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Abstract

The reinforcement learning paradigm allows, in principle, for complex behaviours
to be learned directly from simple reward signals. In practice, however, it is
common to carefully hand-design the reward function to encourage a particular
solution, or to derive it from demonstration data. In this paper explore how a rich
environment can help to promote the learning of complex behavior. Specifically,
we train agents in diverse environmental contexts, and find that this encourages
the emergence of robust behaviours that perform well across a suite of tasks.
We demonstrate this principle for locomotion – behaviours that are known for
their sensitivity to the choice of reward. We train several simulated bodies on a
diverse set of challenging terrains and obstacles, using a simple reward function
based on forward progress. Using a novel scalable variant of policy gradient
reinforcement learning, our agents learn to run, jump, crouch and turn as required
by the environment without explicit reward-based guidance. A visual depiction of
highlights of the learned behavior can be viewed in this video.

1 Introduction

Reinforcement learning has demonstrated remarkable progress, achieving high levels of performance
in Atari games [1], 3D navigation tasks [2, 3], and board games [4]. What is common among these
tasks is that there is a well-defined reward function, such as the game score, which can be optimised
to produce the desired behaviour. However, there are many other tasks where the “right” reward
function is less clear, and optimisation of a naïvely selected one can lead to surprising results that do
not match the expectations of the designer. This is particularly prevalent in continuous control tasks,
such as locomotion, and it has become standard practice to carefully handcraft the reward function,
or else elicit a reward function from demonstrations.

Reward engineering has led to a number of successful demonstrations of locomotion behaviour,
however, these examples are known to be brittle: they can lead to unexpected results if the reward
function is modified even slightly, and for more advanced behaviours the appropriate reward function
is often non-obvious in the first place. Also, arguably, the requirement of careful reward design
sidesteps a primary challenge of reinforcement learning: how an agent can learn for itself, directly
from a limited reward signal, to achieve rich and effective behaviours. In this paper we return to this
challenge.

Our premise is that rich and robust behaviours will emerge from simple reward functions, if the
environment itself contains sufficient richness and diversity. Firstly, an environment that presents
a spectrum of challenges at different levels of difficulty may shape learning and guide it towards
solutions that would be difficult to discover in more limited settings. Secondly, the sensitivity to
reward functions and other experiment details may be due to a kind of overfitting, finding idiosyncratic
solutions that happen to work within a specific setting, but are not robust when the agent is exposed
to a wider range of settings. Presenting the agent with a diversity of challenges thus increases the
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performance gap between different solutions and may favor the learning of solutions that are robust
across settings.

We focus on a set of novel locomotion tasks that go significantly beyond the previous state-of-the-art
for agents trained directly from reinforcement learning. They include a variety of obstacle courses
for agents with different bodies (Quadruped, Planar Walker, and Humanoid [5, 6]). The courses are
procedurally generated such that every episode presents a different instance of the task.

Our environments include a wide range of obstacles with varying levels of difficulty (e.g. steepness,
unevenness, distance between gaps). The variations in difficulty present an implicit curriculum to the
agent – as it increases its capabilities it is able to overcome increasingly hard challenges, resulting
in the emergence of ostensibly sophisticated locomotion skills which may naïvely have seemed to
require careful reward design or other instruction. We also show that learning speed can be improved
by explicitly structuring terrains to gradually increase in difficulty so that the agent faces easier
obstacles first and harder obstacles only when it has mastered the easy ones.

In order to learn effectively in these rich and challenging domains, it is necessary to have a reliable and
scalable reinforcement learning algorithm. We leverage components from several recent approaches
to deep reinforcement learning. First, we build upon robust policy gradient algorithms, such as trust
region policy optimization (TRPO) and proximal policy optimization (PPO) [7, 8], which bound
parameter updates to a trust region to ensure stability. Second, like the widely used A3C algorithm
[2] and related approaches [3] we distribute the computation over many parallel instances of agent
and environment. Our distributed implementation of PPO improves over TRPO in terms of wall clock
time with little difference in robustness, and also improves over our existing implementation of A3C
with continuous actions when the same number of workers is used.

The paper proceeds as follows. In Section 2 we describe the distributed PPO (DPPO) algorithm that
enables the subsequent experiments, and validate its effectiveness empirically. Then in Section 3
we introduce the main experimental setup: a diverse set of challenging terrains and obstacles. We
provide evidence in Section 4 that effective locomotion behaviours emerge directly from simple
rewards; furthermore we show that terrains with a “curriculum” of difficulty encourage much more
rapid progress, and that agents trained in more diverse conditions can be more robust.

2 Large scale reinforcement learning with Distributed PPO

Our focus is on reinforcement learning in rich simulated environments with continuous state and
action spaces. We require algorithms that are robust across a wide range of task variation, and that
scale effectively to challenging domains. We address each of these issues in turn.

Robust policy gradients with Proximal Policy Optimization Deep reinforcement learning algo-
rithms based on large-scale, high-throughput optimization methods, have produced state-of-the-art
results in discrete and low-dimensional action spaces, e.g. on Atari games [9] and 3D navigation
[2, 3]. In contrast, many prior works on continuous action spaces (e.g. [10, 7, 11, 12, 6, 13]), although
impressive, have focused on comparatively small problems, and the use of large-scale, distributed
optimization is less widespread and the corresponding algorithms are less well developed (but see e.g.
[14, 15, 16]). We present a robust policy gradient algorithm, suitable for high-dimensional continuous
control problems, that can be scaled to much larger domains using distributed computation.

