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Abstract
The visual cue of optical flowplays an important role in the navigation offlying insects, and is
increasingly studied for use by smallflying robots aswell. Amajor problem is that successful optical
flow control seems to require distance estimates, while optical flow is known to provide only the ratio
of velocity to distance. In this article, a novel, stability-based strategy is proposed formonocular
distance estimation, relying on optical flowmaneuvers and knowledge of the control inputs (efference
copies). It is shown analytically that given afixed control gain, the stability of a constant divergence
control loop only depends on the distance to the approached surface. At close distances, the control
loop starts to exhibit self-induced oscillations. The robot can detect these oscillations and hence be
aware of the distance to the surface. The proposed stability-based strategy for estimating distances has
twomain attractive characteristics. First, self-induced oscillations can be detected robustly by the
robot and are hardly influenced bywind. Second, the distance can be estimated during a zero
divergencemaneuver, i.e., around hover. The stability-based strategy is implemented and tested both
in simulation and on board a Parrot AR drone 2.0. It is shown that the strategy can be used to: (1)
trigger a final approach response during a constant divergence landingwithfixed gain, (2) estimate the
distance in hover, and (3) estimate distances during an entire landing if the robot uses adaptive gain
control to continuously stay on the ‘edge of oscillation.’

1. Introduction

Amajor challenge in robotics is to achieve autonomous
operation of tiny flying robots such as 25 g ‘pocket
drones’ [11] or more extremely the 80mg Robobee
[33]. Flying insects provide a rich source of inspiration
for solving this challenge, since they are able to navigate
successfully on the basis of a very limited sensory and
processing apparatus. Flying insects rely heavily on
optical flow, i.e. the apparent motion of world points
caused by the relative motion between the observer and
the environment [21]. Also for robots this cue is
promising as it can be extracted from a single passive
camera, implying lightweight and relatively little energy
consumption [14, 16, 18, 41].

It is well known that optical flow conveys informa-
tion on the ratio between distance and velocity, and
that additional information is necessary to disentangle
these quantities. This ‘scaling’ can be performed by

means of maneuvers that have a known range or velo-
city (as in parallax [29]), or with any sensor that
directly or indirectly provides information on the
(change in) distance or velocity estimates, e.g. accel-
erometers or sonar [12, 32]. Interestingly, flying
insects such as fruit flies do not seem to have scaling
sensors [15]. In addition, it is unlikely that they know
the range of their maneuvers since they only have
access to their air speed, not their ground speed [6].

Still, flying insects are able to navigate successfully.
The key to this success is that flying insects follow
straightforward strategies based on optical flow obser-
vables. First, it was found that honeybees keep ventral
flow (defined as x

v

z
xJ = ) constant when they perform

grazing landings [42]. This strategy was studied for fly-
ing robots and simulated spacecraft [27, 35, 37, 45].
However, these studies required a ‘pitching’ law, ulti-
mately depending on an estimate of the height and
velocity. The main reason seemed to be the absence of
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control of the vertical dynamics. Therefore, more
recent landing strategies also include the flow diver-
gence (D, typically defined as v

z
z- , with the positive z, vz

axis pointing up) or time-to-contact ( z

vz
t = - )

[1, 24, 26, 28]. These strategies either enforce a
decreasing time-to-contact (as humans do for car
braking [30]) or keep the divergence constant (as hon-
eybees do for straight landings [3]). Recently, in [15],
ventral flow and divergence were combined with slope
estimation and an anemometer in order to fly over
uneven terrain, without a need for inertial frames or
scaling sensors.

The absence of velocity and distance information
has been a defining property of the work on optical
flow-based navigation strategies. However, the follow-
ing observations suggest that for successful navigation
distance estimates are still of importance. First, flying
insects do seem to have distance-dependent behaviors.
For instance, van Breugel et al [6] remarked that fruit
flies extend their legs at a specific distance from an
oncoming object. Second, for successful optical flow
landing control, the gains of the controller are tuned to
a range of specific heights and velocities. For instance,
for the constantly decreasing time-to-contact landings
in [9, 28], the gains are scheduled by means of τ, along
a trajectory starting at a specific initial height and velo-
city. Third, while for a constantly decreasing time-to-
contact landing it is possible to perform a final landing
procedure (when the time-to-contact is almost zero),
it is not obvious how such a procedure should be trig-
gered in a constant time-to-contact or divergence
landing.

It is actually possible to estimate distances based on
optical flow, if a robot has access to copies of its con-
trol input signals (referred to as ‘efference copies’ in
the biological literature). Two main strategies have
been proposed so far in the literature.

The first strategy for estimating distances is well-
established in the field of image based visual servoing
(IBVS). In the task of IBVS a robot has to regulate cer-
tain target features to desired image locations, without
knowing a priori their dimensions or geometry. Quite
early it was observed that if a fixed gain is used to map
an image error to a control input, the response of the
system depends on the distance to the target [8]. Given
a model of the robot’s dynamics, the effects of the
robot’s actions on the image features can be used to
estimate the distance to the target (e.g. with a non-
linear observer). The distance estimates allow for
smooth control in an adaptive gain control scheme [2].

The second strategy for estimating distances was
recently proposed by [6]. They showed that during a
constant divergence approach of an object, the control
input u (the thrust) is proportional to the distance d,
and that efference copies can then be used as a stand-in
for distance. This solution was tested on a camera
mounted on a rail and successful distance estimates

were obtained by integrating information during the
entire approach.

Both strategies above assume that the robot’s
accelerations are completely determined by the con-
trol inputs. However, flying robots and insects are also
subject to significant external accelerations caused by
wind orwind gusts.

Themain contribution of this article is the propo-
sition of a novel, stability-based, strategy for distance
estimation with optical flow and efference copies. The
central idea is to estimate distance by exploiting the
self-induced oscillations that result from the funda-
mental imperfection of fixed-gain optical flow-based
control. The distance estimation strategy provides two
major advantages with respect to the previously pro-
posed strategies: (1) it works straightforwardly even in
the presence of wind, and (2) it can be used in a
broader range ofmaneuvers, and notably in hover.

The remainder of the article is organized as fol-
lows. In section 2, we introduce the notations used in
this article and discuss the intrinsics of a constant
divergence landing. Subsequently, the new stability-
based strategy to distance estimation is proposed in
section 3. In section 4 it is shown how self-induced
oscillations can be used to trigger a final landing pro-
cedure. Subsequently, in section 5 adaptive gain con-
trol is introduced to determine the distance in hover
and to estimate distances along an entire constant
divergence landing. In section 6, the findings are
empirically verified with real-world experiments using
a Parrot AR drone. Finally, the results are discussed in
section 7 and conclusions are drawn in section 8.

2. Constant divergence landing

The novel distance estimation strategy will be studied
in the context of a landing task. In this section, the

Figure 1.Axis system employed in the article. The bottom
camera on the robot looks straight down andperceives the
ground surface.When descending, a diverging flow field is
perceived in the camera view, allowing the robot to determine
the divergence D v zz= - .

