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Mapping a Suburb With a Single Camera Using a
Biologically Inspired SLAM System

Michael J. Milford, Member, IEEE, and Gordon F. Wyeth, Member, IEEE

Abstract—This paper describes a biologically inspired approach
to vision-only simultaneous localization and mapping (SLAM)
on ground-based platforms. The core SLAM system, dubbed
RatSLAM, is based on computational models of the rodent hip-
pocampus, and is coupled with a lightweight vision system that
provides odometry and appearance information. RatSLAM builds
a map in an online manner, driving loop closure and relocaliza-
tion through sequences of familiar visual scenes. Visual ambiguity
is managed by maintaining multiple competing vehicle pose esti-
mates, while cumulative errors in odometry are corrected after loop
closure by a map correction algorithm. We demonstrate the map-
ping performance of the system on a 66 km car journey through a
complex suburban road network. Using only a web camera oper-
ating at 10 Hz, RatSLAM generates a coherent map of the entire
environment at real-time speed, correctly closing more than 51
loops of up to 5 km in length.

Index Terms—Bio-inspired robotics, monocular vision simulta-
neous localization and mapping (SLAM).

I. INTRODUCTION

B IOLOGICAL systems solve the well-known robotics prob-
lem of simultaneous localization and mapping (SLAM) on

a daily basis, with methods that are apparently robust, flexible,
and well integrated into the creatures’ sensory and behavioral
systems. Introspectively, we know that looking at a single pho-
tograph is often enough to allow us to recall the location from
which the photograph was taken, showing the strength of visual
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cues for localization. Simple mammals and even insects have
shown this ability to store and organize visual cues, so that a
single visual cue, or a brief sequence of cues, can globally relo-
calize the animal. Biology, it would therefore seem, has a great
deal to teach us in the problem of visual SLAM.

Rodents, in particular, have been extensively studied with re-
gard to their ability to store and recall visual cues. Most of these
studies have been focused on the particular region of the brain
in and around the hippocampus. While rodents also rely heavily
on olfaction and whisking, most experiments are designed to
remove these cues and to focus on the rodent’s behavior in a
controlled visually cued environment. External observations of
rodent behavior are accompanied by neural recordings, which
has led to the discovery of cells with strikingly clear correlates
to mapping tasks such as place cells, head direction cells, and
grid cells [1]–[3]. From a robotics point of view, this informa-
tion is very helpful in designing a visual SLAM system. On
the other hand, the data from the rat hippocampus is based on
very sparse neural readings, and much conjecture exists on the
exact computation that goes on. Furthermore, the experiments
are conducted in environments that roboticists would consider
trivially simple.

In this paper, we ask the question: Can computational models
of rodent hippocampus perform as well as the state-of-the-art
algorithms in visual SLAM? To address this question, we set
a challenge for our biologically inspired SLAM system to map
an entire suburb from a single webcam mounted on a car, at
real-time speed. This is a challenge that would test the leading
probabilistic approaches to visual SLAM, and so makes for
an interesting comparison. In performing this challenge, the
biologically based system reveals its strengths and weaknesses,
offering insight into the lessons to be learnt from biology for
visual SLAM systems.

The paper proceeds with a brief review of the state of the art
in visual SLAM systems, paying particular attention to the com-
mon principles that underlie best practice and the standard of
performance. The paper then reviews the current understanding
of spatial encoding in rodent brains, bringing out the similari-
ties and differences between the natural and artificial systems.
A description of one of the standard computational methods
used in the literature for modeling rodent hippocampus follows.
The paper then details the RatSLAM system used in this study,
showing the details of the computation required, and how the
system can be driven from a single webcam. The results of the
study are presented, revealing the benefits and drawbacks of a
biologically inspired approach.

The paper draws upon work previously published in confer-
ence proceedings [4]–[6]. We also publish for the first time new
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results showing online mapping and localization during a 66 km
journey through a suburban road network.

II. STATE OF THE ART IN VISUAL SLAM

Most of the current work in visual SLAM builds on the prob-
abilistic techniques developed with active sensors such as laser
range-finders and sonar. Typical approaches maintain a prob-
abilistic representation of both the robot’s pose and the lo-
cations of features or landmarks in the environment. During
self-motion, the pose probability distribution is updated using
odometry and a motion model of the robot. Observations of
landmarks are used to update the robot pose distribution as
well as the landmark location distributions. New landmarks are
added and given their own distributions. There are a number
of now well-established SLAM methods that use probabilistic
filters such as extended Kalman filters (EKFs), particle filters,
and occupancy grids [7]–[12].

A number of researchers have been making steady advances
in visual SLAM. Davison et al. [13] have achieved reliable real-
time visual SLAM in small environments using an EKF based
around real-time structure from motion. Their system, dubbed
MonoSLAM, uses reasonable assumptions about the motion
dynamics of the camera and an active search for visual features
with a single hand-held camera to achieve real-time SLAM.
This work has been expanded to outdoor environments [14] by
strengthening the data association and adopting a Hierarchical
Map approach in order to close a loop 250 m long.

Methods for probabilistic SLAM are not the focus of this
paper, but we are particularly interested in the performance of
other camera-only SLAM systems in outdoor environments to
gauge the standard that we have set for our biologically inspired
system. While not strictly a SLAM system (as the system has no
self-motion estimate, and consequently, no pose-estimation fil-
ter) [15] has demonstrated loop closure over a 1.6 km path length
based solely on the appearance of the image. Conversely, [16]
showed closure of a 1.4 km long loop, but combined vision with
odometry available from wheel rotation measurements to pro-
duce the metric level of the map representation, and similarly,
the commercial vSLAM system [17] can build a semimetric
map by combining odometry with visual scale-invariant fea-
ture transform (SIFT) features, although only independent tests
published in [18] have shown its effectiveness outdoors and then
only over a range of 200 m. The result by Clemente [14] seems
to set the benchmark for vision-only SLAM in the outdoors,
while the challenge presented for our system (mapping a sub-
urb) would seem beyond even visual SLAM systems augmented
with independent odometry.

