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An Evolutionary Robotics (ER) approach to the task of odor source localization is investigated. In
particular, Continuous Time Recurrent Neural Networks (CTRNNs) are evolved for odor source localiza-
tion in simulated turbulent odor plumes. In the experiments, the simulated robot is equipped with a
single chemical sensor and a wind direction sensor. Three main contributions are made. First, it is shown

high-turbulent conditions. Second, it is demonstrated that a small neural network is able to successfully
perform all three sub-tasks of odor source localization: (i) finding the odor plume, (ii) moving toward the
odor source, and (iii) identifying the odor source. Third, the analysis of the evolved behaviors reveals two
novel odor source localization strategies. These strategies are successfully re-implemented as finite state
machines, validating the insights from the analysis of the neural controllers.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Odor source localization is a well-studied topic in the field of
robotics. Robust strategies for autonomous odor source localiza-
tion may serve many applications ranging from the localization
of gas leakages to that of people trapped in collapsed buildings.
For space agencies, the application of interest is the autonomous
localization of odor sources on other planets such as Mars
[12,23,35,26,21].

The odor source localization task is generally stated to consist
of three sub-tasks: (i) finding the odor plume, (ii) following the
odor plume up to the source, and (iii) recognizing the odor
source.1 The difficulty of odor source localization heavily depends
on the context. For example, a factor that strongly influences the
task's difficulty is the way in which odor is dispersed. At low
Reynolds numbers, where viscosity dominates, diffusion results in
smooth variations of the odor concentration. This allows the use of
localization strategies that attempt to move up the concentration
gradient [16,31,32]. At medium to high Reynolds numbers, advec-
tion and turbulence determine the way in which the concentration
changes over time. As a consequence, the odor plume can become
patchy, with pockets containing local maxima of odor concen-
tration. Under such turbulent conditions, common for most
robotic applications, gradient search strategies tend to fail. Other
ll rights reserved.

.E. de Croon).
b-task, of following the odor
contextual factors determining the task's difficulty include the
robot's sensory apparatus and computational capabilities.

Many odor localization strategies have been proposed for the
different possible contexts (see the surveys in [22,17]). Coarsely, two
main approaches can be discerned in the literature. The first is a
probabilistic approach to odor source localization (cf. [9,39,46,34,33]).
Probabilistic strategies employ a ‘belief map’: a spatial map that keeps
track of the probabilities for source presence. The robot's movements
can be determined such as to reduce the uncertainty on the source
location. This strategy has been named ‘infotaxis’ [46]. It is successful
in the difficult context of turbulent conditions and a sensor suite
consisting of a single chemical and wind sensor, but the computa-
tional complexity of the algorithms can be considerable.

The second approach draws inspiration from biology. For
example, odor source localization algorithms have been based on
the strategies of bacteria (Escherichia coli) [10], dung beetles
(Geotrupes stercorarius), and silkworm moths [24,25,4,32,42,29].
The algorithms generally can be interpreted as finite state
machines with in each state simple reactive rules to the incoming
inputs. Therefore, the algorithms are computationally efficient.
A drawback of biological strategies is that suitable behavior for the
animals on which they are inspired may not be a suitable behavior
for the robot. Moreover, this approach may be hard to apply to an
environment that is very different from the ones in which animals
have been evolved. For extraterrestrial environments such as Mars,
this may be the case.

An alternative approach to the above ones is to heuristically
optimize controllers for the specific context of the odor source
localization task. This ‘Evolutionary Robotics’ (ER) approach [38] to
odor source localization is of interest for the following reasons.
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First, it permits the development of computationally efficient solu-
tions. Often in the field of ER small neural networks are used as
controllers, such as feedforward neural networks or Continuous Time
Recurrent Neural Networks (CTRNNs) [1]. Despite their limited com-
putation, small neural network controllers have been shown to tackle
various relatively complex tasks by means of sensorimotor coordina-
tion [37]. Second, having a heuristic optimization of the controllers
will result in strategies that depend on the specific context and not so
much on the designer's bias. This may lead to novel and robust
strategies that have not been designed or observed before.

The present work is not the first application of the ER approach
to odor source localization. It has first been studied in [3,24]. Later,
in [18,19], the approach is used in order to shed more light on the
neural circuitry underlying the klinotaxis behavior of Caenorhab-
ditis Elegans, which performs a gradient ascent search under low
Reynolds conditions. These previous studies employed simplified
models of odor dispersion, with a smooth gradient to the source of
either the concentration [3,18,19] or the probability of detecting
odor particles [24]. In a very recent study [40] the generalization
of the ER approach to the more difficult case of a turbulent
odor plume is proposed. However, in [40] the focus lies on the
experimental setup in which virtual odor plumes are combined
with a real robot, and no experimental results are given. Therefore,
it remains uncertain whether this more difficult setting can be
tackled by the ER approach.

In this article, the ER approach is employed for performing a
simulated odor source localization task under turbulent conditions.
In the experiments, a small neural network will have to perform all
three sub-tasks: plume finding, plume following, and odor source
identification. In particular, the weights and time constants of a
CTRNN are optimized with an evolutionary algorithm. The sensor
suite of the simulated robot is rather minimal, consisting of one
chemical sensor and a wind sensor. Experiments are performed for
both low-turbulent and high-turbulent scenarios, leading to three
main contributions. First, it is shown that the ER approach can be
successfully applied to odor source localization in both low-turbulent
and high-turbulent conditions. The evolved behaviors show robust
performance under various conditions. Second, it is demonstrated for
the first time that a small neural network is able to successfully
perform all three sub-tasks of odor source localization. The simulated
robot is able to find and follow the odor plume, while recognizing
when it is close to the source. Third, both for the low-turbulent
scenarios and high-turbulent scenarios, the analysis of the evolved
behaviors reveals odor source localization strategies that have not
been treated in the literature before.
Fig. 1. Left: methane concentration in a low-turbulence scenario. High/low methane c
radius of 6 m and is centered on the methane source. The box in the right part of the en
2.4). Right: methane concentration in a high-turbulence scenario.
The remainder of the article is organized as follows. In Section
2, the experimental setup is explained. Then, the experiments on
low turbulence (Section 3) and high turbulence (Section 4) scena-
rios are presented. Finally, conclusions are drawn in Section 5.
2. Experimental setup

The odor source localization experiments are performed in simula-
tion. In this section, first the simulated environment is explained,
followed by the robot and its neural controller. Finally, the setup of the
optimization with an evolutionary algorithm is discussed.

2.1. Simulated environment

For the behavior of the odor plume over time, a model is used
that was made specifically for simulating methane spreading on
Mars [36]. The model simulates the methane concentration at
points in space and time taking into account reactions which
release the substance, advection which carries the plume as
a whole downwind, and molecular and turbulent diffusion res-
ponsible for vortices and small-scale turbulence. The methane
source is modeled as a fixed location in the environment at which
instantaneous methane release occurs at a given frequency ð 16 HzÞ
in the experiments.

The model was used to generate two sets of scenarios: low
turbulence and high turbulence. Fig. 1 shows the methane
concentration in an example low-turbulence scenario (left) and
high-turbulence scenario (right), both with a simulated area of
80 m�80 m. The most important observation to be made from the
figure is that the methane model correctly captures the property of
turbulent plumes that puffs of odor travel down the plume, with
the concentration gradient not always leading toward the source.
In addition, there are many areas in the plume with little to no
odor concentration. This being said, the difference between the
two scenarios is that the low-turbulence scenario involves a more
diffuse plume than the high turbulence scenario. Robot controllers
were evolved on both cases (Sections 3 and 4).