2

Bioinspir. Biomim. 11 (2016) 016004 GCHEdeCroon



main aspects of a constant divergence landing are
explained. Figure 1 shows the definition of the axes as
used in the formulas. In order to keep the equations as
uncluttered as possible, most of the analysis in this
article focuses purely on the z-axis. Generalizations to
other looking and movement directions are easily
made (see, e.g., appendix B), as are the inclusion of
different attitudes or a displacement and rotation of
the camerawith respect to the body center ofmass.

The robot perceives an optical flow field q

in its

bottom camera view. The divergence is defined here

as: D q
1

2
= 


, which is equal to

v

z
z- if the robot is

looking straight down. In this article as ‘visual obser-
vable’ the variable zJ is used, which is the relative velo-

city
v

z
Dz

zJ = = - . Hence, a constant or zero

divergence maneuver is also a constant or zero zJ
maneuver.

If the robot lands while keeping zJ constant, the
height and vertical velocity will obey the formulas:

z t z e , 1v z t
0

z0 0( )( ) ( )=

v t v e , 2z z
v z t

0
z0 0( )( ) ( )=

which with a negative initial velocity vz0 has vz and z
simultaneously converge to 0, c .

v

z t

v

z
2z t z0

0( )
( ) = = -

3. Instability of constant divergence
landings

The onset of the work in this article came from the
difficulty of making optical flow-based landing strate-
gies work on realmicro air vehicles (MAVs). The study
in [28] is especially instructive, since multiple control
laws are studied, of which the gains depend to different
extents on the initial height and velocity. Especially
important are the remarks and observations on the
difficulty of getting the optical flow control to work
close to the landing surface, where oscillations tend to
occur. It is even suggested to disengage the optical flow
control under a threshold distance (as is also done
in [45]).

Please note that it is not easy to identify the cause
of oscillations close to the surface when performing
vision-based control with a real MAV. Oscillations
close to the ground can potentially be explained by the
‘ground effect’ due to the MAV’s downwash and by
the vision process (more blurry images, larger optical
flow vectors that are harder to track). Below it will
become clear though that even without such addi-
tional effects, the instability problem arises.

Based on the dependence of the gains on the actual
height and velocity, in this article a novel strategy is
proposed for distance estimation: stability-based dis-
tance estimation. In this section, first the fundamental
reason for the gain tuning problem of optical flow
based control is explained (section 3.1). Subsequently,

a specific control law is assumed and it is shown analy-
tically that the stability directly relates the control gain
to the height (section 3.2).

3.1. Fundamental reason for gain tuning
Before going into why a single gain is only stable for a
given range of heights, first the equations of motion
will be described. Let us start with the model in [6]. In
the notation of a state spacemodel:

t A t B tx x u , 3˙ ( ) ( ) ( ) ( )= +

where the state vector z t v tx , z
T[ ( ) ( )]= , and

t u tu z( ) ( )= , so that:

z t
v t

z t
v t

u t0 1
0 0

0
1

. 4
z z

z
˙ ( )
˙ ( )

( )
( )

( ) ( )
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= +

This model assumes that uz=az, which effectively
implies that any possible gravity is subsumed under
the uz-term:

a g
u

m
u , 5z

z
z ( )= - +

¢
=

where u m a gz z( )¢ = + is the actual upward thrust
generated by the robot in Newton. It is common in
control system theory to subsume factors such as
gravity and the mass into uz, as the calculation of uz¢ is
straightforward and does not depend on any state
variables.

Equation (5) is only valid if the control force is the
only force acting on the robot. In a vacuum environ-
ment this can be approximately correct, e.g. for a
moon landing. However, a robot flying in the air will
undergo additional accelerations. Therefore, in this
article, the drag force will be modeled, which depends
on the robot’smovement relative to the air:

f v C Avsign
1

2
, 6D Dair air

2( ) ( )r=

where:

v v v , 7zair wind ( )= -

and vsign air( ) indicates the directionality of fD along
the z-axis. This leads to an additional acceleration:

a g
u f

m
, 8z

z D ( )= - +
¢ +

in which fD is a time-varying value involving a non-
linear function of vz and an uncontrolled vari-
able vwind.

Now, let us start from the visual observable zJ :
v

z
. 9z

z ( )J =

If zJ is differentiated over time, it results in:

a

z

v

z
. 10z

z z
2

2
˙ ( )J = -

Using equation (9):
a

z
. 11z

z
z
2˙ ( )J J= -

3
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Assuming az as in equation (8):

g
u f

m
z

. 12z

z D

z
2˙ ( )J J=

- +
¢ +

-

Differentiating this formulawith respect to uz¢ gives:

u mz

1
. 13z

z

˙
( )J¶

¶ ¢
=

Equation (13) shows that a change in thrust has a
larger effect on the change in żJ closer to the landing
surface than far away (independently of external accel-
erations)1 Thus, a control gain for regulating zJ that
leads to a satisfactory control performance far away
from the landing surface, will lead to very large effects
on żJ and hence indirectly on zJ close to the landing

surface. Although theoretically one could use
u

z

z

J̇¶
¶ ¢

directly for distance estimation (z u

m

1z

ż
=

J
¶ ¢

¶
), in prac-

tice this value is extremely noisy, since it involves a
partial derivative with the noisy value żJ .

3.2. Relation between control stability, gain, and
height
In this subsection, it will be shown that the larger
influence of uz on zJ at lower heights eventually leads
to instability at a specific height. For the analysis, the
following constant divergence control law is studied,
using just a proportional gainKz as in [6]:

u K , 14z z z z( ) ( )*J J= -

where it is easy to see that in a noiseless, delayless
system:

u

K
lim 0, 15

K

z

z
z z

z
( ) ( )*J J= - =

¥

and hence z z*J J= . Real systems always have some
noise and delay. Below, it will be shown that just
discretizing the control with zero-order-hold (ZOH)
will already introduce an instability into the system.

Let us assume the state space model of
equation (4), ignoring drag for the moment. The
corresponding observation is:

y
v

z
, 16z

z ( )J= =

which is a nonlinear function. Linearizing the state
spacemodel gives:

y t C t D t

v

z z
z t v t

x u

1
, 17z

z2

( ) ( ) ( )

( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
D = D + D

=
-

D D

so that the state spacemodelmatrices are:

A B C
v

z z
D0 1

0 0
0
1

1
0 .

18

z
2

[ ]

( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= = =

-
=

As mentioned, the continuous system without
noise and delay is stable (equation (15)). Here, the dis-
cretized system is studied, which has the following
state space model matrices corresponding to the con-
tinuous ones in equation (18):

T
T

T

C
v

z z
D

1
0 1 2

1
0 , 19z

2

2
[ ] ( )

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

F = G =

=
-

=

where T is the discrete time step in seconds. The
transfer function of the open loop system can be
determined to be:

G w C wI , 201( ) ( ) ( )= - F G-

zT v T w zT v T

z w

1

2

1

2
1

, 21
z z

2 2

2 2( )
( )

⎜ ⎟⎛
⎝

⎞
⎠

=
- - -

-

where we use w as the Z-transform variable, since z
already represents height. The feedback transfer func-
tion is:

22

G w

K zT v T w zT v T

z w K zT v T w zT v T

1

2

1

2

1
1

2

1

2

.
z z z

z z z

2 2

2 2 2 2

( )

( )
( )

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

=
- - -

- + - - -

Equation (22) shows that, given a gainKz and time step
T, the dynamics and stability of the system depend
both on the height z and velocity vz.