III. SPATIAL ENCODING IN RODENT BRAINS

Extensive neural recordings from rodents over the past 30
years have shown that rodents maintain a representation of their
own pose. Certain cells, such as place cells, fire consistently
when the rat is at a particular location in the environment, but
not elsewhere [2]. Controlled experiments have demonstrated
that rodents can update their representation of pose based on
estimates of self-motion obtained from copies of motor com-

mands and vestibular information. Rats are also able to update
and even “relocalize” their neural estimate of pose using exter-
nal sensing such as vision, olfaction, and whisking. Both these
abilities parallel how robot SLAM systems use odometry and
external sensors such as lasers and cameras to update and correct
the estimates of robot pose. However, unlike robots that perform
SLAM, rats do not build detailed geometrical representations of
the environments. Rats rely on the learnt associations between
external perception and the pose belief created from integration
of self-motion cues.

A. Cell Types

The discoveries of cells with strong spatial characteristics
were driven by recordings of neural activity in single (or small
groups of) cells as a rodent moved around in a small arena. Place
cells fire maximally when the rodent is located at a specific
location in the environment, and fire to a lesser degree as the
rodent moves away from this location. Head direction cells
fire when the rodent’s head is at specific global orientations,
but their firing is not correlated to the location of the animal’s
body [3], [19], [20]. Although the behavior of both place and
head direction cells can be modified by many other factors, they
can be thought of as somewhat complementary cell types, one
providing positional information, the other directional.

Recently, a new type of spatial encoding cell called a grid cell
was discovered in the entorhinal cortex, an area closely related
to the hippocampus proper [1], [21], [22]. Grid cells are most
notable as showing place cell-like properties but with multiple
firing fields; a single grid cell will fire when the rat is located
at any of the vertices of a tessellating hexagonal pattern across
the environment. There are also conjunctive grid cells-–cells
that fire only when the rat is at certain locations and facing in a
specific orientation.

B. Spatial Encoding Behavior

All of the cell types have two fundamental characteristics:
they are anchored to external landmarks and they persist in
darkness. Experiments with landmark manipulation show that
the rodent brain can use visual sighting of familiar landmarks
to correct its pose estimation, performing a similar function
to the update process in robot SLAM. As with robots, pose
estimates degrade with time in the absence of external cues
[23], suggesting similar computation to the prediction process
in robot SLAM. However, there is no neural data from rats with
respect to loop closure and larger environments, due in part to
the limitations of recording techniques and the behavioral range
of the caged laboratory rats. It is interesting to note that the
discovery of grid cells, hailed as one of the most significant
discoveries in neuroscience of the past 30 years [24], only came
about when the rat’s arena size was increased to a mere 1.0 ×
1.0 m [1].

IV. CONTINUOUS ATTRACTOR NETWORKS

Continuous attractor networks (CANs) are often used to
model the behavior of place, head direction, and grid cells,
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Fig. 1. (a) Excitatory (arrows), inhibitory (round), and self-motion connec-
tions for a continuous attractor network representation of head direction cells.
(b) A stable activity packet centered at 120◦.

especially in robotic studies [25]–[29]. A CAN is a type of
neural network that has an array of neural units with weighted
connections. The neural units compute activity by summing
the activity from other neural units through the weighted con-
nections. CANs have many recurrent connections and behave
differently to the better known multilayer feed-forward neural
networks. The recurrent connections cause the network to con-
verge over time to certain states (attractors) in the absence of
external input.

A CAN is used to represent the robot’s pose in the study
presented in this paper. Its properties are significantly different
from the usual probabilistic representations found in SLAM
algorithms, as the descriptions in this section show.

A. Attractor Dynamics

The properties of a CAN can best be explained in the con-
text of a head direction network, in which the activity of neural
units encodes the one-dimensional state variable of the rodent’s
head orientation. Fig. 1(a) shows a ring of head direction units
unraveled into a single line—the units at each end are con-
nected to those at the opposite end. Each unit excites itself and
units near itself (using the excitatory connections shown as ar-
rows), while inhibiting all other cells (using the round-shaped
inhibitory connections). In the absence of the self-motion signal,
the combination of local excitation and global inhibition leads
to the formation of a single stable peak, as in Fig. 1(b). Many
varied configurations of units and weights have been used to
achieve this behavior [25]–[29]. Note that the weights in Fig. 1
are shown only for the unit representing a 120 degree head
direction; the weights are repeated for each unit.

Fig. 2. Connections for calibration of head direction from local view. The
connections shown here operate in parallel to the connections shown in Fig. 1(a).

B. Path Integration

The activity in the network can be shifted by signals repre-
senting self-motion in the process of path integration. Fig. 1(a)
illustrates how a positive self-motion signal excites units repre-
senting a larger angle of head direction, while inhibiting units
representing the lesser angle. Zhang [28] shows that, in certain
conditions, the peak can be moved without deformation using
weights that are the derivative of the local excitatory weights
used to form the attractor peak.

Naturally, errors in path integration accumulate over time.
Unlike probabilistic SLAM, path integration with a CAN does
not carry a representation of the uncertainty accumulated over
time, as seen, for example, in the spread of particles in the
prediction cycle of a particle filter. The width and height of the
activity packet in a CAN stays constant under path integration.

C. Local View Calibration

To maintain a consistent representation, the head direction cell
firing direction can be reset by environmental cues [20], [23].
One of the methods postulated for this mechanism is that the
head direction cells are also excited by connections from local
view cells that represent the presence of cues at specific locations
with respect to the pose of the rodent’s head [30]. For example,
a local view cell might represent a snapshot of the environment
as a rat runs along a wall. In order to learn the association be-
tween the snapshot of the environment and the current head
direction, coactivated local view and head direction cells form
stronger connections through a process such as Hebbian learn-
ing. When the visual scene is encountered again, the active local
view cells inject activity through the learnt connections into the
head direction cells associated with that scene. Fig. 2 shows an
example network after some learning has taken place, forming
connections of varying strengths from local view cells to head
direction cells.

The injected activity from the local view cells is filtered by
the attractor dynamics of the network. If activity from the local
view cells is injected into an inactive region of the network (as it
is during loop closure correction), the global inhibition connec-
tions tend to suppress the new packet, while the local excitatory
connections sustain the old packet. Only a well-ordered and co-
herent sequence of local view activity can cause a large change
of position of the activity packet in the network. The attrac-
tor dynamics create a filter that rejects spurious or ambiguous
information from the local view cells.
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There are some very clear distinctions between the process
of local view calibration and the apparently analogous mea-
surement update cycle in a SLAM algorithm. In a probabilistic
filter, the observation model computes the likelihood of the cur-
rent sensor reading when the robot pose and landmark locations
are known. In RatSLAM, there is no notion of landmark loca-
tions; only statistics of views are gathered with respect to robot
pose. Local view calibration does not compute the likelihood of
a view for a pose, but rather generates the associated poses for
a given view. Errors in association are filtered by the attractor
dynamics.