As mentioned in the introduction, the robot will have to learn
how to search the plume. If the environment has only one source,
it may be problematic to learn search behavior. If the robot does
not start in a fixed position, it may perform a correct search
behavior, but never find the methane plume. For example, when
starting above the single plume shown in Fig. 1 while facing the
wind, a good search strategy such as moving cross-wind to the
oncentrations are represented by dark/bright pixels, respectively. The circle has a
vironment is the area in which robots are initialized during evolution (see Section



Fig. 2. Illustration of the random toroid concept. The simulated plume (area within
the dotted box) is embedded in a larger area by putting a fixed size border (solid
box) around it with no methane concentration. When the robot crosses a border
(see the dashed path in the figure), it reappears at a random coordinate at the other
side of the environment. Effectively, the robot is then searching in a much larger
area with many unevenly spaced methane sources.
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right will make the robot go further up. Although it will never find
a plume, searching cross-wind is known to be optimal in the
absence of other knowledge [42]. For this reason, the simulated
environment contains not one source, but a large number of
distinct methane sources at different locations. Because generating
an enormous environment with multiple sources would be com-
putationally prohibitive, a random toroidworld is introduced. Fig. 2
illustrates the concept. The simulated methane plume is placed in
a larger area, by creating a border around it. In the border area, the
odor concentration is 0, while the wind is distributed similarly to
the center area containing the plume. When the robot crosses a
border such as the one on the top, it does not reappear exactly at
the opposite side as would be the case for a normal toroid world.
Instead, it reappears at a random x-position. This effectively
implies that the robot moves in a large environment with many
unevenly spaced methane sources.2 The difficulty of the search
task depends on the ratio of the plume area that can be sensed by
the robot divided by the total area including the border. In the
experiments, the border is set to b¼20 m on all sides.
2.2. Robot

The robot is modeled as a non-holonomic vehicle with two
wheels, which can only move forward. The robot is located in
two-dimensional space (x,y) with a heading, ψ , velocity, v, and
angular velocity, _ψ . The velocity and angular velocity of the robot
are both limited, with v∈½0; vmax�; vmax ¼ 0:4 m=s and j _ψ j≤0:5 rad.
2 In a normal toroid world the methane sources would be evenly spaced,
implying that they have a fixed spatial relation to each other. A robot could then
easily scan the entire arena just by keeping a fixed angle with the wind.
The robot only has sensor readings expressed in a body frame.
While the successful moth odor localization strategies use two
chemical sensors and a wind sensor (cf. [24,25,32,42]), the
experiments in this article focus on the more difficult case
of having only a single chemical sensor and a wind sensor
(cf. [15,46,14,27]), both placed at the center of the robot. Having
a single chemical sensor is more difficult, since it does not allow to
determine an instantaneous chemical gradient. Below, the mea-
surements of the chemical and wind sensor are explained in more
detail.

The experiments in this article are not intended for a specific
robot setup. Instead of modeling the performance of a particular
gas sensor, it is assumed in the robot simulation that the sensor
can measure the concentration relatively accurately above a
threshold concentration, and has a refresh rate of 2 Hz. These
assumptions appear to be reasonable given the current state of gas
sensor research [41,15,28,47]. Specifically, the odor concentrations
of the methane model described in Section 2.1, are mapped to the
set of integers C¼ f0;1;2;…;255g. This was done to reduce
memory requirements for storing the model matrices over time,
and to limit the resolution of the concentration sensor. Further-
more, depending on the experiment, a threshold Cthr is used,
below which all measurements are mapped to 0.

It is assumed that the robot is equipped with a wind sensor that
is able to determine the wind direction. The sensor performs
measurements at 2 Hz. This setup is closely matched by commer-
cially available wind sensors (cf. [17]).
2.3. Neural network controller

In the interest of computational efficiency, the robot will be
controlled by a small neural network. Since the controller has to
explicitly identify the odor source, it will be advantageous if the
network has a memory. This rules out feedforward neural net-
works, which instantaneously map sensory inputs to actions
(including the source identification). There are different manners
in which neural networks can be endowed with memory, e.g., by
introducing recurrent connections. However, neural networks that
only have recurrent connections as a means to establish a memory
(such as Elman networks [8]) have more difficulties capturing slow
memory dynamics than neural networks with additional neural
inertia mechanisms3 [6]. Since such slow memory dynamics
may be useful for this task, the robot is controlled by a Continuous
Time Recurrent Neural Network (CTRNN). CTRNNs have been
applied successfully to many robotic tasks requiring a memory
(cf. [13,2,11,45]).

Fig. 3 shows the connection structure of the CTRNN. Arrows
between the boxes around the neural layers indicate that they
are fully connected. The hidden layer is fully connected to itself
via recurrent connections. The network used in the experiments
receives 4 sensory inputs and consists of 10 hidden neurons and
4 output neurons. The number of hidden neurons was tuned with
the help of preliminary experiments, where 10 gave better results
than for instance 5 hidden neurons.

From the single chemical sensor and single wind sensor, four
sensory inputs s are distilled to serve as input to the CTRNN:

s1 ¼
c−cf
cf

ð1Þ

s2 ¼ 2
cf
cmax

� �
−1 ð2Þ
3 Neural inertia means that the neural activations are low-pass filtered over
time, where the properties of the filters depend on the neurons' time constants.



Fig. 3. Connection structure of the CTRNN transforming the sensory inputs s into
the output activations o. Each layer of neurons is represented with a box. An arrow
implies that the layer is fully connected. The hidden layer is fed back to itself.

Fig. 4. Illustration showing how sensory inputs s3 and s4 are calculated from the
wind direction and robot heading. s3 and s4 are normalized to the range ½−1;1�.
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s3 ¼ 2
jatan 2ð−uy;−uxÞ−ψ j

π

� �
−1 ð3Þ

s4 ¼ 2

���atan 2ð−uy;−uxÞ− ψ þ π

2

� ����
π

0
@

1
A−1 ð4Þ

where sj is the jth input, c is the odor concentration sensed by the
robot at it's current location, cf is a low-pass filter of the odor
concentration (see Eq. (5)), cmax is the maximum odor concentra-
tion that can be measured with the chemical sensor, and ux and uy
are the strength of the wind in the x and y directions, respectively,
at the robot's current location. We use the negative of the wind
vector so that s3 is equal to zero when the robot is heading directly
into the wind. cf is updated each time step (0.5 s) using

cf←0:9cf þ 0:1c ð5Þ

and is initialized to 1.0. Since cf is updated immediately after c,
there can be no division by zero in the calculation of s1. Moreover,
the maximal possible s1 occurs when cf is (close to) zero and the
robot encounters the maximal c : maxðs1Þ ¼ 255=25:5¼ 10.

Inputs s1 and s2 convey information about the odor concentra-
tion and the concentration gradient. s1 indicates whether the
robot is moving up or down the concentration gradient by
subtracting cf from the odor concentration sensed by the robot.
This is divided by cf to ensure that s1 remains within a similar
range regardless of the absolute concentration at the robot's
location. s2 is cf normalized by the maximum possible odor
concentration.