Figure 2.Root locus plots of a ZOH-model with T 0.03 s=
for z=1 mand z=10 m. The plots are equal in shape, but
for each pointKz is different. This is indicated for the
(approximations to) the values ofKz at which the system
becomes unstable (w 1= - ).

1
The constancy of this relation depends on the constancy of the

robot’s mass, which applies for landing quad rotors but not for
spacecraft. A spacecraft will loose more and more mass when
landing, hence aggravating the effect in equation (13).
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Figure 2 is the root locus plot of G(w). For the
Z-transform any pole in the unit circle is a stable pole.
The different elements of the plot can be found back in
equation (22). The numerator indicates a single finite
zero at:

w
zT v T

zT v T

1

2
1

2

. 23
z

z

0

2

2
( )=

+

-

Given z 0> , T 0> , and v 0z < , w0 is positive and
due to the typically small T values slightly smaller than
1. There is also a negative infinite zero. Since the
denominator of equation (22) is a second order
equation in w, G(w) has two poles, both of which are
stable. For Kz=0, the poles are located at w=1. As
the gainKz increases, one pole moves toward the finite
zero and one toward the infinitely negative zero. This
latter pole is interesting, because as soon as it passes
w 1= - , the system becomes unstable. Setting
w 1= - in the denominator and equating it with 0
gives an equation for the unstable gain valueKz:

K
T

z
2

. 24z ( )=

This implies that given a specific gain Kz and time
step T, there is always a height at which the control sys-
temwill become unstable:

z K T
1

2
. 25z ( )=

When using a fixed gain, a tradeoff has to be made
between the control performance at a larger height
(requiring a large gain) and at lower heights (requiring
a small gain). Please remark that the instability at lower
altitudes is exactly what is observed for robotic systems
performing constant divergence landings!

3.3. Includingwind
In this subsection it is shown that also for amodel with
wind, the instability of the system given a Kz depends
on z. Including wind leads to a changed formula for vż

(see equations (6) and (8)):

v u v v
m

C A

v v

sign
1

2

, 26

z z z D

z

wind

wind
2

( )
( )

˙

( )

r= + -

-

where from now on β will stand in for the constant

m
C A

1
Dr . In order to obtain a linear state space model,

this equation is linearized to obtain:

v u v v

v v v

sign

, 27

z z z

z z

wind

wind

(
)

( )
( )

˙

( )b

D = D - -

´ - D

where the factor multiplied with vzD is a constant in
the linearized model (vwind and vz are given the
values at the linearization point). In order to avoid
cluttering the formulas, this constant is represented by
p v v v vsign z zwind wind( ) ( )b= - - (where p 0> ).
This leads to the following continuous, linear state
spacemodel:

A p B C
v

z z
D

0 1
0

0
1

1

0 , 28

z
2

[ ] ( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= - = =

-

=

which results in theZ-transformmatrices:

e

p

e

T

p

e

p

e

p

1
1

0

1

1

29

pT

pT

pT

pT

2( ) ( )

( )

( )

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

F =
-

G =

-
-

-

-

-

-

-

C
v

z z
D

1
0 , 30z

2
[ ] ( )

⎡
⎣⎢

⎤
⎦⎥=

-
=

and a rather involved transfer functionH(w). The root
locus plot of H(w) is very similar to that of G(w), also
with a negative infinite zero. Following the same
procedure as for the ‘vacuum’model, setting w 1= -
and equating the denominator with 0, gives:

K . 31z
p p e z

e Tp Tpe v pe p z

2 2

2 2 2 2

pT

pT pT
z

pT

2 2 2( )
( ) ( ) ( )=

+

- - - + -

Equation (32) includes many instances of p that
depend on vz and vwind, and also contains a term in the
denominator with vz. This suggests that there is no
fixed linear relation betweenKz and z. However, closer
inspection shows that the term e Tp2 2pT( - - -
Tpe 0pT) » . Rearranging terms, this leads to:

K
p p e

pe p
z

2 2

2 2
, 32z

pT

pT

2 2

( )=
+

-

which still depends on p. It turns out that the fraction
that is multiplied with z is almost identical to the

fraction
T

2
. Indeed, solving equation (32) for different

Figure 3.Root locus plots of a continuousmodel with a delay
of T 0.15 s= (as approximated by a second order Padé
transfer function), and aerodynamic dragwith

C A 0.5D
1

2
r = , for z=1 mand z=10 m. The plots at
different heights are equal in shape, but for each point in the
plotKz is different. This is indicated for the (approximations
to) the values ofKz at which the poles get an imaginary
component (start of oscillations), andwhere they cross the
imaginary axis (become unstable).
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variable settings gives almost identical results to
equation (24).

3.4. Continuous systemwith drag and delay
The previous subsections discussed discretizedmodels
for which unstable Kz exists, and where the limit case
can be analytically expressed as a function of z. In order
to show that continuous systems encounter the same
type of phenomenon, figure 3 shows the root locus
plot of a continuous system with wind, a delay of

t 0.03 sD = and c 0.012 = . The delay introduces two
zeros in the (unstable) right-hand plane of this
continuous root locus plot. A few values of Kz are
plotted, where the poles get an imaginary component
and where they cross the imaginary axis (shown for
z= 10 mand z= 1 m).

4. Stability-based distance estimation

In the previous section, it was established that the
instability of a constant divergence approach system
depends on the distance. If this instability can be
detected by a robot or insect, it can be used for distance
estimation!

4.1.Detection of self-induced oscillations
The instability discussed in section 3.2 is induced by
the robot itself. Before the system gets unstable, it will
start to show oscillations. This can be seen for instance
in figure 3. When Kz=24.3, the control system’s
poles will start to have an imaginary component
and hence oscillate around the desired value from
z=10 m downward. In the field of aerospace, such
self-induced oscillations are a well-known problem,
and referred to as pilot-induced oscillations (PIO).

The two most important properties of self-
induced oscillations are that (1) there is a phase shift
between the observations and control inputs in the

order of 90–180◦, and (2) the oscillations are of a sig-
nificant magnitude. Let us have a look at a simulated
landing to see how this phenomenon occurs for the
studied constant divergence landings. For the simula-
tions, a ZOH-model is assumed with a time step

T=0.03 s, C A
1

2
0.5Dr = , a mass of 1 kg, and a delay

of t 0.15 sD = (as in section 3.4)2. The left part of
figure 4 shows a landing for Kz=20, z 100 = ,
v 1z0 = - , c 0.12 = , in wind still conditions
(v 0wind = ). It shows that the landing goes smoothly,
until the very end at 0.5 m» at which point the robot’s
height starts to oscillate.