D. Extending to Two Dimensions

The one-dimensional head direction model can be extended to
form a two-dimensional continuous attractor model for place. A
two-dimensional CAN is modeled as a sheet of units, again with
local excitation and global inhibition to form a spontaneous peak
of activity. The peak can be moved by a mechanism analogous to
the one-dimensional path integration system and reset by learnt
associations with local view cells.

The wrap-around circular nature of the head direction net-
work has also inspired a solution to make a two-dimensional
network suitable for use over large areas [29]. If the network
has boundaries, then the representation will fail when the rodent
leaves the area covered by the network. However, if the network
is configured so that each edge of the network is connected to
the opposite side (forming a single toroidal surface), then the
representation continues, with the reuse of cells in a tessellated
pattern across the environment.

E. Robotic Implementations

The strong spatial characteristics of head direction and place
cells have led to a small number of computational models that
have actually been implemented on mobile robots [31]–[33].
The purpose of most of these studies has been to test the model’s
fidelity to biological results, rather than to create a mapping
system with the best possible performance. In addition, most of
these studies predate the discovery of grid cells in entorhinal
cortex, which have provided a rich new source of biological
inspiration for roboticists.

The following section outlines our implementation of a sim-
plified model of rodent hippocampus on a robot. Some of the
work, especially in the early stages, drew heavily upon these
pioneering robot studies with models of hippocampus, espe-
cially [31], [32]. However, in contrast to other robot implemen-
tations, our focus is very much on achieving the best possible
robot mapping and localization performance, rather than strong
biological plausibility.

V. RATSLAM

In our previous work, we have developed a system called
RatSLAM that draws upon the current understanding of spatial
encoding in rat brains to perform real-time learning and recall of

Fig. 3. Broad connectivity between functional regions in the RatSLAM
system.

semimetric maps on real robots [6], [34], [35]. In this section, we
describe the components of the RatSLAM system, and how they
have been adapted to suit the problem of large-scale mapping
and localization for a vision-only system.

A. Overview

The RatSLAM model, as presented here, is the result of
extensive development with a focus on mapping performance
achieved in real-time on robot hardware. Consequently, a num-
ber of simplifications and additions have been made to more
biologically plausible models, while still retaining the core con-
cept of spatially selective cells that respond to internal and ex-
ternal sensory information. To prevent any nomenclature confu-
sion between the biological and robotic system components, the
RatSLAM components bear different names to their biological
counterparts. The components and their organization are shown
in Fig. 3.

The pose cells form the core of the RatSLAM system. The
pose cells represent the three degree of freedom (DoF) pose
of the robot using a three-dimensional version of the CAN
described in the previous section. Each face of the three-
dimensional pose cell structure is connected to the opposite
face with wraparound connections, as shown in Fig. 4. In large
environments during self-motion, activity wraps around the pose
cell structure many times, resulting in firing fields (the locations
in the environment at which the cell fires) that form a tessellating
pattern similar to that of grid cells. Consequently, an individual
pose cell can become associated with many different robot poses
in physical space.

Activity in the pose cells is updated by self-motion cues,
and calibrated by local view. The self-motion cues are used
to drive path integration in the pose cells, while the external
cues trigger local view cells that are associated with pose cells
through associative learning. In this study, both the local view
and the self-motion cues are generated from camera images.
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Fig. 4. Continuous attractor network representation of the pose cells, with
wraparound excitatory connections (arrows) in all three dimensions creating a
stable activity packet (cell shading).

The role of the experience map is to organize the flow of
information from the pose cells, the local view cells, and the
self-motion cues into a set of related spatial experiences. An
individual experience in the experience map is defined by the
conjunction of the pattern of activity in the pose cells (the pose
code) and the pattern of activity in the local view cells (the lo-
cal view code). When either or both of the pose or local view
codes change, a new experience is formed, and is linked to the
previous experience by a transition that encodes the distance
found from self-motion cues. New experiences and transitions
will continue to form as the robot enters new areas. During
loop closure, when the robot revisits a known area, the pose
and local view codes are the same as in a previous experience.
The experience mapping algorithm performs map correction by
aligning the experience locations and orientations in the expe-
rience map with the transition information stored between the
experiences.

The principle purpose of the experience map is to form a
representation that is suitable for action planning [6], [36], and
the strength of the representation is that it maintains strong
topological coherence. However, it can also be used to form
a semimetric map by plotting the experience positions and
transitions between experiences. The key results in this pa-
per are shown as plots of the experience map at the end of
the experiment. It is important to note that the maps are topo-
logically connected using the transitions between experiences,
and that the metric location of experiences is not a measure of
connectedness.

The following sections give more details for the computation
involved in the pose cells and experience map. Section VI de-
scribes how a single camera can generate the self-motion cues
and the activity in the local view cells.

B. Pose Cells

The activity in the pose cells is described by the pose cell
activity matrix P , and is updated by the attractor dynamics,
path integration, and local view processes. The pose cells are
arranged in three dimensions with two dimensions (x′, y′) rep-
resenting a manifold on absolute place (x, y) and one dimension
θ′ as a manifold on absolute head direction θ (see Fig. 4).

1) Attractor Dynamics: A three-dimensional Gaussian dis-
tribution is used to create the excitatory weight matrix εa,b,c ,
where the indexes a, b, and c represent the distances between

units in x′, y′ and θ′ coordinates, respectively. The distribution
is calculated by

εa,b,c = e−(a2 +b2 )/ kp e−c2 / kd (1)

where kp and kd are the width constants for place and direction,
respectively. The change of activity in a pose cell due to local
excitation is given by1

∆Px ′,y ′,θ ′ =
(nx ′−1)∑

i=0

(ny ′−1)∑
j=0

(nθ ′−1)∑
k=0

Pi,j,k εa,b,c (2)

where nx ′ , ny ′ , nθ ′ are the three dimensions of the pose cell
matrix in (x′, y′, θ′) space. The calculation of the excitatory
weight matrix indexes cause the excitatory connections to con-
nect across opposite faces; thus

a = (x′ − i)(modnx ′)

b = (y′ − j)(modny ′)

c = (θ′ − k)(modnθ ′) (3)

The computation of (2) across all pose cells is potentially
expensive, as it represents a circular convolution of two three-
dimensional matrices. Significant speedups are achieved by ex-
ploiting the sparseness of the pose cell activity matrix; for the
parameters used in this paper, typically around 1% of cells have
nonzero values.