Inputs s3 and s4 convey information about the angle between
the wind direction and the robot's heading (Fig. 4). We use the
magnitude of the angle between the wind vector and the robot
heading vector, and the magnitude of the angle between the wind
vector and a vector perpendicular to the heading vector. This
representation prevents discontinuities in input values as the
robot rotates.

All hidden neurons have an activation that changes over time
according to the equation [3,1]:

τi _yi ¼−yi þ ∑
N

j ¼ 1
wjisðyj þ θjÞ þ ∑

M

k ¼ 1
wkiskðtÞ ð6Þ

where yi is the activation of the ith hidden neuron, τi is the
neuron's time constant, N is the number of hidden neurons, M the
number of sensory inputs, wji is the weight of the connection
between the ith neuron and the jth neuron, s is the activation
function, θj is a bias term, wki is the weight between the kth
sensory input and the ith neuron, and sk(t) is the value of the kth
sensory input at time t. In our case, s is the hyperbolic tangent
function.

Each output is calculated as follows:

oi ¼ s ∑
N

j ¼ 1
wijsðyj þ θjÞ þ θi

 !
ð7Þ

where oi is the ith output, s is the hyperbolic tangent function
and θi is a bias term applied to the output. The outputs are in the
range [−1,1].

The velocity and heading of the robot are updated using the
outputs as follows:

v¼ o3 þ 1
2

� �
vmax

_ψ ¼ o2−o1
2

� �
_ψmax

where vmax and _ψmax are the maximum velocity and angular
velocity of the robot respectively and positive _ψ corresponds to
the robot turning left. o4 is used to identify whether the robot is at
the odor source, as will be explained in the next subsection.

2.4. Evolutionary optimization

Evolutionary optimization is used for tuning the weights and
time constants of the CTRNN to the odor source localization task.
The choice for this heuristic optimization method is motivated by
the following three reasons. The first and main motivation derives
from the problem structure: it is a Partially Observable Markov
Decision Process (POMDP). The decision process is such that the
desired outputs of the neural network are unknown, ruling out
optimization with for instance backpropagation. Moreover, the
partial observability invalidates the Markovian assumption made
by most online reinforcement learning methods such as Q-learning
or Temporal-Difference methods [44]. Indeed, for non-Markovian
tasks evolutionary optimization seems to provide better results
[7,48]. Second, evolutionary optimization allows the combined
optimization of different types of parameters (cf. [3,30]). In this
case, the time constants of the CTRNN can easily be included in the
optimization process. Third, evolutionary optimization is effective
in avoiding local maxima when applied to the optimization of
neural networks [49].

In particular, the weights and time constants of the CTRNN
were optimized using the ‘simple genetic algorithm’ from the
open-source PyGMO/PAGMO package [20]. The population size μ is
30 and the number of selected individuals for reproduction is
λ¼ 6. Selection was performed according to a roulette scheme,
where the probability of selection P of individual i is equal to

PðiÞ ¼ maxðCÞ−CðiÞ
∑μ

j ¼ 1ðmaxðCÞ−CðjÞÞ ; ð8Þ

where C(i) is the cost function evaluated for individual i, and
maxðCÞ is the worst performing individual of the generation. The
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best performing individual is copied once directly for insertion in
the new generation (one elite individual). Its remaining
offspring and the offspring of the other selected individuals are
created under influence of exponential crossover (with a prob-
ability of Pc¼0.1 per offspring) and Gaussian mutation (with a
probability of Pm¼0.03 per gene in the genome). The evolution
carries on for 400 generations. All weights were restricted
to the interval ½−2;2�. The time constants were encoded as
1=τ∈½0;1�. The parameter settings of the evolutionary algorithm
have been tuned in the preliminary experiments. Most impor-
tantly, the number of generations was increased to the point that
the evolutionary algorithm could find a solution to all three phases
of the task.

The evolutionary optimization was performed by evaluating
the individuals on three different scenarios that all have the same
amount of turbulence, but have been generated with different
random seeds. During evolution, each individual performs two
‘runs’ per scenario, leading to a total of R¼6 runs. Each run
commences with the initialization of the robot at a random
location in the right-end of the field (with x∈½56; 80� and
y∈½0; 80�). As a consequence, the robot always starts relatively
far from the source, while being above, in, or below the plume. The
robot's heading is initialized randomly in ½−π; π�. The robot then
starts acting and sensing at 2 Hz until the simulation ends at
T ¼ 1200 s.

The cost function minimized by the evolutionary algorithm
consists of multiple components. In particular, it is a weighted
sum of
1.
 The distance from the robot to the source at the end of the run
(dt ¼ T ði; SÞ, where S is the source).
2.
 The negative average concentration sensed by the robot −c .

3.
 A negative bonus if the robot at any point on its trajectory

passes at a distance smaller than 6 m to the source ð−B1Þ.

4.
 A negative bonus if the robot succeeds in staying within 6 m of

the source to the end of the run ð−B2Þ.

5.
 An evaluation of how well the robot ‘identifies’ the source. The

identification of the source is evaluated by determining the
mutual information between a ‘binarized’ version of the iden-
tification output of the neural network ðO4 ¼ ðo4≥0ÞÞ and a
binary variable Q representing whether the robot is inside or
outside of a circle of 6 m around the source. The mutual
information between these variables is indicated with IðQ ;O4Þ
(see Eq. (9)).

Component (1) in the list above can be considered as the main goal
for searching the plume and following it to the source. Components
(2)–(4) have been included in the fitness function in order to facilitate
evolutionary learning. For example, component (2) is especially
important at the start of evolution to reward individuals that find
the plume. Later during evolution, the component stays of impor-
tance, as there is on average a higher concentration of odor close to
the source. For the identification component (5), mutual information
was chosen as a performance measure [43]:

IðQ ;O4Þ ¼HðQ Þ−HðQ jO4Þ ¼ ð9Þ

−∑
q∈Q

PðqÞ log 2ðPðqÞÞ þ ∑
o∈O4

PðoÞ∑
q∈Q

PðqjoÞ log 2ðPðqjoÞÞ ð10Þ

The motivation behind mutual information is that it leaves the robot
free in its manner to identify the source. It could equally well do so
with a high as with a low output o4. In addition, the mutual
information IðQ ;O4Þ is zero when the robot never passes close to
the source. As a consequence, the optimization of the identification
output only becomes important later during evolution, when the
robots solve the task of finding the odor source.
More formally, given a number of runs R, the cost function C for
an individual i is defined as follows:

CðiÞ ¼ 1
R

∑
R

r ¼ 1
CrðiÞ; ð11Þ

CrðiÞ ¼wddt ¼ T ði; SÞ−wcc−B1−B2−ws
IðQ ;O4Þ
HðQ Þ ð12Þ

Note how the mutual information in Eq. (12) is normalized by the
entropy H(Q), which maps the term to the interval ½0;1� (assuming
0=0¼ 0). Concerning the weights of the components, preliminary
experiments led to the following settings: wd¼1, wc¼2, B1 ¼ 50,
B2 ¼ 50, and ws¼150.

Experiments will be performed both for low turbulence sce-
narios (Section 3) and high turbulence scenarios (Section 4). The
low turbulence scenarios already have patches of odor moving
downwind, but still have a rather diffuse plume. In the high
turbulence scenarios, the odor forms filaments of patches moving
downwind, without a diffuse plume. The low turbulence scenarios
are expected to be easier to solve.

