal distance from the fielder to the ball is x. The
requirement for intercepting the ball before it hits the
ground is simple: As y —> 0, x —> 0. That is, as the ball drops
to the ground, the fielder reaches the place where it drops.
This is illustrated in Figures 6b and 6c, where the fielder
closes in on the ball (x —» 0) as it falls (y —> 0). If both x and
y —»  0 together, a will always be positive but less than 90°,
that is, 0° < a < 90°. If the fielder fails to intercept the ball,
one of two things must happen: Either it falls in front of
him, in which case a < 0° (Figure 6d) or it goes over his
head, in which case a > 90° (Figure 6e).7

The conditions for intercepting or, alternatively, failing to
reach the ball are surprisingly simple: If the fielder runs at
a speed that ensures that the angle of gaze is greater than 0°
but less than 90° throughout the flight, the ball will be
intercepted. If the angle of gaze reaches either 0° or 90°, the

6 For example, the ball projected at 64° and 24 m/s in Experi-
ment 2 traveled 36 m. In parabolic flight, it would have traveled
about 46 m.

7 Strictly, this is true only if balls can only be caught just in front
of the eyes—the point from which the angle of elevation of gaze
is measured. Of course, fielders can stretch their arms forward and
catch a ball a few feet in front of them, despite the fact that a has
gone to 0°, or catch one going just over their head, when a will
have reached 90°. However, in cricket at least, fielders prefer to
catch a ball that has been hit high in the air just in front of their
eyes (see, e.g., Richards & Murphy, 1988, p. 127). They stretch
their arms out to catch the ball as a last moment adjustment only
if they have failed to get to the right place. We based our analysis
on the assumption that fielders are endeavoring to run to the
optimum place for catching, realizing that some other algorithm
also exists to control the arm movements that allow for a correc-
tion just as the ball arrives if they fail to reach the ideal point.
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0<a<90°

0<a<90

Q!=0

a=90

Figure 6. The conditions for intercepting or missing the ball, (a) a is the angle of elevation of gaze
as the fielder watched the ball. If the fielder ran at a speed that kept a positive but less than 90° as
the ball fell (b and c), it would be intercepted. If a fell to 0° or reached 90°, the ball would not be
intercepted because it would have fallen in front (d) or gone over the fielder's head (e).
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ball will be missed (with the exception mentioned above of
a ball within reach of an outstretched hand). This is illus-
trated in Figure 7, which shows the angle of gaze for the
fielder in Figure 1 watching the flight of the balls on the
three trajectories shown there. (Figure 7 shows the angle of
gaze for a stationary fielder. If the fielder ran to catch the
ball, unsuccessfully in the case of the ball landing in front of
or behind him or successfully in the case of the ball landing
in his hands, the picture would be qualitatively similar.) The
angle of elevation of gaze, a, starts at zero in each case and
increases as the fielder watches the ball rising in the air. For
the ball that will land in his hands, a continues to increase
throughout the flight. But the rate of increase slows down as
the flight progresses, and a never reaches 90°. For the ball
that will fall in front of him, a reaches a maximum, starts to
decrease, and accelerates back toward zero. For the ball that
wil l go over his head, a accelerates throughout the flight,
reaching 90° as the ball passes over his head. Although the
exact way that a changes throughout the flights will , of
course, vary with angle and velocity of projection and the
wind resistance of the object, this general pattern is shown
for all flights. For any flight that the fielder misses, a
reaches either 0° or 90°; for any flight that is intercepted,
0° < a < 90° throughout the flight.

Why Running so That (f(tan a)/df = 0 Results in
the Ball Being Intercepted

The reason why running at a speed that keeps d2(tan
a)/dt2 = 0 leads to interception can be understood by
considering the usual case where the fielder starts to run
while the angle of elevation of gaze is increasing; a, and
thus tan a, will be positive and increasing when the fielder
starts. If the fielder runs at a speed that keeps d2(tan a)/dt2

= 0, tan a must be positive and finite at the end of the flight
(i.e., 0 < tan a < oo). Because tan 0° is 0 and tan 90° is oo,
it follows that a will lie between 0° and 90° at the end of the
flight. But this is the condition for intercepting the ball.
Therefore, if the fielder can run fast enough to keep d2(tan
a)/dt2 = 0, the ball will be intercepted.8

Chapman and d2(tan a)/df

Chapman (1968) demonstrated a curious geometrical re-
lationship. If a fielder runs toward the place where a ball in
parabolic flight will fall at the constant velocity that will
cause him or her to arrive at the same time as the ball, d(tan
a)/dt will be constant throughout the run. Because, by
definition, Chapman's fielder successfully intercepts the
ball, this observation has sometimes been seen as offering a
solution to the problem of how to catch the ball. The fact
that Michaels and Oudejans (1992; and now we) have
shown that d(tan a)/dt is constant, that is, d2(tan a)/dt2 = 0,
as fielders run is seen as support for this belief.