Each cell also inhibits nearby cells using an inhibitory form
of the excitatory weight matrix, with the same parameter values,
but negative weights. By performing inhibition after excitation
(rather than concurrently), and adding slight global inhibition,
the symmetry of the excitatory and inhibitory weights leads to
suitable network dynamics, without using traditional Mexican
hat connectivity [37]. Consequently, the network is easier to
work with, not requiring separate tuning of different excitatory
and inhibitory weight profiles. The slight global inhibition is
applied equally across all cells, with both inhibition processes
given by

∆Px ′,y ′,θ ′ =
nx ′∑
i=0

ny ′∑
j=0

nθ ′∑
k=0

Pi,j,kψa,b,c − ϕ (4)

where ψa,b,c is the inhibitory weight matrix and ϕ controls the
level of global inhibition. All values in P are then limited to
nonnegative values and normalized.

Without external input, the activity in the pose cell matrix
converges over several iterations to a single ellipsoidal volume
of activity, with all other units inactive. The next two sections
briefly describe how activity can shift under a process of path
integration, and how activity can be introduced by local view
calibration.

2) Path Integration: Rather than computing weighted con-
nections to perform path integration, RatSLAM increases both
the speed and accuracy of integrating odometric updates by
making an appropriately displaced copy of the activity packet
[38]. This approach sacrifices biological fidelity, but computes

1These indexes must be set to n − 1 so that (3) will work.
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faster, has no scaling problems, and does not require particu-
larly high or regular update rates. Note that unlike probabilistic
SLAM, there is no notion of increasing uncertainty in the path-
integration process; the size of the packet does not change under
path integration. Path integration for the studies presented in this
paper is based on visual odometry signals that are described in
Section VI.

3) Local View Calibration: The accumulated error in the
path-integration process is reset by learning associations be-
tween pose cell activity and local view cell activity, while
simultaneously recalling prior associations. The local view is
represented as a vector V , with each element of the vector rep-
resenting the activity of a local view cell. A local view cell is
active if the current view of the environment is sufficiently sim-
ilar to the previously seen view of the environment associated
with that cell.

The learnt connections between the local view vector and the
three-dimensional pose cell matrix are stored in the connection
matrix β. Learning follows a modified version of Hebb’s law
where the connection between local view cell Vi and pose cell
Px ′, y ′, θ ′ is given by

βt+1
i,x ′,y ′,θ ′ = max(βt

i,x ′,y ′,θ ′ , λViPx ′,y ′,θ ′) (5)

which is applied across all local view cells and pose cells that
are active. The change in pose cell activity under calibration is
given by

∆Px ′,y ′,θ ′ =
δ

nact

∑
i

βi,x ′,y ′,θ ′Vi (6)

where the δ constant determines the strength of visual calibra-
tion, and nact is the number of active local view cells. The
method for computing the activity in the local view cell vector
is given in Section VI.

C. Experience Map

An experience map is a fine-grained topological map com-
posed of many individual experiences, e, connected by transi-
tions, t. Each experience ei is defined by its associated union of
pose code P i and local view code V i , where code refers to the
pattern of activity in a cell group. The experience is positioned
at position pi in experience space—a space that is a useful man-
ifold to the real world. An experience can then be defined as a
3-tuple

ei =
{
P i, V i,pi

}
. (7)

The first experience is created at an arbitrary starting point,
and subsequent experiences build out from the first experience
over transitions.

1) Experience Creation: When the pose code or local view
code is sufficiently different from a stored experience, a new
experience is created. The pose and local view codes of existing
experiences are compared to the current pose and local view
code through a score metric S:

S = µp

∣∣P i − P
∣∣ + µv

∣∣V i − V
∣∣ (8)

where µp and µv weight the respective contributions of pose and
local view codes to the matching score. When the score for all
current experiences exceeds a threshold Smax , a new experience
is created, with an associated transition. The transition tij stores
the change in position as measured from odometry

tij =
{
∆pij

}
(9)

where ∆pij is the change in the vehicle’s pose according to
odometry. tij forms the link between previous experience ei

and new experience ej such that

ej = {Pj , V j ,pi + ∆pij}. (10)

Note that this equation holds only at experience creation; pj

is likely to change under loop closure.
2) Loop Closure: There is no explicit loop detection; rather,

loop closure occurs when the pose code and local view code after
a change in experience sufficiently match a stored experience.
When this occurs, it is highly unlikely that the summed change
in position of the transitions leading to the experience at closure
will match up to the same position. To move toward a match,
the positions of all experiences are updated using

∆pi = α


 Nf∑

j=1

(pj − pi−∆pij ) +
Nt∑

k=1

(pk − pi−∆pki)




(11)
where α is a correction rate constant, Nf is the number of
links from experience ei to other experiences, and Nt is the
number of links from other experiences to experience ei . In
these experiments, α is set to 0.5 (larger values can lead to map
instability). The map update process occurs continually, but is
most apparent during loop closures.

3) Reading the Experience Map: A visual readout of the
experience map can be obtained by plotting the positions of the
experiences joined by their respective transitions. In other work,
we have stored behavioral and temporal data in the transition
tuple to aid path planning [6], [38], and frequency of use data in
both the experience and transition tuples to aid map maintenance
[38].