For each type of scenario, 6 different evolutionary runs will be
performed. During each evolutionary run, the best individual
of each generation is stored in a file. After evolution, all these
individuals are post-evaluated on the three training scenarios with
R¼30 (ten runs per scenario). The individual with the lowest
average cost is then selected as the best individual of that
evolutionary run. These best individuals are tested on a separate,
fourth test scenario. All test results mentioned in the following
sections are obtained on the low-turbulence/high-turbulence test
scenarios.

2.5. Comparison with benchmark strategy

Of course, the results are only relevant if the performance of
the evolved controllers is at a par with state-of-the-art strategies
in the literature. Since the focus is on computationally efficient
methods, a comparison will be made with a biologically inspired
odor source localization algorithm. In [42] different biologically
inspired strategies are clearly described as finite state machines,
which led to the use of these models for benchmarking (cf. [10]). In
this article, the silkworm moth strategy is chosen for comparison,
since it has been well-studied [24,25,4,32,42,29] and can handle
turbulent odor plumes. There are two main differences with the
evolved neural controllers proposed in this article. First, the moth
strategy receives inputs from two spatially separated chemical
sensors instead of one chemical sensor. The two chemical sensors
are placed symmetrically 301 away from the heading position, at a
distance of 0.75 m of the body center. The access to two spatially
separated chemical sensors can be considered an advantage for
the moth strategy. Second, the moth strategy only covers the sub-
task of following the odor plume to the source, foregoing plume
search and source identification. Of course, an ad hoc combination
of strategies for all three sub-tasks could be made, but this would
result in a new overall strategy and reduce the usefulness of the
comparison. Therefore, the evolved controllers and the silkworm
moth strategy are only compared on the plume following task,
with final distance to the source as a performance measure.

Fig. 5 replicates the algorithm description as given in [42].
It receives as sensory inputs two odor concentrations and the wind
angle. The algorithm has four parameters that determine its
overall behavior: the movement duration tm and velocity v (which
together determine the movement distance d mentioned in Fig. 5),
the detection threshold Cm (determining the outcome of the “Odor
detected?” tests), and the turn rate _ψ determining the size of the
circles made. In the interest of a fair comparison, these variables
are optimized with the evolutionary algorithm explained in



Fig. 5. Silkworm moth algorithm from [42].

4 For a video of the robot's behavior the reader is referred to http://www.
youtube.com/watch?v=6IOOkIv3sX8&list=PL5B4AE2F9652E581C. Note that in the
video, the robot starts from a different initial position.
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the previous subsection for the same training scenarios as
the neural network controllers. During optimization, the para-
meters are restricted to tm∈½0; 10�s, v∈½0;1�m=s, Cm∈½0; 100�, and
_ψ∈½0;72�1=s.
3. Low turbulence scenarios

Experiments have been performed on the low turbulence
scenario with a concentration measurement threshold Cthr ¼ 0
and Cthr ¼ 20. Both types of experiments provided successful
solutions. However, in this section the focus will be on Cthr ¼ 0,
since it resulted in an interesting and novel strategy for odor
source localization under relatively mild conditions. The setting of
Cthr ¼ 20 makes the plume as sensed by the robot much patchier
and essentially results in the same type of strategy that will be
discussed for the high turbulence scenario in Section 4. Note that
with Cthr ¼ 0, on average 22.0% of the environment contains odor
that can be sensed by the robot.
3.1. Results

For the low turbulence scenarios with Cthr ¼ 0, all six evolu-
tionary runs resulted in successful odor source localization. Table 1
shows the performances of the best individuals on the test
scenario, with R¼1000. The table shows the average fitness C ,
but also the average distance to the source at the end of the run
dt ¼ T , the proportion of times that the robot is close to the source
ð≤6 mÞ at the end of the run Pðdt ¼ T ≤6 mÞ, and the normalized
average mutual information IðO4;Q Þ=HðQ Þ.

The best fitness is obtained by evolution number 2, with an
average performance of C ¼ −289. This individual, referred to as
robot 2, on average ends up at d¼2.60 m from the source, while
being closer than 6 m to it in 97.4% of the cases. Although robot
1 scores slightly better on these two criteria ðdt ¼ T ; Pðdt ¼ T ≤6 mÞÞ,
robot 2 is best at identifying the source. It has an average
IðO4;Q Þ ¼ 0:731.

Fig. 6 shows a typical run of robot 2. The robot's trajectory is
represented with circle markers, while the dashed circle repre-
sents a distance of 6 m to the source. White markers correspond to
an output o4≥0, while black markers correspond to o4o0. The
underlying image is a snapshot of the plume at the end of the
simulation. The robot starts the run at a location ‘above’ the plume.
It then starts searching obliquely cross-wind toward the bottom
left. At t¼117 s, the robot senses the plume and subsequently
starts moving upwind to the source. The robot enters the 6 m
distance circle at t∼275 s. It first circles around the source, to
finally come to a stop while indicating with o4o0 that it has
arrived at the source (as shown by the black markers).4

The capability of robot 2's strategy to find the source while
starting from other locations than the ones used in evolution is
tested as follows. The robot is initialized at all locations of a
80�80 grid in the environment consisting of the simulated
plume, excluding its border (R¼6400 runs). For each initialization
location, the robot performs the odor localization task and the
components of the cost function are stored in 80�80 matrices.
The left part of Fig. 7 shows the final distance to the source from
0 m (white) to 13.8 m in the top image and 484 m in the bottom
image (black). The top image was generated under normal condi-
tions with the random toroid world and the bottom image was
generated with a single odor plume in an infinite world. The main
observation from the figure is that at most positions the robot
succeeds in approaching the source quite closely, with many more
bright than dark values. Furthermore, in the case where there is a
single plume in an infinite world, the shape of the whitest area is
related to the location of the averaged plume. The asymmetry of
the coarse plume shape is caused by the robot's search strategy.

http://www.youtube.com/watch?v=6IOOkIv3sX8&list=PL5B4AE2F9652E581C
http://www.youtube.com/watch?v=6IOOkIv3sX8&list=PL5B4AE2F9652E581C
http://www.youtube.com/watch?v=6IOOkIv3sX8&list=PL5B4AE2F9652E581C


Table 1
Performance on the low-turbulence scenario.

C dt ¼ T Pðdt ¼ T ≤6 mÞ IðO4;Q Þ=HðQ Þ

1 −262(760.2) 1.36(74.96) 0.985 0.558(70.166)
2 −289(775.8) 2.60(78.68) 0.974 0.731(70.158)
3 −198(796.6) 5.15(711.8) 0.889 0.577(70.253)
4 −272(742.0) 3.19(712.3) 0.953 0.693(70.198)
5 −262(783.2) 3.22(79.46) 0.958 0.631(70.180)
6 −283(780.8) 2.52(78.59) 0.968 0.674(70.159)

Fig. 6. Typical run of the best evolved individual in the low turbulent scenario.

G.C.H.E. de Croon et al. / Neurocomputing 121 (2013) 481–497 487
Since the robot searches by moving to the bottom left on the map,
it will find the plume if it starts above and to the right of it, but will
miss the plume if it starts below or to the left of the plume.

The right part of Fig. 7 shows whether the individual ends up at
the source (white), does not end up at the source but passes close
to it at some point of its trajectory (gray), or does not pass close to
the source (black), with the top image generated under normal
conditions and the bottom image generated for a single plume in
an infinite world. In the top image, the white area covers almost
the entire area, with the robot locating the source from all but two
of the starting locations.