The right part of figure 4 shows the main relevant
variables, zooming in at the few seconds before land-
ing (until t= 26 s the variables do not varymuch). The
dark yellow dashed line is the ground-truth v zz zJ = ,

while the magenta solid line is its delayed version ẑJ as
observed by the robot. The blue dotted line represents
the thrust uz¢. Toward the end of the landing zJ starts
deviating significantly from its reference point −0.1
(indicated with the thin dotted magenta line). It even
obtains positive values, which means that the robot
goes up. This itself could be used for the detection of
instability, were it not that a wind gust can also move
the robot upward, causing a positive zJ at a larger
height. The problem here is that the effects of the
thrust changes have an ever larger and quicker effect
on the relative velocity when getting closer to the land-
ing surface. This response will get so quick that the
robot starts getting in resonance with its own delay, as
testified by the phase shift between zJ and ẑJ . The
robot starts thrusting up while going up and thrusting
downwhile going down.

Figure 4. Left: landing in simulationwith K c20, 0.1z
2= = . The red line is the height, the black line is the point at which the onset of

oscillations is detectedwith the robot’s observables. Right: some of themain relevant variables: the true relative velocity zJ (dark
yellow, dashed), the estimated relative velocity ẑJ (magenta, solid), the thrust uz¢ (blue, dotted), and thewindowed covariance

ucov ,z z( )J¢ (black, dashed) and ucov ,z z( ˆ )J¢ (black, solid).

2
Please note that while the theoretical analysis involved a lineariza-

tion of the observation function, the simulation employs the
nonlinear observation function (and hence can validate some of the
conclusions from section 3). For the simulator code, please see
www.bene-guido.eu.
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The two properties of self-induced oscillations
(phase shift and magnitude) can be captured with the
covariance between the ground-truth zJ and the thrust
uz¢. The right part of figure 4 shows ucov ,z z( )J¢ as
determined over a window of the last W=20 time
steps (black dashed line):

u u i u icov , .

33

t z z
i t W

t

z z z z
1
( )( ) ( )( ) ( )

( )

åJ J J¢ = ¢ - ¢ -
= - +

During the smooth part of the trajectory ucov ,z z( )J¢ is
a small negative number: when the robot descends too
fast ( zJ too negative) the robot thrusts more up, and
vice versa. Towards the end of the landing the
observable zJ starts to change too quickly for the
control system and ucov ,z z( )J¢ becomes positive: if
the robot descends too fast ( zJ too negative) the robot
will thrust less up, and thus it starts inducing
oscillations.

How can robots detect self-induced oscillations
without access to the ground truth zJ ? There have
been several investigations on the automatic, on board
detection of self-induced oscillations
[7, 10, 34, 38, 47]. A typical detection method involves
a fast Fourier transform (FFT) of the observations
[7, 38], looking for the specific frequency band related
to the self-induced oscillations. In this article, in the
interest of a computationally efficient and straightfor-
ward method, we will investigate the use of the

ucov ,z z( ˆ )J¢ as a proxy for ucov ,z z( )J¢ . In figure 4,

ucov ,z z( ˆ )J¢ is shownwith a black solid line. It is always

negative, as u Kz z z z( ˆ )*J J¢ = - , and hence mostly
captures the magnitude of the oscillations. The

ucov ,z z( ˆ )J¢ can be used in conjunction with zJ for
detecting the onset of oscillations. The black line in the
left part of figure 4 shows the first point during the
landing at which ucov , 0.1z z( ˆ ) J¢ - and 0.01ẑ J .

In order to test the hypothesis that the onset of
oscillations is related to the magnitude of the gain and

the height of the robot, simulation runs were per-
formed for gains K 10, 30, 50z { }Î and for various
types of wind v 3, 2.5, , 2.5, 3wind { }Î - - ¼ m/s.
Furthermore, z 100 = , v 1z0 = - , c 0.052 = . The left
part of figure 5 shows the results of this experiment,
with the different Kz on the x-axis and the corresp-
onding z at which self-induced oscillations are
detected on the y-axis. Each Kz additionally is repre-
sented with a different marker, and the markers are
colored according to the wind velocity, from blue
(−3 m/s) to red (3 m/s). The black dashed line is a lin-
ear least-squares fit through the points, with para-
meters z K0.04 0.1z= - .

There are threemain observations. First, as the lin-
ear fit shows, higher gains result in oscillations further
away from the landing surface. Hence, a fixed gain will
result in self-induced oscillations around a certain
height. The detection of these oscillations can be used
for instance for triggering landing responses (such as
the leg extension by fruitflies). Second, a considerable
wind difference between −3 to 3 m/s leads to a rela-
tively small (for MAVs) difference of 0.50 m» in the
height at which self-induced oscillations occur. Third,
the colors show that there is a slight correlation
between the detection height and the wind velocity.
Analyzing the landings with wind shows that for the
higher wind velocities, the control system has more
difficulties tracking z*J , leading to a steady-state error.
This suggests that introducing an integrator term
could resolve this problem. The results of a PI-con-
troller, with Kz as the P-gain and Iz=1 as the I-gain,
are shown in the right part of figure 4. Since the PI-
controller can cancel the steady-state error, the refer-
ence z*J is tracked much better. As expected, self-
induced oscillations still occur, and the detection
heights are much closer together. Moreover, inspec-
tion of the marker colors shows that there is no
obvious relation anymore between the wind velocity
and the detection height. In order to keep in line with
the system that was analyzed theoretically, for the

Figure 5. Left: oscillation detection heights for different gainsKz for different wind velocities. The color of themarker represents the
wind velocity, ranging from−3 m/s (blue) to 3 m/s (red). The black dashed line is a linearfit through the detection heights. Right:
results for experiments with aPI-controller, with Iz=1 as the I-gain.
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remainder of the article we will focus on the P-con-
troller setupwith gainKz.

4.2.Wind gusts and actuator efficiency
In the previous subsection, the feasibility of detecting
self-induced oscillations for distance estimation was
shown. However, two factors were not modeled that
could have a significant influence on the practicality of
the approach.

First, during a typical landing outdoors the wind is
not constant. The wind can vary and sudden wind
gusts can occur. In the simulation, wind gusts are
added to the simulation in the formof a sine function:

v W atsin , 34gust ( ) ( )=

whereW determines the magnitude of the gusts and a
the period.

Second, it is unlikely that a robot’s command sig-
nal (and hence efference copy) is equal to uz¢. A com-
mand signal uz (in any unit, e.g. the commanded
RPM of a robot’s propellors or the flapping frequency
of an insect) is related to uz¢ (in Newton)with an actua-
tor effectiveness function: u f uz z( )¢ =  . In flying
robots such as rotorcraft or flapping wing vehicles the
function f, in turn, depends on the air flow. Here, a
rotorcraft is assumed and the relation between actua-
tor effectiveness and air flow is modeled according to
findings on propellors in [44]. Specifically, the follow-
ing formulawas used:

u u bv u cvmax , 0 , 35z z zair air{ } ( )¢ ¬ ¢ - ¢ -

so that both the offset and slope of the efficiency
change over different air velocities.