VI. VISION SYSTEM

The RatSLAM system requires two outputs from a vision-
processing system: self-motion information and recognition of
familiar visual scenes. Unlike the mapping and localization sys-
tem, the vision system used in this paper has no biological
inspiration. Rather than trying to adapt the models of rodent
vision to function in a vastly different context (both in terms
of environment and sensors), we use a lightweight method
for visual odometry and image matching. The visual odome-
try and image matching methods are noisy and prone to error
and by no means state of the art. There are proven methods
for achieving more reliable and accurate odometry [39], and
for matching in image space [40]. However, the vision system
presented here computes in real-time on standard desktop or
laptop computing hardware, even when sharing resources with
the mapping system. As the results will show, the mapping and
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Fig. 5. Apple Macbook with built-in iSight video camera (inset) mounted on
the test vehicle. This camera was the sole source of sensory information for the
mapping system. The laptop was mounted on the roof of the car in a forward
facing, zero pitch position.

localization method is tolerant of noise in both odometry and
scene matching.

A. Image Acquisition

The camera used for this research was the built-in iSight cam-
era on an Apple Macbook notebook computer (see Fig. 5). The
camera is fixed-focus and uses an active pixel sensor rather than
charge-coupled device (CCD). Grayscale images were captured
at a frame rate of 10.0 frames per second at a resolution of
640× 480 pixels. Images were cropped into three regions for
use by the rotational odometry, translational odometry, and im-
age matching modules [see Fig. 6(a)]. Each image region served
a different purpose—image matching was performed off re-
gion A, which was more likely to contain useful landmark
information while generally removing redundant information
from the ground and sky. Region B provided a higher propor-
tion of distal cues that could be tracked for vehicle rotation
detection. Region C contained primarily ground plane informa-
tion, allowing the calculation of translational speed without the
errors introduced by optical flow discrepancies between narrow
wooded tracks and large open multilane roads.

The vision algorithms use a scanline intensity profile formed
from the subimages (much like the profile used in Carnegie
Mellon University’s (CMU) rapidly adapting lateral position
handler (RALPH) visual steering system [41]). The scanline in-
tensity profile is a one-dimensional vector formed by summing
the intensity values in each pixel column, and then normaliz-
ing the vector. This profile is used to estimate the rotation and
forward speed between images for odometry, and to compare
the current image with previously seen images to perform local
view calibration.

Fig. 6. All rotational, speed, and scene information was extracted from
grayscale 640 × 480 pixel images (shown in color here for clarity). (a) Based on
the ground plane assumption, upper image regions were used for scene recogni-
tion (A) and rotation detection (B) as they were more likely to contain distinct
visual information and distal cues. Lower ground regions were less distinctive,
but provided a more consistent speed estimate across constricted and open ar-
eas. (b) Image arrays corresponding to two consecutive scanlines. (c) Graph
showing adjusted scanline differences for shifts in their relative positions. The
best match occurs for a shift of about −50 pixels to the left.

B. Estimating Rotation

Rotation information is estimated by comparing consecutive
image arrays. Fig. 6(b) shows the scanline intensity profiles
from two consecutive images. The comparison between profiles
is performed by calculating the average absolute intensity dif-
ference between the two scanline intensity profiles f (s) as they
are shifted relative to each other

f
(
s, Ij , Ik

)
=

1
w − |s|


w−|s|∑

n=1

∣∣∣Ij
n+max(s,0) − Ik

n−min(s,0)

∣∣∣



(12)
where Ij and Ik are the scanline intensity profiles to be com-
pared, s is the profile shift, and w is the image width. Fig. 6(c)
shows the average absolute intensity differences for shifts of the
first image array (dotted line). The pixel shift sm in consective
images Ij and Ik is the value of s that minimizes f () for those
two profiles

sm = arg min
s∈[ρ−w,w−ρ]

f
(
s, Ij , Ik

)
(13)

where the offset ρ ensures that there is sufficient overlap between
the profiles. In the experiments that follow w = 280 and ρ = 70.
For the two example images in Fig. 6, sm is found at a rotation of
−50 pixels. The pixel shift is multiplied by the gain constant, σ,
(which can be calculated either empirically or from the camera’s
intrinsic parameters) to convert the estimated shift in pixels into
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an angular shift ∆θ

∆θ = σsm . (14)

The rotation calculation relies on a few assumptions, first
and foremost that the camera is forward facing with respect
to motion, and that the movement of the camera has little or
no translational movement parallel to the camera sensor plane.
Mounting the camera on the roof of a road vehicle satisfies these
constraints.

C. Estimating Speed

Speeds are estimated based on the rate of image change, and
represent movement speed through perceptual space rather than
physical space. As can be seen later in the results section, when
coupled with an appropriate mapping algorithm, this approach
can yield environment maps that are strongly representative of
the environment. The speed measure v is obtained from the fil-
tered average absolute intensity difference between consecutive
scanline intensity profiles at the best match for rotation

v = min
[
vcalf(sm , Ij , Ij−1), vmax

]
(15)

where vcal is an empirically determined constant that converts
the perceptual speed into a physical speed, and vmax is a max-
imum velocity threshold. By calculating the image difference
using the best matched scanline intensity profiles, the effect
of rotation is mostly removed from the speed calculation. The
threshold vmax ensured that spuriously high image differences
were not used. Large image differences could be caused by sud-
den illumination changes such as when traveling uphill facing
directly into the sun.

D. Local View Cell Calculation

A local view cell is active if the current view of the environ-
ment is sufficiently similar to the previously seen view of the
environment associated with that cell. In the implementation de-
scribed in this paper, the current view is compared to previous
views using the same scanline intensity profile that formed the
basis of odometry. Previously seen scanline intensity profiles
are stored as view templates with each template paired to a local
view cell. The current scanline intensity profile is compared to
the stored templates, and if a match is found, the local view
cell associated with the matching stored template is made ac-
tive. If there is no match to a previously seem template, then a
new template is stored and a new local view cell created that is
associated with the new template, as shown in Fig. 7.