Finally, robot 2's performance is compared with the moth
strategy from [42]. The comparison only focuses on the plume
following sub-task, so the robot is always initialized within the
plume ðx∈½40; 60�; y∈½25; 55�Þ. Furthermore, since the moth algo-
rithm does not include source identification, only the distance to
the source at the end of the trial is evaluated. The parameters for
the moth algorithm optimized for the low-turbulent conditions
are vm¼0.07, tm¼5.01, Cm¼8.66, and _ψ ¼ 10:941=s. For the moth
algorithm, the average distance of the robot to the source at the
end of the trial is 6.9 (711.0). Furthermore, Pðdt ¼ T ≤6 mÞ ¼ 0:794.
When robot 2 starts in the plume, it has dt ¼ T ¼ 1:5ð72:6Þ and
Pðdt ¼ T ≤6 mÞ ¼ 0:998. Because the final distance distributions are
highly skewed toward low values and we do not want to make
assumptions on their functional form, the significance of the
difference in distance distribution is determined with a single-
sided bootstrap test [5]). The test shows that robot 2 outperforms
the optimized moth strategy on the high-turbulent test scenario
with po0:001.
3.2. Analysis

The main goal of the analysis is to find out what strategy the
evolved robots follow to find and recognize the odor source. The
six different evolutions on the low turbulence case all resulted in
similar strategies, and therefore the analysis focuses on the best
performing solution, robot 2. The analysis is subdivided in the
three sub-tasks of odor source localization: plume search, plume
following, and source identification.

3.2.1. Plume search
The first phase of the odor source localization task is to search the

plume. In order to investigate robot 2's searching strategy, it is placed
in an environment without odor source and a constant wind going
from left to right. R¼10 runs are then performed, initializing the
robot at random locations with random starting headings. For each
run, the wind direction with respect to the robot's heading is stored
for time steps t4200. Fig. 8 shows a histogram of the wind angles
during the search behavior. The meanwind direction is −51.91, with a
standard deviation of 5.01. The robot follows a fixed heading with the
wind when searching for a plume. This means that it always moves
obliquely cross-wind. The other evolved controllers on the diffuse
case also move with fixed, albeit different, angles to the wind. In an
environment with randomly distributed odor plumes of finite extent,
perpendicular cross-wind search ð7∼901Þ leads to the shortest
search times [42]. The slight up-wind movement during search in
the low turbulent scenario might be due to the initialization during
evolution downwind of the source. Another possibility is that the
search direction is a compromise between a good search behavior
and a good behavior for when the robot ‘looses’ the plume during the
plume following behavior.

3.2.2. Plume following
When the robot has found the plume, it starts moving toward the

source. A first question to be answered is whether the robot in doing
so follows the concentration gradient. To test this, the robot is run
while at each location of its trajectory over time the concentration
gradient is determined. The direction up-gradient ψ ′c is then repre-
sented with respect to the robot's heading ψ , as ψ c ¼ ψ ′c−ψ . It can vary
from −1801 to 1801, with a heading of 01 implying that the robot is
exactly following the gradient. Concentration gradient measurements
are only retained if the robot is moving faster than 0.01 m/s.

Fig. 9 shows a histogram of the gradient direction over R¼30
runs. The main observation is that the robot does not follow the
concentration gradient. Surprisingly, it actually seems to move
roughly perpendicular to the gradient, as there is a peak at ∼80–1101.

Observation of the robot's behavior for different initial locations
leads to the following explanation of its strategy. Since the robot
searches downward, it will typically encounter the plume from the
top. After finding the plume, the robot attempts to stay roughly
perpendicular to the concentration gradient, which means that it
follows an isoline of the plume. In particular, the robot seems to
turn to the right when the concentration increases and to the left
when it decreases. This results in isoline following on the top of
the plume. However, if the robot keeps following the same isoline,
it will go toward the source, around it, and then back again away
from the source. The robot does not do this, and actually turns
stronger to the left when it has wind in the back. As a result, the
robot does not go away from the source, but steers toward it. As a
consequence, the robot spirals in toward the source. The robot
seems to use the high concentration close to the source for
reducing its velocity and coming to a stop.

The rather fixed reactions to concentration increases and
decreases lead to a less efficient strategy when starting in the
bottom of the plume. The robot will actually first move to the top



Fig. 7. Left: distances to the source at t¼T are shown at all initial positions of a 80�80 grid in the environment. The top image was generated under normal conditions with
the random toroid world and the bottom image was generated with one single plume in an infinite world. In the top image the final distances range from 0 (white) to 13.8
(black). In the bottom image the final distances range from 0 (white) to 484 (black). Right: whether the robot ends up at the source (white), does not end up at the source but
passes close to it at some point of its trajectory (gray), or does not pass close to the source (black). The top image was generated under normal conditions with the random
toroid world and the bottom image was generated with one single plume in an infinite world.

Fig. 8. Wind angles during robot 2's search behavior when it does not sense
any odor.

Fig. 9. Robot heading with respect to the concentration gradient. If the robot
followed the concentration gradient, it would have a relative heading of 01.
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of the plume and then start following the isoline again.5 Concen-
tration decreases encountered in the bottom half of the plume
will cause the robot to make full left-turning loops, because the
5 The robot moves to the top of the plume without making rightward circles.
Although an increasing concentration makes the robot turn more to the right, the
wind direction experienced when moving to the top of the plume counteracts this
rightward turning.
leftward turn is generally not countered by a concentration
increase.

The explanation above is corroborated by the correlation
between sensory inputs and the motor actions. For example, the
correlation coefficient6 r between sensory input s1 and o1 at the
6 r is defined as rða;bÞ ¼ E½ða−aÞðb−bÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðaÞvarðbÞ

p
�.



G.C.H.E. de Croon et al. / Neurocomputing 121 (2013) 481–497 489
same time t is rðs1; o1Þ ¼ 0:23 while rðs1; o2Þ ¼ −0:52. This means
that if s1 increases, ω decreases, and the robot turns more to the
right. The average concentration sensor s2 is similarly correlated
with o1 and o2, with rðs2; o1Þ ¼ 0:91 and rðs2; o2Þ ¼ −0:17. Wind
direction sensor s3, which has activation 1 when the wind comes
from behind, has a stronger positive correlation with o2 than with
o1: rðs3; o1Þ ¼ 0:17 and rðs3; o2Þ ¼ 0:22. This implies that wind from
the back will lead to an increase of ω, which makes the robot turn
more to the left.

The strategy can be nicely illustrated by runs during which the
odor concentration is kept static. Fig. 10 shows two different
environments, with corresponding concentration isolines. Per
environment, two runs are shown, one starting high in the plume
and one starting low in the plume. In the completely artificial
plume on the top, one can see that the robot moves to and
subsequently follows the isoline of concentration level ∼20:0. The
figure on the bottom is a ‘snap shot’ of one of the simulated low-
turbulent scenarios. For both starting conditions, the robot finally
ends up at isoline ∼20:0, goes around the source, and then steers
toward it. Note that in the static environment, the robot circles less
frequently, since there are no puffs of odor moving past (with the
associated concentration rises and drops). Also note that the run
starting low in the plume makes three loops, when it moves
down-gradient. This is less likely to happen when it starts high in
the plume.