Chapman's (1968) observation is geometrically correct,
but it does not offer a solution to the problem facing the
fielder. To run at constant velocity to the interception point
requires the fielder to know, when he or she starts, what

distance must be run in what length of time. Running at
constant velocity thus requires the fielder to know where
and when the ball will land. So Chapman's observation does
not lead to a solution to the problem of intercepting the ball
because it requires the fielder to know the answer (i.e.,
where and when the ball will land) before it can be imple-
mented.

An alternative way of construing Chapman's (1968) ob-
servation into a solution of the problem facing the fielder is
to turn it round. If the fielder runs so as to keep d(tan a)/dt
constant at one particular value, velocity will turn out to be
the one constant velocity that produces interception. The
problem with this is that the crucial value of d(tan a)/dt
would be different for every ball trajectory and every start-
ing position. There is no reason to believe that the fielder
could know all these values. (There is also the empirical
problem for this approach that people do not run at constant
velocity!)

Although we agree with Chapman (1968; and with
Michaels & Oudejans, 1992) that a crucial part of the
fielder's strategy involves keeping d2(tan a)/dt2 at zero, our
interpretation of what the fielder is doing is entirely differ-
ent from theirs. We believe that keeping d(tan a)/dt constant
leads to interception because it keeps a between 0° and 90°,
not because it produces the one constant running velocity
that will produce interception. Chapman showed that inter-
ception would occur if the fielder kept the one value of d(tan
a)/dt constant that produces constant running speed. In fact,
a fielder who keeps any value of d(tan a)/dt constant will
intercept the ball (see Dienes & McLeod, 1993), but only
the "Chapman" value for any given flight will result in a
constant running velocity.

Once one realizes that any constant value of d(tan a)/dt
wil l produce interception, the problem for the fielder, in-
herent in Chapman's (1968) strategy, of knowing the crucial
value of d(tan a)/dt disappears. The fielder, having sighted
the ball for long enough to have generated a value of d(tan
a)/dt (which will be different for different trajectories),
simply has to run at a speed that keeps it constant. This
speed will usually vary during the run. If the fielder waits a
littl e longer before starting to run, the initial value of d(tan
a)/dt will change, and a different running pattern will result.
But the ball will still be intercepted if the fielder can run fast
enough to keep d(tan a)/dt constant.

Alternative Strategies

Interception will occur provided the fielder ensures that
0° < a < 90° throughout the ball's flight. The strategy that
skilled fielders appear to use, keeping d2(tan a)/dt2 at zero,
has been shown to be a very effective strategy for doing this.
It works for any trajectory and whatever the time the fielder
starts running, provided the ball has a horizontal velocity

8 Surprisingly, this strategy usually leads to interception even if
d(tan a)/dt < 0 (i.e., the ball is already falling) when the fielder
starts to run. Proof of this and an analysis of the conditions when
the strategy wil l not work can be found in Dienes and McLeod
(1993).
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Figure 7. How the angle of elevation of gaze, a, varied with time as the stationary fielder in
Figure 1 watched the flights of the ball falling in front (1), at (2), or going overhead (3).

component toward the fielder (Dienes & McLeod, 1993).
However, it might seem unnecessarily complex. We exam-'
ined two strategies that might seem simpler and thus more
plausible but showed that they were not as effective.

Constant a

The simplest strategy for ensuring that a lies between 0°
and 90° is to maintain a constant a. Maintaining a constant
a is equivalent to keeping d(tan or)/dt rather than d2(tan
a)/dt2 at zero.

In games like cricket and baseball, the ball is seldom in
the air for more than a few seconds. So one limit on the
ability of fielders to catch the ball is set by how far they can
run while the ball is in the air. The sooner fielders start
running in the right direction, the farther they will be able to
run in the time available. Thus, the most effective strategy
is the one that gets the fielder running in the right direction,
at the highest speed, soonest.

Figure 8 shows the flight of a ball that will fall in front of
the fielder. To intercept it, the fielder must run forward. A
fielder who tries to ensure interception by maintaining a
constant angle of gaze (see Figure 8a) will start by running
in the wrong direction. As the ball descends, the fielder will
then have to change direction, recovering lost ground before
starting to make any progress from the original starting
position to the place where the ball will land. Obviously a
more effective strategy is one that sends the fielder in the
correct direction immediately. To do this, the angle of gaze
must be allowed to increase (see Figure 8b).

The same argument applies if the ball is going to land

behind the fielder. A fielder who maintains a constant angle
of gaze will pass the place where the ball will land and have
to run back to it (see Figure 9a). In contrast, a fielder who
allows the angle of gaze to increase throughout the flight
can arrive at the place to make the catch without overshoot-
ing it (see Figure 9b).