The comparison between the current profile and the templates
is performed using the average absolute intensity difference
function in (12). The comparison is performed over a small range
of pixel offsets ψ to provide some generalization in rotation to
the matches. The best match is found as

km = arg minf
k

(
s, Ij , Ik

)
, s ∈ [−ψ,ψ] (16)

Fig. 7. Template matching system for local view calculation. (a) Where the
current profile sufficiently matches a previously stored template, the associated
local view cell is activated. (b) For a novel profile, a new template and local
view cell is created and activated.

where Ij is the current profile and Ik are the stored profiles.
The quality of the match d is calculated by

d = minf
s∈[−ψ ,ψ ]

(
s, Ij , Ikm

)
(17)

and tested against a threshold dm to determine whether the
profile is sufficiently similar to the template or whether a new
template need be created, and km updated accordingly. The local
view vector is then set

Vi =
{

dm − di, di ≤ dm

0, di > dm
∀i . (18)

VII. EXPERIMENTAL SETUP

The challenge set for the system was to map the entire suburb
of St Lucia in Brisbane, Australia, from a laptop’s built-in web-
cam mounted on the roof of a car. St Lucia is a challenging envi-
ronment to map with many contrasting visual conditions: busy
multilane roads, quiet back streets, wide open campus boule-
vards, road construction work, tight leafy lanes, monotonous
suburban housing, highly varied shopping districts, steep hills,
and flat river roads. The maximum dimensions of the road net-
work were approximately 3.0 km in the east–west direction and
1.6 km in the north–south direction. The environment is more
than five times the area of the environment mapped in [42] using
laser detection and ranging (LADAR) scans, which, according
to the researchers, was the largest environment mapped by a
single laser scanner as of 2007.

The dataset was gathered on a typical fine spring Brisbane
day starting in the late morning. During test set acquisition,
the vehicle was driven 66 km over 100 min at typical driving
speeds up to the speed limit of 16.7 m/s (60 km/h). The car
was driven around the road network such that every street was
visited at least once, and most were visited multiple times. In
past work, a panoramic camera has been used to bind forward
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TABLE I
POSE CELL PARAMETERS

TABLE II
LOCAL VIEW CELL PARAMETERS

TABLE III
EXPERIENCE MAP PARAMETERS

TABLE IV
OTHER PARAMETERS

and reverse traverses of paths [35]; in this experiment, roads
were only driven in one direction. The road network consists of
51 inner loops of varying size and shape, and includes over 80
intersections including some large roundabouts. Images were
obtained at a rate of ten frames per second from the camera, and
saved to disk as a movie.

A. Parameter Setting

The equations and algorithms that drive the RatSLAM map-
ping and vision-processing system contain several parameters,
which are given in Tables I–IV along with their values. A brief
summary of the significance, selection, and sensitivity of these
parameters is given here.

Most system parameters were left at values that had been
found through extensive tuning to give good performance in the
wide range of experiments performed previously in indoor and
outdoor environments [6], [34], [35]. All the experience map
parameters remained unchanged, as did the pose cell weight
variances and local view to pose cell learning rate. The nominal

pose cell dimensions, which had previously been set at 0.25 m
× 0.25 m × 10◦ for indoor environments, and 2 m × 2 m × 10◦

for small outdoor environments, were changed to 10 m × 10 m
× 10◦. These values ensured that at typical car speeds, activity
in the pose cells shifted at a similar rate to that in previous work,
removing the need to tune any other pose cell related parameters.

System performance was, however, critically dependent on
the tuning of one parameter. The maximum template distance
parameter, dm , required tuning with the new vision system in
order to provide a suitable balance of visual discrimination and
generalization. Having too high a value would result in over
generalization, meaning unexplored parts of the environment
might generate too many false positive matches to already ex-
plored regions. Conversely, too low a value would result in the
system being unable to recognize familiar places if there had
been slight visual changes. The value was determined by taking
the most visually challenging repeated section of road—in this
case, an uphill section where the sun was shining directly into
the camera on one pass—and gradually increasing the value
until the system could recognize enough images to relocalize
to that section correctly. This tuning procedure also had the ef-
fect of introducing some over generalization in other sections of
the environment, but this had no significant negative effect on
mapping performance.

Some other parameters had minor effects on mapping perfor-
mance. The maximum velocity threshold vmax was introduced
to avoid unreasonably large-speed estimates that could occur in
periods of extreme image variation from frame to frame. An
example of this occurred near the end of the experiment while
driving through a forest, with the camera moving many times a
second between being in dark shadows to having the sun shining
directly into the lens [see Fig. 8(e) and (f)]. Without this thresh-
old, such sections of environment could become so enlarged by
spuriously high-speed estimates that the mapped road sections
would expand to overlap other roads. However, while overlap-
ping in the (x, y) experience map space, these mapped road
sections would not be connected by any experience links. The
RatSLAM navigation system [6] would still be able to plan and
execute paths to locations, because paths are planned based on
experience connectivity, rather than just map layout in the (x, y)
plane. Overlap would, however, adversely affect both the map’s
usability by humans and the ability of the navigation system to
perform shortcuts.

VIII. RESULTS

In this section, the overall mapping results are presented, as
well as the output from the various system components. Videos
showing the St Lucia environment being mapped accompany
this paper, and are also available on the Web in the direc-
tory: http://ratslam.itee.uq.edu.au, as well as source code for the
RatSLAM mapping system.

A. Experience Map

The experience map created by the mapping and localization
system is shown in Fig. 9(b). For reference, an aerial photo of
the test environment is also shown [see Fig. 9(a)], with the thick
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Fig. 8. Paired camera snapshots showing sections of the environment and the
variation in their visual appearance during the experiment. (a) and (b) Traffic
at a five-lane section of road. (c) and (d) Traffic and changing illumination. (e)
and (f) Sun flare and changing illumination on a narrow track through dense
forest. During the experiment the sun moved in and out of clouds, clouds formed,
moved, changed shape, and disappeared, and shadows changed as the sun moved
in the sky.

black line indicating the roads that were driven along during the
experiment. The map contains 12 881 individual experiences,
and 14 485 transitions between experiences. The map captures
the overall layout of the road network, as well as finer details
such as curves, corners, and intersections. Because the mapping
system only had a perceptual rather than absolute measure of
speed, the map is not geometrically consistent on a global scale,
nor could it be expected to be. At one location (−750, −250),
the map splits into two representations of the same stretch of
road, caused by very severe illumination variations hindering
rerecognition of the stretch of road.

B. Map Correction

The experience map correction process continually rear-
ranges the locations and orientations of experiences in order
to match the transition information stored in the links between
them. A measure of the map’s stability and convergence can
be gained by examining the average difference between the
odometric information stored in the transitions and the actual
experience locations within the map. Fig. 10 shows this value
plotted over the entire duration of the experiment. The large
initial loop closures can be clearly seen as spikes that then

quickly decrease. After 1700 s, the map is already quite stable,
and reaches a completely stable configuration by about 5000 s,
before the experiment has finished. The steady-state value of
1.2-m indicates that on average, there is a 1.2-m discrepancy
between the locations of two linked experiences and their rela-
tive locations, as dictated by the odometric information stored
in the transition(s) that link them together.