The left part of figure 6 shows a landing with a
rather extreme scenario, in which the average wind
velocity is 0 m/s,W=4, a=1, b=0.5, and c=0.5.
This means that per every π seconds, the wind varies
from −4 to 4 m/s! The red line in the figure is the

height over time, the black line indicates the height at
which self-induced oscillations are detected. The right
part shows the results over many landings with the
same settings but different wind velocities, from
−3 m/s (blue) to 3 m/s (red), to which the gusts are
added during each landing. The black dashed line is a
linear fit through all the detection heights for all
gainsKz.

The results show that despite the very gusty condi-
tions and varying actuator efficiency, there is still a
positive linear relation between z and Kz. The uncer-
tainty is slightly higher though than for a constant
wind and actuator efficiency, especially for larger
gains/heights. It is important to emphasize that the
actuator efficiency function f does not have to be
known. Assuming a linear actuator efficiency function
and using that the fit should pass through
K z, 0, 0z( ) ( )= , a single landing with a fixed gain in
principle suffices to ‘calibrate’ the linear relation
between z andKz.

5. Adaptive gain control

5.1.Distance estimation in hover
In principle, the detection of self-induced oscillations
could be sufficient for flying robots (or insects) to
determine when they are close to their landing target.
This allows for the triggering of a final landing
procedure and hence is behaviorally very relevant.
However, it would be extremely useful if the robot
could determine height at any distance to the landing
surface.

Surprisingly, the proposed stability-based strategy
for height estimation does not require the robot to
land! Equation (25) (derived for the vacuum condi-
tion) does not depend on vz, nor on c2. This suggests a
strategy for determining the height around hover: the

Figure 6. Left: landing in gusty wind conditions (ranging from−4 to 4 m/s inπ seconds. The red line is the height over time, the black
line the detection height. Right: oscillation detection heights for different gainsKz for different wind velocities in gusty wind
conditions. The color of themarker represents thewind velocity, ranging from−3 m/s (blue) to 3 m/s (red). The black dashed line is
a linearfit through the detection heights.
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robot can set 0*J = and change its gainKz so that the
control loop starts exhibiting small self-induced oscil-
lations. The gain at such a point is then a stand-in for
the height.

Specifically, a control law can regulate ucov ,z z( ˆ )J¢
by continuously adapting the gainKz. This leads to the
following adaptive gain control setup. An inner loop
uses u Kz z z z( )*J J= - , while an additional outer
loop controlsKz:

K t K t P K t e t , 36z z z cov( )( ) ( ) ( ) ( ) ( )= ¢ - ¢

K t K t T I K e t T , 37z z z cov( )( ) ( ) ( ) ( )¢ ¬ ¢ - - ¢ -

e t u u tcov , cov , , 38z z z zcov ( ) ( )( ) ˆ ˆ ( ) ( )*J J= ¢ - ¢

where P I, 0, 1[ ]Î are a proportional and integral
gain for the outer loop control, both relative to the
current Kz¢. The reason for this is that larger heights
involve higher speeds, so that Kz should be changed
more quickly for larger Kz¢ than for smaller Kz¢. The
adaptive gain control is represented as a control
diagram infigure 7.

This strategy has been tested in simulation for
z 2, 4, , 10{ }Î ¼ and v 1, 0, 1wind { }Î - . The
simulation stops when e 0.005cov∣ ∣ < . Figure 8 shows
for each simulation run the last gain and height with a
marker. The markers are again color-coded for the
wind from blue (−1 m/s) to red (1 m/s). The black
dashed line shows a linear least squares fit.

Themain result is that thismethod indeed gives an
approximately linear relationship between z and Kz,
with linear fit z K0.07 0.1z= + . Although the wind
influences the hover altitude (since it is not accounted
for in the initial thrust) it again hardly influences the
results.

5.2.Distance estimation during landing
Is there a possibility of landing and continuously
estimating the distance to the surface? Figure 8 sug-
gests that there is. If the robot descends while keeping

ucov ,z z( ˆ )J¢ at a fixed negative value, then the gain Kz

will directly represent the height z during the landing.
This strategy of ‘landing on the edge of oscillation’ can

use the exact same adaptive gain control as explained
above, but thenwith c 02 > .

Simulations of this strategy have been performed
for z 5, 6, , 10{ }Î ¼ . The implementation of the
strategy starts with a hover maneuver (c 02 = ) with
Kz=50, I=0.005, and P=0.15. If in hover the con-
dition ucov , 0.05z z( ˆ )*J¢ = - is met, the landing
is commenced. During landing c 0.052 = , cov
u , 0.05z z( )*J¢ = - .

Figure 9 shows the Kz versus z during the landing
phase. The markers are color-coded for the starting
height z0 in the landing phase, from blue (10 m) to
green (5 m). Each starting point is indicated with a red
cross. After switching from c 02 = to c 0.052 = , it
takes some time for the outer loop to compensate,
which causes Kz to vary at the start of the landing

Figure 7.Control diagramof the proposed adaptive gain
control strategy.

Figure 8.Results of simulated hover tests. The robot is placed
at different heights withKz=10with 0*J = . The gain is
then adaptedwith ucov , 0.05z z( ˆ )*J¢ = - . The x-markers
show the height z andKz at thefirst time instant inwhich

ucov , 0.05z z( ˆ ) J¢ - . Themarkers are color-coded for the
wind (blue=−3, red= 3). The black dashed line is a linearfit.

Figure 9.Results of simulated tests landing on the edge of
oscillation. The robot is placed at different heights with
Kz=50. Then, it starts adaptive gain control with

ucov , 0.05z z( )*J¢ = - . First 0*J = , andwhen for thefirst
time ucov , 0.05z z( ˆ ) J¢ - , the relative velocity set point is
changed to 0.05*J = - .
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phase. After that, all Kz are linearly related to z, with
linearfit z K0.11 0.1z= - .

6. Real-world experiments

In this section, experiments will be performed with a
Parrot AR drone in order to verify the main findings
from the theoretical analysis and simulations in the
previous sections.

6.1. Experimental setup
The experimental setup is shown in figure 10. A Parrot
AR drone 2.0 is used, running the Paparazzi open
source autopilot software on board [22, 36]3. This
means that the Paparazzi autopilot is in full control of
the AR drone, processing the sensors on board. The
AR drone is equipped with an IMU (accelerometers,
gyros, magnetometer, pressure sensor), and a down-
ward pointing camera and sonar. For the purpose of
the experiments, the vertical control loop implements
the fixed and adaptive gain controls explained in the
previous sections, and hence only uses the relative
velocity estimates coming from the vision process,
which is further explained below. The sonar is logged
for analysis purposes. The horizontal position is
stabilized as much as possible. In the indoor experi-
ments, an Optitrack motion tracking systemmeasures
the drone’s X- and Y-position at 120 Hz with milli-
meter precision. Paparazzi then performs the outer
loop control on the basis of these measurements. In
the outdoor experiments, where the drone is subject to
much larger disturbances from the wind, a human

pilot attempts to keep the drone in the same horizontal
position bymeans ofmanual control.