Finally, in order to verify that the above analysis captures the
necessary components of a successful odor localization strategy,
Fig. 10. Runs of robot 2 in environments with a static odor plume. Top: two runs in
an environment with an artificial plume. Bottom: two runs in an environment with
a static plume that is a ‘snapshot’ of on of the low turbulent scenarios.

Fig. 11. Algorithm based on evolved behavior of robot in low turbulence scenario.

Fig. 12. A typical run of the finite-state-machine based on the behavior evolved for
the low turbulence scenario.
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a hand-coded version of the strategy was made. Fig. 11 shows a
finite-state machine representation of the strategy. An additional
advantage of developing such a representation of the behavior is
that it allows other researchers to reproduce the strategy. The
robot moves across wind until it encounters the odor plume, at
which point it begins to exhibit a behavior that allows it to follow
an isoline. If the robot is moving up gradient it will steer to the
right, and if it is moving down gradient it will steer more severely
to the left. By steering harder to the left than the right the
algorithm more accurately reproduces the spiralling behavior of
the evolved CTRNN. Additionally, if the robot begins to move
downwind it will steer to the left until it is facing upwind again.
When tested on R¼1000 runs, the percentage of the robot ending
up within 6 m is 95.3%, closely matching the performance of the
evolved CTRNN. An example run of the algorithm is shown in
Fig. 12.

3.3. Source identification

When the robot gets close to the source, it slows down.
Although it cannot be seen in a plot showing the entire environ-
ment, the robot starts circling downward extremely slowly. This
behavior can in principle be detected automatically and used for
Fig. 13. Trajectory of the robot close to the odor source.

Fig. 14. The top, middle and bottom plots show the activations of the output neurons,
complemented by a graph of the robot's turn rate, ω.
source identification. However, the robot also explicitly identifies
the source with its fourth output neuron, o4. The average mutual
information between o4 and the presence within the circle, Q, has
been determined as 0.731 (see Table 1).

In order to understand what a mutual information value
entails, Fig. 15 shows the histogram of o4 outside of the circle
(white transparent) and inside of the circle (dark), for a run in
which the robot obtains a mutual information value of 0.76. It is
clear from the figure that o4 is low close to the source and high far
from the source.

The few high outputs close to the source are due to the initial
part of the trajectory in the 6 m circle. To illustrate this, the
trajectory of the final part of the run and the corresponding neural
activations are shown. Fig. 13 contains the part of the run in which
the robot gets close to the source ðt≈450 sÞ, follows the isoline
around it ðt∈½480;500�Þ, spirals in toward the source with two
loops ðt∈½500;550�Þ and finally almost comes to a stop just down-
wind of the source t4550 s. Fig. 14 is a plot of the involved neural
activations of the output neurons (top, complemented with a
graph of ω), the hidden neurons (center), and the sensory inputs
(bottom).

While the robot is following the isoline and not really close to
the source yet ðt∈½450;500�Þ, the identification output o4 still has
hidden neurons, and sensory inputs respectively. The plot of the output neurons is

Fig. 15. Histograms of the identification output's activations within 6 m of the
source (dark) and at larger distances (transparent white), for a single run.
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a high activity. Looking at the neural activations, one can notice
that s2 is still low ∼−1:0, as is the base activation of s1. They both
increase around t¼537, while o4 decreases. To verify whether the
higher activities of s1 and s2 cause stable source identification, the
following test has been devised. The goal of the test is to influence
the identification output, while keeping the robot's behavior
identical to before. To this end, at each time step first the neural
network was run on the normal sensory inputs. Then, a copy of the
network was also run, but now with some of the sensory inputs
replaced, and the identification output was calculated. In this way,
in the copied network the hidden neurons activations and the
identification output accumulate the manipulated sensor informa-
tion over time, without influencing the robot's behavior. Two
variants of the tests are performed: (1) a test in which s1 is set
to −1.0 if it is lower than 1.5 (the rationale being that this leaves
intact the detection of a concentration increase but does influence
the baseline activity), and (2) a test in which s2 is set to −1.0. Both
tests lead to high identification activation values, o4≈1:0. In terms
of performance, while in the normal run a mutual information of
0.76 was obtained, in both tests the mutual information drops to
0.00. This means that both neural inputs s1 and s2 need to be
coherent with sensor readings close to the source. Furthermore,
replacing the sensory inputs only in a given time interval showed
that any replacement longer than 2.5 s leads to high o4 activation
values.
Fig. 16. Effect of a concentration threshold Cthr ¼ 20. Black pixels indicate concen-
trations above the threshold, white pixels indicate concentrations below the
threshold.

Table 2
Performance on the high-turbulence scenario.

C dt ¼ T Pðdt ¼ T ≤6mÞ IðO4;Q Þ=HðQ Þ
4. High turbulence scenarios

As mentioned before, the experiments on the high turbulence
scenarios have been performed with a concentration threshold
Cthr ¼ 20. Fig. 16 shows the effects of this threshold on the area of
the plume that can be sensed by the robot: black pixels indicate
concentrations above the threshold, white pixels concentrations
below the threshold. On average, the robot can sense the odor in
1.99% of the simulation environment.
1 −137(7103) 7.85(717.3) 0.843 0.439(70.268)
2 −69.0(766.1) 10.1(719.5) 0.774 0.0(70.0)
3 −35.8(762.3) 12.3(719.1) 0.706 0.057(70.079)
4 −1.31(760.0) 15.6(720.4) 0.407 0.016(70.030)
5 −30.8(764.6) 13.4(722.8) 0.746 0.05(70.073)
6 −71.5(7124) 22.0(729.4) 0.523 0.308(70.333)

Fig. 17. Typical run of the best evolved individual on the high turbulence scenario.
4.1. Results

For the high turbulence scenarios, the six evolutionary runs
resulted in different amounts of success on the odor source
localization task. Table 2 shows the performances of the best
individuals on the fourth test scenario, with R¼1000. The table
shows the average fitness C , the average distance to the source at
the end of the run dt ¼ T , the proportion of times that the robot is
close to the source ð≤6 mÞ at the end of the run Pðdt ¼ T ≤6 mÞ, and
the normalized average mutual information IðO4;Q Þ=HðQ Þ. All
evolutionary runs lead to successful plume search and good plume
following. However, only two out of six runs result in good odor
source identification (evolutionary run 1 and 6).

The best result is obtained by evolution number 1, with an
average performance of C ¼ −137. This individual, referred to as
robot 1, also scores best on all sub-criteria shown in Table 2. On
average the individual ends up at d¼7.85 m from the source, while
being closer than 6 m to it in 84.3% of the cases. Furthermore, it
has the highest average IðO4;Q Þ ¼ 0:439.

Fig. 17 shows a typical run of robot 1. The robot starts the run at
a location under the plume. It then starts searching obliquely
cross-wind toward the bottom left, at a relatively high speed. It
leaves the simulation area on the bottom, and reappears at a
random (more distant) location on the top. At t¼400 s, the robot
senses a puff of the odor plume and subsequently starts moving
(more slowly) upwind to the source. Arrived at the source, the
robot first makes a loop around it. Slightly downwind of the
source, at t¼1024 s, the robot starts to move so slowly that it
almost stops. The robot identifies the source with a low activation
of the identification output (black circle markers).

The generalization of robot 1's strategy to other locations than
the ones used in evolution is tested in the same manner as for the



Fig. 18. Left: distances to the source at t¼T are shown at all initial positions of a 80�80 grid in the environment. The final distances range from 0 (white) to 52 (black). Right:
whether the robot ends up at the source (white), does not end up at the source but passes close to it at some point of its trajectory (gray), or does not pass close to the source
(black).