C. Angular Velocity Estimates

Fig. 11(a) shows the vehicle’s angular velocity as calculated
by the vision-processing system for the winding section of road
at the top left corner of the test environment. The plot captures
most of the turns accurately although there are some erroneous
spikes (at 1418 s, for example). Fig. 11(b) shows the trajec-
tory of the vehicle as calculated using only the visual odometry
information (solid line), without any map correction, as com-
pared with the ground truth trajectory (dashed line). While the
vehicle’s rotation is accurately represented, the calculated vehi-
cle speed for this section of road is significantly higher than in
reality.

D. Translational Speed Estimates

Fig. 12 shows the vehicle’s speed as calculated by the vision
system, for a section of road during which the car was traveling
at a constant speed. The speed signal was noticeably inferior
to the angular velocity signal in two respects: the signal was
noisier, with calculated speeds noticeably jumping around even
when the vehicle was moving at a constant speed, and there were
local gain biases in particularly cluttered or open areas of the
environment. It would, however, be difficult to use traditional
optical flow techniques given the low frame rate of 10 Hz, the
high vehicle speed, the low field of view, and the low quality of
the images produced by the Web camera.

E. Relocalization in the Pose Cells

Fig. 13 shows a sequence of snapshots of activity in the pose
cell matrix during a typical relocalization event. At 1138 s, a
familiar visual scene activates local view cells, which, in turn,
activate pose cells through local view—pose links, causing a
competing activity packet to appear above the existing activity
packet. More familiar visual scenes inject further activity caus-
ing the new packet to become slightly dominant by 1140 s. The
original packet receives no further visual support, dying out by
1142 s.

F. Local View Cell Activity

The vision system learned 12 844 vision templates during the
experiment, as shown in Fig. 14. The graph shows the active
local view cells at 100 ms time intervals, with activation level
indicated by point size and darkness (larger and darker meaning
higher activation). Periods of no new template additions (man-
ifested as a flattening of the graph line) indicate either times
when the vehicle was driving through already learned streets, or
times when the vehicle was stopped, such as at intersections or
traffic lights.
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Fig. 9. (a) The test environment was the complete suburb of St Lucia, located in Brisbane, Australia. The area of road mapped measured approximately 3.0 km
by 1.6 km. (b) Experience map produced by the mapping system. The map captures the overall layout of the road network as well as finer details such as curves
and intersections.
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Fig. 10. Average link tightness over the experiment—the average discrepancy
between the odometric information stored in the links between each experience
and their relative positions. Spikes indicate the large loop closures that occur
early in the experiment.

Fig. 11. (a) Angular velocity calculated by the vision system for a section of
winding road. (b) Vehicle trajectory as calculated by the vision odometry system
(solid line) and the ground truth trajectory (dashed line). For this segment of
road, the vision system captured vehicle rotation adequately, but overestimated
vehicle velocity by about a factor of 1.6.

Fig. 12. Vehicle’s translational speed, as calculated from the rate of image
change for a section of road during which the vehicle traveled at a constant
speed. The calculated speed varies by 40%, providing the mapping system with
a noisy source of speed information.

Fig. 15 shows a subsection of the local view cell plot cor-
responding to the vehicle’s movement around the loop at the
bottom right of the environment. During the 1.6 km loop, the
vision system learned 415 templates, an average of one every
3.86 m. At 618 s, the vision system started recognizing familiar
templates, indicating it was back at the start of the loop. During
the subsequent second journey along part of the loop, it learned
a further 22 new templates, while recognizing 175 previously

Fig. 13. Sequence of snapshots of the pose cell activity during a relocalization
event. Over a period of 6 s, the vision system recognizes familiar visual scenes
and injects activity into the pose cells, eventually creating a new dominant
packet of activity.

Fig. 14. Active local view cells plotted against time. Flattened sections of the
graph represent periods of travel through already learned areas, or times when
the vehicle was stopped. Higher activation levels are indicated by darker, larger
points.

learned templates. The average rate of recognition across the
entire experiment was approximately 80%.

G. Vision System Ambiguity

To provide an insight into the visual ambiguity of the envi-
ronment, Fig. 16 shows the activation levels of two local view
cells plotted against the location in which they were active. Each
local view cell is active in multiple locations, with one active



1050 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

Fig. 15. Local view cell activity during a loop closure event.

Fig. 16. Many different parts of the environment can appear similar to the
vision system. In this plot, the locations in the environment where two local
view cells were active are shown, with larger circles indicating higher levels of
cell activation at that location.

in 43 distinct locations. The pose cells manage this degree of
visual ambiguity by gradually building up pose estimates based
on sequences of local view cell activation.

H. Pose Cell Activity

The wrapping connectivity of the pose cell structure, coupled
with the large size of the environment, results in individual pose
cells firing at multiple distinct locations in the environment.
Fig. 17 shows the summed activation levels of the pose cells
located in two different (x′, y′) positions within the pose cell
structure, plotted against vehicle location in the environment.
At each location in the environment where the cells fire, the
activation level increased as the vehicle moved through the cell’s
firing field toward its center, and decreased as the vehicle left.

I. Global Localization

To test the ability of the system to localize itself within the
map from an unknown starting position, 20 relocalization trials
were run. The relocalization points were chosen by dividing the
journey into 20 segments of 290 s each. This division selected

Fig. 17. Due to the wrapping connectivity of the pose cell matrix, each pose
cell would fire at multiple locations in the environment. This figure shows
the summed activation levels of the pose cells located in two different (x′, y ′)
positions within the pose cell structure (positions differentiated by color) plotted
against vehicle location in the environment, with larger circles indicating a
higher level of activation. The inset highlights two cell firing sequences for
cells at one of the (x′, y ′) positions, showing the cell activity level increasing,
plateauing, and then, decreasing as the vehicle moved through two of the cells’
firing fields.

a wide range of locations in the environment, and also, only
included points in time when the vehicle was moving. The map-
ping system was initialized with a pose estimate of (0, 0, 0) and
started at the beginning of each segment. The system was timed
to see how long it would take to relocalize to the correct location
within the experience map. Relocalization was defined as be-
ing achieved when the mapping algorithm selected the correct
experience in the experience map.