The vision process is designed as follows. The ima-
ges are processed with a rather standard vision pipe-
line available in Paparazzi. Maximally 40 corners are
detected with the method in [40], and these corners
are tracked to the next image with the Lucas–Kanade
optical flow algorithm [31]. The optical flow diver-
gence is estimated by means of the distances between
tracked corners in two subsequent images. From all
possible pairs of optical flow vectors, 50 pairs are sam-
pled with replacement. Per pair of optical flow vectors,
the image distance in the previous image dt t-D and the
image distance in the current image dt (see figure 11)
are used for a single estimate i of the divergence:

D d d d . 39i t t t t t( ) ( )= --D -D

A global divergence estimate D̂ is obtained by taking
the median of estimates Di, i 1, 2, , 50{ }Î ¼ . With
the help of the frame rate (which is on average 25 Hz)
and the camera’s field of view (47.5 in the horizontal
direction), this estimated divergence is transformed to
the estimate of the ẑJ expressed in s 1- .

The estimated relative velocity ẑJ is low-pass fil-
tered over time and then used in a control loop
u Kz z z z( ˆ )*J J¢ = - , where uz¢ is the vertical thrust
command. Please note that in the real-world experi-
ments, the thrust command is bounded to the interval
u M M0.6 , 0.9z [ ]¢ Î , where M is the maximal thrust
that can be commanded to the propellors. The pro-
gram allows both fixed gain control and adaptive gain
control as in section 5.2. Experiments were performed
in an indoor and an outdoor environment, shown in
figure 12. The main parameters used in the experi-
ments have been determined empirically for the used

Figure 10.Experimental setup. The Paparazzi open source autopilot [22, 36] runs on board the Parrot AR drone 2.0, processing the
images on board for the autonomous vertical control loop. The horizontal control loop is not relevant to the current experiments and
relies on position estimates from amotion tracking system in the indoor experiments and onmanual control inputs in the outdoor
experiments.

3
Seewww.bene-guido.eu for themost current link to the code.
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AR drone 2.0 and will be mentioned along with the
relevant experiment.

6.2. Indoor experiments
First, it is verified that a fixed-gain constant divergence
landing results in instability at different heights. The
results of this test for K 0.5, 1, 2z { }Î (green, blue,
and red lines) and c 0.12 = are shown in figure 13. The
left plot shows the height over time for nine such
landings. Dotted lines indicate the first point at which

ucov , 1.0z z( ˆ ) J¢ - , set to trigger the drone’s auto-
matic landing procedure. This value is larger than in
simulation to prevent too-early landing triggering.
The reason is that the real drone does not only have a
delay in the observations, but also noise and it is
subject to larger disturbances and uncertainty in the
actuation. Themain observation from the figure is that
also for the real robot, higher gains lead to an
instability at larger heights. The right part of figure 13
shows a marker for each point K z,z( ) at which self-
induced oscillations are detected, and a corresponding
linear fit, with parameters z K1.01 0.2z= - . The
mean absolute error when using this function for
height estimation is 0.11 m.

The second finding to verify is the determination
of height around hover. For the real robot,

ucov , 0.025z z( )*J¢ = - is employed, with I=0.25
and P=10. During the hover experiment, the robot
has been sent to different heights, subsequently acti-
vating the adaptive gain control. In order to get an
impression of what the adaptive control does, let us
first zoom in on the relevant variables during a short
part of the flight, shown in figure 14. In this part of the
flight, the drone has just ascended to∼2 m (see top left
plot), while it has an initial gain of Kz=1.0 (bottom
left). The drone starts to regulate its relative velocity to

0z*J = (top right), and initially there are no self-
induced oscillations as witnessed by the

ucov , 0z z( ˆ )J¢ » (bottom right). The low covariance
makes the gain Kz¢ increase over time. This gradually
causes zJ to show ever larger oscillations, which leads

to more negative ucov ,z z( ˆ )J¢ . Around t=114.5 s, the
covariance reaches and overshoots its set point, and
the gain Kz¢ starts stabilizing around 1.6 in order to
keep the covariance around −0.025. The question
now is at what values Kz¢ will stabilize at other heights,
and whether there is indeed a linear relationship
between z andKz.

The middle row of figure 15 shows the result of
having the drone hover at different heights with

ucov , 0.025z z( )*J¢ = - . The left plot shows a short
time period during which the drone is continuously
adjusting its gain (Kz and Kz¢ shown with the solid and
dashed green lines, respectively), while attempting to
keep the same height (z is represented by the red line).
The right plot summarizes the results of five of such
periods. The small blue markers represent the instan-
taneous K z,z( )-pairs, while each large red marker is
the average K z,z( ) over each period. The dashed line
is a linear least squares fit through the red markers.
Although more noisy than in simulation, the relation
between z and Kz seems to be roughly linear, as pre-
dicted by the theoretical derivation. When using the
linear fit z K0.93 0.3zˆ = + as a height estimation
function, themedian absolute error of all observations
is z z 0.15∣ ˆ ∣- = m, while the mean absolute error
is 0.26 m.

The third finding to verify is the possibility to land
on the edge of oscillation. The AR drone is sent to a
height of 3.5 m. Then, the adaptive gain control is star-
ted, at first with c 02 = . As soon as e 0.005cov∣ ∣ < , the
landing phase starts. The bottom row of figure 15
shows the results for this test. The bottom left plot
shows Kz, Kz¢, and z over time during a single landing
on the edge of oscillation. The right plot shows the
points z K, z( ) of this and two other landings, where
different experiments have different markers and col-
ors. The dashed line is a linear fit through all points.
Although the results are quite noisy, again a roughly
linear relation appears, with as linear fit
z K0.68 0.5z= + . In this case, the median absolute
error of all observations is z z 0.24∣ ˆ ∣- = m, while
themean absolute error is 0.29 m.

6.3.Outdoor experiments
Outdoor experiments have been performed to con-
firm that the method also works in an outdoor
environment with wind and wind gusts. The right part
of figure 12 shows the outdoor experimental setup.
The ground surface consisted of small stones, which
already provide ample texture. Some beach toys were
added to the scene to also ensure visible texture at
larger heights. The bottom left part of figure 16 shows
the summary of the results from the hover experiment.
Just as indoors, there is a roughly linear relationship
between the height z as measured by the sonar and the
gain Kz as determined with the adaptive gain control.
The median and mean absolute errors in height of the
fit are both 0.31 m. The bottom right part of figure 16
shows the results from three landings on the edge of

Figure 11. Illustration of the image distances dt t-D (red) and
dt (green) for a single pair of selected optic flow vectors (black
vectors). A single pair of vectors gives rise to a single estimate
of the opticalflowdivergence,Di, bymeans of equation (39).
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oscillation, again showing higher gains at larger
heights. The median absolute error in height of the fit
is 0.32 m, themean is 0.40 m.

Videos of some of the experiments can be seen at4.