Fig. 19. Robot heading with respect to the concentration gradient. If the robot
followed the concentration gradient, it would have a relative heading of 01.
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low-turbulent case. The results are shown in Fig. 18. The images
are similar to those generated for the low turbulence scenario.
However, below the plume is a region of dark ‘noise’ in the figures
located in the left and in the bottom of the figure. Due to the
search direction and the location of the plume, these areas lead to
the robot not sensing the plume, leaving the simulated area and
reappearing at a random location on the right or top, respectively.
With a bit of bad luck, the robot misses the plume again, and
finally either does not sense any plume at all, or arrives too late at
a plume. This also explains why the utter bottom is bright/white
again: starting at such a place effectively means that the robot is
closer to a plume in its search direction.

The bottom images of Fig. 18 show the performance of the
robot starting from every location if there is only one plume in an
infinite world. Again, the performance is similar to that of the
robot in the low turbulence scenario in that it is successful from all
locations within or near to the plume and from an area above the
plume. However, the white areas cover a greater portion of the
world above the plume than in the low turbulence scenario
because the robot evolved under turbulent conditions has a more
crosswind search strategy, allowing it to locate the plume from
more starting positions.

Also on the high-turbulent case, the performance is compared
with the moth strategy from [42]. The parameters for the moth
algorithm optimized for the high-turbulent conditions are vm¼
0.83, tm¼0.07, Cm¼20.0, and _ψ ¼ 47:4 1=s. For the moth algorithm,
the average distance of the robot to the source at the end of the
trial is 13:6ð716:6Þ. Furthermore, Pðdt ¼ T ≤6 mÞ ¼ 0:574. When
robot 1 starts in the plume, it has dt ¼ T ¼ 4:3ð712:7Þ and
Pðdt ¼ T ≤6 mÞ ¼ 0:933. A single-sided bootstrap test [5] shows that
robot 1 outperforms the optimized moth strategy on the high-
turbulent test scenario with po0:001.

4.2. Analysis

In this section, the odor source localization strategies are
analyzed of robots evolved on the high turbulence scenarios. The
six different evolutions all resulted in similar strategies, and
therefore the analysis focuses on the best performing solution,
robot 1. The analysis is again subdivided in the three sub-tasks of
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odor source localization: plume search, plume following, and
source identification.

4.2.1. Plume search
The same test as for the low-turbulence scenario is performed

to find the angles to the wind that the robot follows when there is
no odor concentration. The mean direction is −59:01ð715:7Þ.
Again, the robot follows a rather fixed heading with the wind
when searching for a plume. It always moves obliquely cross-wind,
but oscillates more from left to right than in the diffuse scenario.
This is the reason for the larger spread in directions. The oscillating
behavior can be seen in Fig. 17.

4.2.2. Plume following
When the robot has found the plume, it starts moving toward

the source. Although it is well-known that under highly turbulent
conditions, gradient search is not a good strategy, it is interesting
to repeat the analysis on the gradient direction with respect to the
robot's heading. Fig. 19 shows a histogram of the gradient direction
over the entire run. As in the low-turbulent scenario, the robot
does not follow the concentration gradient. However, in this case,
the histogram is close to uniform. Although the negative gradient
Fig. 20. Behavior of the robot when it encounters four (artificial) puffs at different
times, but all lasting 5 s.

Fig. 21. Behavior of the robot when an artificial source is placed upwind (grey circle mar
concentration of c¼30. Right: puffs have a concentration of c¼75.
directions are slightly more likely, the histogram suggests that the
robot is not keeping any fixed heading with respect to the
concentration gradient.

Observation of the robot's behavior leads to an alternative
hypothesis. When the robot senses the odor, it performs two
loops that move up-wind and end closely downwind of the
position of the odor detection. If the robot does not sense the
odor after some time, it seems to start searching for the plume
again. Since there is a reasonable probability that the robot senses
the odor again while looping upwind or moving cross-wind, it has
a reasonable chance of making a new loop closer to the source. The
closer the robot gets to the source, the larger the probability of
sensing the odor, and hence of the robot making another loop
toward the source. This behavior will finally bring it to a position
just down-wind of the source. At that location it will make a full
loop, since it will not detect any odor upwind of the source. In
addition, it is highly likely to sense the odor downwind of the
source again, resulting in a new loop around the source.

In order to investigate the behavior over time of the robot
when it hits puffs of odor, the robot is placed in the environment
without the odor plume and first run normally for t¼200 s. Then,
in the time interval t¼[200, 205] s, the odor concentration
measurement is artificially set to a concentration c¼30, i.e., above
the detection threshold of 20. This is repeated for t∈½350;355� s,
t∈½380;385� s, and t∈½456;461� s. Fig. 20 shows the behavior of the
robot when it hits the artificial puffs of c¼30. The trajectory is
represented with a solid line, while the onset of each puff is
indicated with a diamond. When hitting the first puff, the robot
first steers slightly to its left ðω¼ 0:50 radÞ. Then it makes two
loops. After t¼325 s, the normal search behavior is resumed. The
angular velocity of the robot during the loops smoothly goes from
−0.22 at the onset of the first loop to 0 when exiting the second
loop. The 5 s-long detection of a puff has an influence on the
behavior for 125 s. This could be due to the neural network
dynamics being triggered by the peak of s1 ¼ c−cf =cf . However, it
turns out that this peak only causes a brief ‘noise’ on the turning
rate and velocity: artificially setting the sensory input cf to zero
completely removes the circling behavior of the robot, but leaves
intact the initial steering to the left (dashed line in the figure).
Note that cf influences both s1 and s2. It is sensory input s1 that
causes the looping: leaving cf intact, but clamping s2 to zero has a
negligible effect on the looping behavior.

Three aspects of the loop setup are particularly important. First,
if the robot hits a puff on the upper side of its circle, the new circle
should be located higher than the previous one. If this were not
the case, the robot would move downwards through the plume
ker). If the robot is downwind, it receives artificial puffs lasting 5 s. Left: puffs have a
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and likely exit it from the bottom before arriving at the source.
One can see the robot moving up in Fig. 20, after the third and
fourth puff.

Second, hitting the puff close to the original detection location
should lead to a new, almost identical loop. The reader can notice
in Fig. 20 that for the single puff detection, the detection location
is enclosed by the second loop (the location of the fourth puff is
even enclosed by both loops). Because of this setup, the robot will
keep on circling around the source, if it will hit a puff once every
two loops.

Third, not all puff reactions are equal. For example, when the
robot receives a new artificial puff while still circling (see bottom
part of Fig. 20), the shape of the robot's trajectory is not equal to
that of the first puff: one can see that after the fourth puff, the
robot moves less strongly to its left (in fact it steers to the left for a
shorter duration and subsequently steers stronger to the right).
The different responses are caused by the different inputs and
network state at subsequent detections (at the fourth puff, the
robot is going downwind). Also the strength and duration of the
puff have an influence on the resulting behavior.