Over the 20 trials, the average time taken to relocalize was
1.9 s (a maximum travel distance of 32 m), with a maximum
relocalization time of 6.5 s and standard deviation of 1.2 s. The
minimum relocalization time of 1.2 s (12 frames) represents
the fastest relocalization possible in ideal visual conditions with
a sequence of strongly activated local view cells all uniquely
corresponding to the same environment location. There were no
false loop closures. The trials demonstrated the system’s ability
to deal with perceptual ambiguity within this dataset.

J. Processing Requirements

The mapping system and vision processing module run at
10 Hz on a 2.4 GHz dual core Pentium processor (using only
one of the cores). A typical breakdown of the processing time
required at each frame at the end of the experiment when com-
putational load was greatest (largest number of templates and
experiences) is as given in Table V.

The experience map correction algorithm runs only after all
other system modules have finished computation, and uses the
remaining time, less a 5 ms buffer. The main use of computa-
tional resources in the vision system comes from the template
matching algorithm. The current matching algorithm performs a
preliminary search that ranks likely matching candidates based
on their unrotated profiles, reducing the computation time by an
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TABLE V
PROCESSING TIME

order of magnitude, although the initial search time still scales
with n, the number of templates. To scale real-time performance
to a city-sized environment (100 km2 and above) will require
a selective correction algorithm for the experience map, and a
search method for the visual templates that scales with log(n).

IX. DISCUSSION

This paper has presented a biologically inspired SLAM sys-
tem known as RatSLAM, and demonstrated its use using only
visual sensory information. The system is robust in visually
ambiguous environments, and is fast enough to run online on
a standard desktop computer or laptop while mapping a large
outdoor environment. The mapping experiment demonstrated
the system’s ability to consistently close large loops with sig-
nificant path integration errors, and to generate a coherent map
by consolidating odometric information with map connectivity
requirements.

It is clear that RatSLAM has some superficial similarities to
probabilistic SLAM algorithms: the system tracks a belief with
regard to pose during motion, and corrects that belief based on
observations. However, beyond superficial similarity, RatSLAM
has many marked contrasts to existing approaches to SLAM.

A. Pose Cells

The CAN that computes the pose cell activity contrasts
strongly to the various forms of Bayesian inference engine found
at the heart of existing SLAM algorithms. Without local view
input, the pose cell activity packet always converges quickly
over time to the same shape and activity level. There is little
notion of variance in the width of the packet, or confidence in
the activity of packet. During path integration, the width and
activity level in the packet remain constant; there is no notion
of increasing uncertainty in pose. Only during previously seen
local view input is there any form of probabilistic representa-
tion, as multiple peaks caused by ambiguous visual scenes could
be argued to represent multiple probabilistic beliefs. However,
under attractor dynamics, there is constant pressure to converge
to a single peak, which is not consistent with probabilistic forms
of SLAM. Consequentially, RatSLAM behaves very differently
from a particle filter during loop closure; where the particle filter
relies on its motion model maintaining the particles necessary
to close a loop (through the spreading particle cloud sampling
the correct hypothesis), RatSLAM will typically have no active
pose cells representing the correct vehicle location, at least ini-

tially. Instead, the previously seen local view input introduces
the multiple pose hypotheses. RatSLAM also does not appear
to suffer from the particle depletion problem that occurs with
particle filters in nested loop situations [43], since traversing an
inner loop has no effect on the system’s ability to generate new
pose hypotheses for the outer loop.

B. Experience Map

The experience map representation shows some apparent vi-
sual similarity to graphical SLAM techniques that have been
developed in recent years [44]–[47]. The experiences and transi-
tions do share some similarities with the pose nodes and motion
arcs in algorithms such as GraphSLAM [46]. However, graph-
ical SLAM techniques also link pose nodes with features that
are commonly observable from multiple poses in the map, and
include geometric measurement information. RatSLAM asso-
ciates a single feature with each pose, without any geometric
connection to the feature. Information storage and mapping pro-
cesses are split between the experience map and the local view
and pose cell networks, rather than being stored and processed
probabilistically all in the one map. Furthermore, the experience
map correction process is driven by fixed global map correction
parameters, rather than by changing link constraint strengths.
Experience transitions do not change strength, but the stiffness
of the entire map does increase as it becomes more interlinked.
For newly mapped sections of the environment, the map stiffness
determines how much the existing map adjusts to incorporate
the new section, and how much the section is adjusted to fit the
existing map.

C. Visual Features

RatSLAM does not track visual features over multiple frames
(apart from the frame to frame array matching for odometry),
but instead processes the appearance of each frame individually.
Appearance-based matching removes the complexity of feature
detection, and allows the system to operate at relatively low
frame rates and high movement speeds, with little overlap of
features from frame to frame. However, the absence of visual
features limits geometric interpretation of the environment. The
map contains no geometric representations of landmarks, only
the connectedness and approximate spatial relationship of places
visited in the environment.

D. Loop Closure

Reliable loop closure is achieved by only matching experi-
ences that have matching activity states of both the internal pose
and local view cell. As a consequence, loop closure is not in-
stantaneous, but rather occurs after a matching pose state is built
up as familiar visual scenes activate pose cells. In the experi-
ment, the system was able to rapidly close more than 51 loops,
with no false loop closures, and was also able to globally relo-
calize to an arbitrary starting point in the map, usually within
a couple of seconds. There is no difference in difficulty or pro-
cess between closing a 400-m loop with a cumulative odometric
error of 80 m, and a 5000-m loop with a cumulative error of
1200 m, both of which occur in the dataset. Odometric error
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is dealt with by combining robust loop closure detection with
the experience mapping algorithm, which adjusts each loop to
distribute odometric error throughout the map.

X. CONCLUSION

With both its similarities and many differences to other SLAM
systems, RatSLAM provides an alternative approach to per-
forming online, vision-only SLAM in large environments. The
system not only benefits from some commonalities with tra-
ditional SLAM systems but also uses a number of differing
approaches to achieve the same overall goal of creating useful
maps of real world environments. These differences enabled the
system to map an environment that would challenge existing
state-of-the-art SLAM systems and to repeatedly and reliably
close large loops in the face of significant odometric error and
environmental ambiguity.
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