7.Discussion

7.1. Flying insects
The presented strategy forms a novel hypothesis on
how flying insects such as fruitflies and honeybees can
estimate distances, viz. by means of the detection of
self-induced oscillations. In [6] a different, thrust-
based strategy for distance estimation was introduced,
and its implications for landing insects discussed. In
part, the implications of these strategies overlap. They
both explain how flying insects can trigger landing
responses at a particular given distance, such as
fruitflies that extend their legs just before landing (e.g.
[5]). However, there is a significant difference in the
strategies, which has its consequences for the explana-
tion of flying insects’ behavior. A few notable differ-
ences in this respect will be highlighted below.

A first difference is in the possible explanation of
the hover phase honeybees exhibit just before touch-
down [13]. The hover phase could in principle be
explained as a maneuver that is triggered by a distance
measurement, for instance by means of the thrust-
based strategy of [6]. However, the proposed strategy
suggests instead that the hover mode is an intrinsic
property of optical flow control and is part of the dis-
tance estimation itself. As the honeybee gets closer to
the surface, its control gain will start becoming too
high. This will result in self-induced oscillations and
lead to a situation of zero divergence, i.e. hover. In this
light, it is interesting to remark the characteristic little
‘bump’ in the trajectory in figure 4. Similar bumps can
be observed in figure 4 in [13] (for almost straight
landings), and infigure 5 in [42] (for grazing landings).

A second difference is that the stability-based strat-
egy explicitly allows for the observation that a visual
stimulus itself can trigger the landing responses, even

for tethered insects [4, 43]. The reason for this is that
the strategy depends on the control stability and hence
the system bandwidth. A standard way to measure the
systembandwidth is tomake a Bode plot thatmaps the
system’s frequency response. At too-high frequencies,
the phase shift between the quickly changing observa-
tion and the subsequent control input will become lar-
ger and the magnitude of the control input lower. If
the magnitude of the triggered control input is large
enough, a purely visual stimulus may be detected as a
self-induced oscillation.

7.2. Flying robots
Concerning flying robots, the novel proposed distance
estimation strategy provides a novel way to perceive
distances with a single vision sensor. Thismay turn out
to be essential for tiny flying robots such as the
Robobee [33], for which any type of sensor is a
significant payload [20, 23, 39]. For slightly larger
drones such as 25 g ‘pocket drones’ (e.g. [11]), the
finding is also immediately relevant. For instance,
currently the lightest, fully autonomously flying robot
is the 20 g DelFly Explorer [46], which uses a 4 g stereo
vision system with onboard processing to avoid
obstacles in its environment. The proposed stability-
based strategy to distance estimation may provide a
bigger potential to even lighter, single-camera solu-
tions, also for obstacle avoidance. In addition, it can
provide scale to monocular navigation methods such
as visual odometry [12, 17]. Even for MAVs on the
order of ∼1 kg or larger, the method may still be
useful. It allows us to estimate potentially large
distances without compromising the MAVs’ payload
capability.

However, in order for stability-based distance esti-
mation to live up to its potential, some issues need to
be further investigated. The experiments have shown
the strategy to work in an onboard processing scheme
with a Parrot AR drone 2.0 with a median height esti-
mation error in the order of∼0.3 m. As a proof of con-
cept this suffices, but it is desirable to improve the
accuracy of the measurement. This seems quite possi-
ble by further improving both the inner loop diver-
gence control (which now only involved a P-gain) and

Figure 12. Left: indoor test environment. Right: outdoor test environment.

4
www.youtube.com/playlist?list=PL_KSX9GOn2P96xb8JRSo0jL

FnLBK0Pj5Y
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the outer loop adaptive control. Moreover, other,
more reliable ways of detecting self-induced oscilla-
tions may be created. Such improvements could not
only lead to more accurate distance estimates, but also

to smoother divergence control. If high-performance,
but smooth landing trajectories are the goal, the gain
should always be slightly below the critical gain value
leading to self-induced oscillations.

Figure 13. Left: nine fixed-gain constant divergence landings of a Parrot ARdrone, with set point 0.1z*J = - and gains
K 0.5, 1, 2z { }Î (green, blue, and red lines, respectively). The inset shows the drone in the indoor environment. The dotted lines
show the first point at which ucov , 1.0z z( ˆ ) J¢ - indicating the onset of self-induced oscillations. Right: per landing, amarker is
shown for the point K z,z( ) at which self-induced oscillations are detected. The dashed black line is a linearfit through these points.

Figure 14. Signals during a small part of the indoor hover experiment. Top left: the height over time. Top right: relative velocity over
time. Themagenta line is the ẑJ used for control, as determinedwith computer vision, while the yellow line is the zJ as calculatedwith
the help of theOptitrackmeasurements (not used in control). Bottom left: the gain over time. The light green solid line isKz, the dark
green dashed line is Kz¢ (see equations (36) and (37)). Bottom right: the dashed–dotted line is the covariance of the control input uz¢
and zJ , while the dotted line is the set point for the covariance ( ucov ,z z( ˆ )*J¢ , see equation (38)).
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8. Conclusion

In this paper, a stability-based strategy has been
proposed with which a robot can estimate distances
only on the basis of efference copies and optical flow
maneuvers. Theoretical analysis of linearized models
has shown that there is a linear relation between the
fixed gain and the height at which instability arises.
This analysis has been verified in simulation (including
non-linearities and disturbing factors such as wind
gusts) and on a real robotic platform. It has been
demonstrated that self-induced oscillations can be
detected by the robot and used to (1) trigger a final
landing procedure, (2) determine the height in hover,
and (3) continuously determine the height during a
constant divergence landing.
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AppendixA. Influence ofwind on thrust-
based distance estimation

In the introduction, it is mentioned that the ‘thrust’-
based strategy of [6] does not take into account
external accelerations. In this appendix, some insight
is provided into the effects on the distance estimates
when introducing external accelerations bywind.

Figure 15. Indoor results adaptive gain control. Top: photo during an indoor experiment.Middle row: results of hover experiments at
different altitudes. Adaptive gain control is usedwith ucov , 0.025z z( ˆ )*J¢ = - . The left plot showsKz, Kz¢, and z over time for a short
period at a specific height, the right plot summarizes the result over five such periods at different heights. Bottom row: results of
landing on the edge of oscillation. The left plot showsKz , Kz¢, and z over time for a single landing, while the right plot hasmarkers for
all K z,z( )-pairs of three such landings. See the text for further details.
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Let usfirst re-arrange equation (11):

z
a

. 40z

z z
2 ˙ ( )

J J
=

+

This expresses z in terms of ‘observables’ ( zJ and its
time derivative żJ ), and the vertical acceleration az.
Adding an accelerometer to the robot will allow for
estimation of z (e.g. [25]). Besides the addition of the
accelerometer, this method also requires the time
derivative of zJ , which typically induces a lot of noise
in the observation.