Constant d(a)/dt

The analysis described above shows the importance of
allowing a to increase. One way to accomplish this is to run
so that d(a)/dt remains constant, that is, keeping d2(a)/dt2

rather than d2(tan a)/dt2 at zero.
The problem with letting a increase is the danger that it

wil l exceed 90°. Dienes and McLeod (1993) showed, for
example, that allowing a to increase at constant velocity led
to fielders running back too slowly to catch balls that were
going over their heads on trajectories that we know, exper-
imentally, skilled fielders would catch. Keeping d2(a)/dt2 at
zero allows a to exceed 90° before the fielder reaches the
place where the ball can be caught. Keeping d2(tan a)/dt2 at
zero also allows a to increase. However, because tan a
grows more quickly than a, the rate of increase slows down
as a increases. Because tan a grows more and more quickly
as a approaches 90°, keeping d2(tan a)/dt2 at zero ensures
that the rate of increase of a slows more and more as a
increases. Thus, provided the fielder can run fast enough to
keep d2(tan a)/dt2 at zero, this strategy ensures that a will
never exceed 90°.

The way that the strategy followed by expert fielders
allows a to increase but slows down the rate of increase as
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Figure 8. Two strategies for interception when the fielder should run forward, (a) Keeping the
angle of elevation of gaze constant is a poor strategy because it can send the fielder in the wrong
direction, (b) Allowing the angle of gaze to increase ensures that the fielder moves in the right
direction.

a increases can be seen by plotting the value of a against
time for the six catches shown in Figure 3. This is shown in
Figure 10. The reduction in the rate of increase of a as a
increases is demonstrated by the highly significant quadratic
component to multiple regressions of a on t (p < .001 for
each catch). This shows that fielders do not keep d(a)/dt
constant as they run. Thus, as complex as the strategy of
keeping d2(tan a)/dt2 at zero might seem, there are good
reasons for both elements of it to have evolved.

What Do Children Learn?

Children who are learning to catch start by watching balls
thrown toward them while standing still. Since 0° < a <

90° will be true of all flights that land in their arms, and only
those flights, it would not be surprising if they discovered
the importance of this relationship. It seems reasonable to
assume that they might try to use this fact when they have
to start running for the ball. That is, they will try to keep
0° < a < 90° as they run.

But why should they discover that maintaining d2(tan
a)/dt2 at zero is an efficient way of keeping 0° < a < 90°?
Extending the original observations of Chapman (1968)
about watching parabolic flights, Dienes and McLeod
(1993) showed that for a stationary fielder, at any point in
the ball's flight and whatever its trajectory (i.e., independent
of the effects of wind resistance), the sign of d2(tan a)/dt2 is
almost always negative if the ball will land in front of the
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Figure 9. Two strategies for interception when the fielder is running backward, (a) Keeping the
angle of elevation of gaze constant is an inefficient strategy because it will send the fielder past the
point where the catch can be made, (b) Allowing the angle of gaze to increase avoids this problem.

observer and almost always positive if it will land behind
the observer.9 So the fact that d2(tan a)/dt2 is correlated
with the catchability of a ball flight is available to the
stationary child. Whether mere exposure is sufficient to
allow acquisition of this fact is a question that remains to be
answered.

Are People Really Computing d2(tan a

Our data support those of Michaels and Oudejans (1992)
in suggesting that competent catchers have discovered the
effectiveness of keeping d2(tan a)/dt2 at zero as the basis for
an interception strategy. Of course, our data do not indicate
how the computational problem of keeping d2(tan a)/dt2 at
zero is solved. Skepticism about the conclusion might stem
from the feeling that d2(tan a)/dt2 does not seem a partic-
ularly likely quantity for the nervous system to represent.

Todd (1981) showed that if participants knew the actual
size of the ball and the acceleration due to gravity, zeroing
an expression involving the second power of the optic size
of the ball was equivalent to maintaining d2(tan a)/dt2 at
zero in vacuo. Direct extension of Todd's analysis shows

that the wind resistance problem can be overcome by using
an expression involving the third power of optic size and the
square of its first derivative. However, given that fielders
start running almost immediately to catch balls thrown from
distances of more than 50 m, an approach requiring acute
sensitivity to optic size seems implausible. It is possible that
fielders do not compute tan a at all. If they were to reduce
a maintained value of d(a)/dt in a systematic way as a
increased (as described in Dienes & McLeod, 1993), this
would keep d2(tan a)/dt2 at zero.

Another problem with the strategy of maintaining d2(tan
a)/dt2 at zero is that the visual system is generally not
particularly sensitive to acceleration. However, both Babler
and Dannemiller (1993) and Tresilian (1995) have shown
that the performance reported by us and by Michaels and
Oudejans (1992) can be achieved by a system with the
limitations of the human visual system.

9 The limitations that lead to the qualifications almost and usu-
ally are described in detail in Dienes and McLeod (1993).
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Figure 10. Angle of gaze as a function of time for the six
catches shown in Figure 3. The numerical label shows how far (in
meters) the catcher ran to make the catch. A negative sign indicates
that he ran backward.
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