To illustrate the second and third aspect of the loop setup,
another test is performed with artificial puffs. This time, when the
robot receives the first puff at t¼200, an ‘artificial source’ is placed
at the same y-coordinate, but 4:5 m downwind of the robot,
i.e., ðxs; ysÞ ¼ ðx−4:5; yÞ. Every time the robot passes in a band
y∈½ys−0:3; ys þ 0:3� and downwind of the source x4xs, the robot
receives a new puff of 5 s duration. Fig. 21 shows the resulting
behavior for a ‘weak’ puff (c¼30, left part of the figure) and a
strong puff (c¼75, right part of the figure). The trajectories are
Fig. 22. Algorithm based on evolved behavior of robot in high turbulence scenario.
especially interesting, because they show that the robot exploits
two different ways of staying close to the source. First, it exploits
the source's emission frequency. The frequency should be high
enough so that the robot always encounters the plume at least
once during its two loops (of which at least one passes behind the
initial detection location). Second, it makes use of the higher odor
concentration levels just downwind of the source: this makes the
robot slow down and hence experience strong odor puffs more
frequently. These two ways add robustness to the behavior. For
instance, if an odor source releases less strong odor puffs, the
robot will still circle around it if the emission frequency is high
enough.

In order to test the validity of the hypothesis advanced in the
analysis above, a simplified, hand-coded version of the strategy
has been devised. It can be represented as a finite state machine,
which is shown in Fig. 22. The robot moves across wind until it
encounters the odor. Upon encountering the odor plume the robot
Fig. 23. A typical run of the algorithm based on the behavior evolved for the high
turbulence scenario.

Fig. 24. Histograms of the identification output's activations within 6 m of the
source (dark) and at larger distances (transparent white), for a single run.
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will turn to head across wind in the opposite direction, before
moving in two clockwise circles. If during this time the plume is
detected again the circular motion is restarted. If however the
plume is not detected during the circling behavior the robot will
revert to searching across wind. The hand-coded algorithm
abstracts away from some of the aspects of the CTRNN, but it
captures the essential properties. After manually tuning the
parameters of the algorithm, it can indeed successfully perform
the odor source localization task. When tested on R¼1000 runs,
the percentage of the robot ending up within 6 m is 69.9%. This is
worse than the evolved agent by 14.4%, but it shows that the
algorithm covers at least the basic principles behind the robot's
strategy (Fig. 23).
4.2.3. Source identification
The average mutual information between o4 and the presence

within the circle, Q, has been determined as 0.439 (see Table 2).
This average is slightly lower than in the low-turbulence scenario
for two reasons. First, the average is influenced by the number of
times that the robot reaches the source, as the mutual information
is zero otherwise. In the high-turbulence scenario, the probability
of ending up at the source is 13.1% lower than in the low-
Fig. 26. Neural activations in the same time interval. The top, middle and bottom plot
respectively. The plot of the output neurons is complemented by a graph of the robot's

Fig. 25. Trajectory of the robot when it approaches the source (t¼560 s), loops
around it (t∈½580;700�), and finally almost comes to a stop just downwind of the
source t4775 s.
turbulence case. Second, the higher turbulence leads to a more
difficult identification problem, with the instantaneous concentra-
tion level being less indicative of source proximity. To illustrate the
source identification performance, Fig. 24 shows the histogram of
o4 outside of the circle (white, transparent) and inside of the circle
(dark), for a run in which the robot finds the source.

It is clear from the figure that o4 generally is low close to the
source and high far from the source. However, the robot's output is
also sometimes low far away from the source (just after detecting
a new odor puff) and high close to the source (when it is upwind
of the source for example). Fig. 25 shows the robot's trajectory
when it approaches the source (t¼560 s), loops around it
ðt∈½580; 700�Þ, and finally almost comes to a stop just downwind
of the source t4775 s. Fig. 26 is a plot of the involved neural
activations of the output neurons (top, complemented with a
graph of ω), the hidden neurons (center), and the sensory inputs
(bottom).

Looking at the sensory inputs and neural activations, one can
see that o4 has a lower activity when the robot has a high s1. This
causes the few faulty identifications far away from the source.
However, encountering a single odor puff does not always result in
a low o4 and does not lead to continuous source identification. This
only happens when the robot gets really close to the source. Odor
puffs are sensed more frequently, and although this leads to
smaller peaks in s1's activity (around 2 instead of 8), it does lead
to a higher baseline activity of both s1 and s2. To verify that the
higher activities of s1 and s2 cause stable source identification, the
same two tests as for the low turbulent case are performed. While
in the normal run a mutual information of 0.46 was obtained, in
both tests the mutual information dropped to 0.00. This means
that both neural inputs s1 and s2 need to be coherent with sensor
readings close to the source. Furthermore, replacing the sensory
inputs only in a given time interval showed that any replacement
longer than 2.5 s leads to high o4 activation values.

With the same kind of test, a more remarkable observation was
made. When looking at the activations in Fig. 26, one can see that
s3 and s4, the wind direction inputs, are much more variable before
t¼700 s than after. When the robot circles, these inputs go up and
down. When the robot slows down close to the source, it moves
straight down with the wind coming from its right. The wind
direction inputs s3 and s4 then are rather constant. To investigate
whether this also influences the source identification, the activa-
tions of s3 and s4 were replaced after t¼700 with those 500 s
before. This led to a significant increase in identification activation,
with o4 ranging in between −0.5 (as in the normal run) and 0.5
s show the activations of the output neurons, hidden neurons, and sensory inputs
turn rate, ω.
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(higher than in the normal run). The mutual information more
than halved to 0.19. In the case of the wind direction inputs,
already a sensory replacement lasting 1 s has an effect on o4.

The finding that the wind sensors influence source identifica-
tion is interesting, because it implies that the robot does not
only use environmental cues to identify the source, but also
the properties of its own behavior. Namely, in general there is
no correlation between wind direction and proximity to the
source. However, given the behavior of the robot there is such a
correlation.
5. Conclusions

The main conclusion is that the ER approach can be success-
fully employed to solve the odor source localization task under
turbulent conditions. The evolved strategies are both robust
and computationally efficient, and significantly outperform the
silkworm moth strategy from [42]. Moreover, both the evolution
under low-turbulent conditions and the one under high-turbulent
conditions resulted in novel odor source localization strategies,
using only one chemical sensor and one wind direction sensor. The
analysis revealed the underlying characteristics of the strategies.

The robot evolved for the low-turbulent scenarios approxi-
mately follows an isoline of the concentration gradient until it
starts to move downwind when passing the source. Having the
wind in the back makes the robot spiral in toward the source. This
strategy exploits the fact that in the low-turbulence scenario,
diffusion plays a considerable role in the cross-wind direction.
While the concentration in the center of the plume has a high
variance because of the passing odor puffs, the border of the
plume has a rather low variance. This implies that the lower
concentration isolines generally lead toward the source without
interruption.

The robot evolved for the high-turbulent scenarios makes two
upwind loops upon the detection of an odor puff. The loops pass
close to (and behind) of the original detection location. As a
consequence, the robot will keep looping around the source. This
strategy exploits the spatial probability distribution for sensing an
odor puff, and in particular the fact that this probability is
practically zero up-wind of the source, while it is considerable
just downwind of the source.

The strategies as revealed by the analysis have been validated
by means of hand-coded finite-state-machines. Finally, in both
scenarios, source identification is performed on the basis of the
frequency of odor puffs and the higher odor concentration. In the
high-turbulence scenarios, the wind direction also aids identifica-
tion. Although the wind direction in itself does not carry any
information on source proximity, it does given the behavior of the
robot: close to the source the robot starts moving downward
extremely slowly, while far from the source it goes downward
more rarely.
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