In [6], the assumption ismade that az=uz, so that
equation (40) becomes:

z
u

. 41z

z z
2 ˙ ( )

J J
=

+

In [6] it has been investigated what would happen if a
perfectly constant divergence landing is performed,

0żJ = and cz
2J = - (c2 to indicate that zJ has a

negative set point):

z
u

c
. 42z

4
( )=

Equation (42) shows that during a perfect constant
divergence landing, the thrust uz is a scaled version of
the height. Hence, it can be used as a stand-in for the
height. For this reason, themethod is referred to in this
article as a ‘thrust-based’method.

It is informative to study the effect of drag and
wind on the required uz¢, when the robot follows a per-
fect constant divergence landing. In such a landing,

cz
2J = - at every point by definition. The accelera-

tion resulting from drag and the required uz¢ are

calculated to match. Figure A1 shows the value of uz¢
for a robot with assumed values of m=1 kg,

1.204r = , and g=9.81 m/s2. Furthermore,
CD=0.25, and A=0.25, which are rather con-
servative values representing for instance a small quad
rotor. The figure shows the thrust uz¢ versus height z in
different environmental conditions: vacuum (red
solid line), wind still, i.e., v 0wind = m/s (black dot-
ted), in a downward wind of v 1wind = - m/s (blue

Figure 16.Outdoor results adaptive gain control. Top: photo during an outdoor experiment. Bottom left: results of hover experiments
at different altitudes, with ucov , 0.025z z( ˆ )*J¢ = - . Bottom right: results of landing on the edge of oscillation. Themarkers are

K z,z( )-pairs during the landing, whileKz is regulated so that ucov , 0.025z z( ˆ )J¢ = - .

Figure A1. Illustration of the effect of air drag andwind on the
height estimation strategy proposed in [6]. Height z versus
thrust uz¢ in different environmental conditions (see legend).
Two black lines illustrate an estimation error when thewind is
unknown. The lines indicate that the thrust with a downward
wind of−1 m/s at z=0 m corresponds to a thrust in awind-
still environment (0 m/s) at a height of z 4.5 m» .
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dashed), and in an upward wind of v 1wind = m/s
(green, dashed–dotted).

Three main observations can be made from figure
A1: (1) the red solid line in a vacuum indeed indicates
the derived linear relationship between uz and z, (2) in
a wind-still environment, this relationship is non-
linear but invertible, and hence still as useful, and (3)
adding a modest wind speed to the equation already
makes significant differences to uz¢. Two black lines
indicate that the thrust with a downwardwind of−1 at
z=0 m corresponds to a thrust in a wind-still
environment at a height of z 4.5» m. The curve for a
wind of 1 m/s does not even match that in a wind-still
environment. Hence, even with a perfect constant
divergence landing these differences distort the rela-
tionship between uz and z.

So, in order to retrieve the right uz-curve (see
figure A1), the wind will have to be measured. Flying
insects may be able to measure the air speed with
their hairs [19], while robots can be equippedwith an
anemometer, as in [15]. Although measuring the air
speed and deducing wind velocity is a possibility, this
does not lead to an easy solution of the distance esti-
mation problem. First and foremost, controlling a
constant divergence landing in a real system
means dealing with sensing and actuation delays,
visual inaccuracies, and changing external factors
such as wind gusts. Any real system will thus deviate
from the perfect landing profile, leading to the
necessity of command signal variation and hence a
varying uz¢. Indeed, this effect can be seen in the raw
ẑ estimates in [6] for the camera-systemmounted on
a rail. In [6] they tackled this issue with a robust esti-
mation scheme that integrates information during
the entire approach. The problems are much worse
though for a freely flying system, which is also sub-
ject to wind.

Appendix B.Generalization to other
movement directions

In section 4 it was shown that given a gain Kz, the
stability of the vertical control loopwith zJ depends on
the height z. In this appendix the case is studied in
which the camera still looks down in the z-direction,
but themovement is in the horizontal x-direction. The

control is thus based on the relative velocity
v

z
x

xJ = .

It will first be shown that the finding also generalizes to
such horizontal optical flow control (section B.1). The
stability-based method then does not require vertical
motion. Subsequently, a thrust-based method is
investigated for horizontal motion (section B.2). The
thrust-based method always requires both horizontal
and verticalmotion.

B.1. Stability-basedmethod
Let us start from the observation:

y
v

z
, 43x

x ( )J= =

Since both the horizontal and vertical axes are
involved, the state space model will have four vari-
ables. Linearizing the state spacemodel gives:

y t
v

z z

z t v t x t v t

0 0
1

, 44

x

z x

2
( )

( ) ( ) ( ) ( ) ( )

⎡
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⎤
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⎡⎣ ⎤⎦
D =

-

´ D D D D

so that the state spacemodelmatrices are:

A B

C
v

z z
D

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

0
0
0
1
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1
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-
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Again, the discretized system is studied, which has
the following state space model matrices corresp-
onding to the continuous ones in equation (45):

T

T
T

T

C
v

z z
D

1 0 0
0 1 0 0
0 0 1
0 0 0 1

0
0

2

0 0
1

0 , 46z
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where T is the discrete time step in seconds. The
transfer function of the open loop system can be
determined to be:

G w C wI , 471( ) ( ) ( )= - F G-

T

z w 1
, 48

( )
( )=

-

where we use w as the Z-transform variable, since z
already represents height. The feedback transfer func-
tion is:

G w
K T

z w
K T

z w
1

1
1

. 49x

x

( )
( )

( )

( )⎛
⎝⎜

⎞
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=
-

-
+

Equation (49) shows that, given a gainKx and time step
T, the dynamics and stability of the system depend on
the height z.

Setting w 1= - in the denominator and equating
it with 0 gives:

z
K T

z
2

2
1 0, 50x ( )⎜ ⎟⎛

⎝
⎞
⎠-

-
+ =

which leads to an equation that expresses the height at
which the control system will become unstable in
terms of the unstable gain valueKx:

z K T
1

2
, 51x ( )=
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which is exactly the same formula as for the vertical
movements studied in section 4.

B.2. Thrust-basedmethod
It is instructive to also look at what a possible thrust-
based method would look like for the horizontal
motion direction. For this, let us again start from the
observation xJ , which is differentiated over time:

a

z

v v

z

a

z
, 52x

x x z x
x z2

˙ ( )J J J= - = -

leading to:

z
a

. 53x

x x z( )˙
( )

J J J
=

+

Equation (53) shows that the height can be estimated
with the help of a horizontal accelerometer measure-
ment and the observables zJ , xJ , and the time
derivative ẋJ (aswas done in [25]).

If the relative velocity xJ (sometimes referred to as
‘ventralflow’) is kept constant, then 0ẋJ = , and:

z
a

, 54x

x z

( )
J J

=

where in a vacuum environment, ax can be assumed to
be ux. A constant ventral flow and divergence landing
would then again lead to a way to estimate z, as ux is
known and xJ and zJ can be assumed equal to
constants.

Interestingly, also this horizontalmotion case does
not allow for distance estimation while staying at the
same height ( 0zJ = ). The reason for this can be seen
when rearranging equation (54):

a z , 55x x z( ) ( )J J=

which shows that 0zJ = implies ax=0. Indeed, if
0zJ = , xJ can only be constant if there is no horizontal

acceleration.
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