Policy gradient algorithms [17] provide an attractive paradigm for continuous control. They operate
by directly maximizing the expected sum of rewards J(θ) = Eρθ(τ)

[∑
t γ

t−1r(st, at)
]

with respect
to the parameters θ of the stochastic policy πθ(a|s). The expectation is with respect to the distribution
of trajectories τ = (s0, a0, s1, . . . ) induced jointly by the policy πθ and the system dynamics
p(st+1|st, at): ρθ(τ) = p(s0)π(a0|s0)p(s1|s0, a0) . . . . The gradient of the objective with respect to
θ is given by ∇θJ = Eθ [

∑
t∇θ log πθ(at|st)(Rt − bt)], where Rt =

∑
t′=t γ

t′−tr(st′ , at′) and bt
is an baseline that does not depend on at or future states and actions. The baseline is often chosen to
be bt = V θ(st) = Eθ [Rt|st]. In practice the expected future return is typically approximated with a
sample rollout and V θ is replaced by a learned approximation Vφ(s) with parameters φ.

Policy gradient estimates can have high variance (e.g. [18]) and algorithms can be sensitive to the
settings of their hyperparameters. Several approaches have been proposed to make policy gradient
algorithms more robust. One effective measure is to employ a trust region constraint that restricts
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the amount by which any update is allowed to change the policy [19, 7, 14]. A popular algorithm
that makes use of this idea is trust region policy optimization (TRPO; [7]). In every iteration
given current parameters θold, TRPO collects a (relatively large) batch of data and optimizes the
surrogate loss JTRPO(θ) = Eρθold (τ)

[∑
t γ

t−1 πθ(at|st)
πθold (at|st)

Aθold(at, st)
]

subject to a constraint on
how much the policy is allowed to change, expressed in terms of the Kullback-Leibler divergence
(KL) KL [πθold |πθ] < δ. Aθ is the advantage function given as Aθ(st, at) = Eθ [Rt|st, at]− V θ(st).

The Proximal Policy Optimization (PPO) algorithm [8] can be seen as an approximate version of
TRPO that relies only on first order gradients, making it more convenient to use with recurrent neural
networks (RNNs) and in a large-scale distributed setting. The trust region constraint is implemented
via a regularization term. The coefficient of this regularization term is adapted depending on whether
the constraint had previously been violated or not (a similar idea but without the adaptive coefficient
has also been used [13]). Algorithm Box 1 shows the core PPO algorithm in pseudo-code.

Algorithm 1 Proximal Policy Optimization (adapted from [8])

for i ∈ {1, · · · , N} do
Run policy πθ for T timesteps, collecting {st, at, rt}
Estimate advantages Ât =

∑
t′>t γ

t′−trt′ − Vφ(st)
πold ← πθ
for j ∈ {1, · · · ,M} do
JPPO(θ) =

∑T
t=1

πθ(at|st)
πold(at|st)

Ât − λKL[πold|πθ]
Update θ by a gradient method w.r.t. JPPO(θ)

end for
for j ∈ {1, · · · , B} do
LBL(φ) = −

∑T
t=1(

∑
t′>t γ

t′−trt′ − Vφ(st))2
Update φ by a gradient method w.r.t. LBL(φ)

end for
if KL[πold|πθ] > βhighKLtarget then
λ← αλ

else if KL[πold|πθ] < βlowKLtarget then
λ← λ/α

end if
end for

In algorithm 1, the hyperparameter KLtarget is the desired change in the policy per iteration. The
scaling term α > 1 controls the adjustment of the KL-regularization coefficient if the actual change
in the policy stayed significantly below or significantly exceeded the target KL (i.e. falls outside the
interval [βlowKLtarget, βhighKLtarget]).

Scalable reinforcement learning with Distributed PPO To achieve good performance in rich,
simulated environments, we have implemented a distributed version of the PPO algorithm (DPPO).
Data collection and gradient calculation are distributed over workers. We have experimented with
both synchronous and asynchronous updates and have found that averaging gradients and applying
them synchronously leads to better results in practice.

The original PPO algorithm estimates advantages using the complete sum of rewards. To facilitate the
use of RNNs with batch updates while also supporting variable length episodes we follow a strategy
similar to [2] and use truncated backpropagation through time with a window of length K. This
makes it natural (albeit not a requirement) to use K-step returns also for estimating the advantage,
i.e. we sum the rewards over the same K-step windows and bootstrap from the value function after
K-steps: Ât =

∑K
i=1 γ

i−1rt+i + γK−1Vφ(st+K)− Vφ(st).

The publicly available implementation of PPO by John Schulman [20] adds several modifications to
the core algorithm. These include normalization of inputs and rewards as well as an additional term in
the loss that penalizes large violations of the trust region constraint. We adopt similar augmentations
in the distributed setting but find that sharing and synchronization of various statistics across workers
requires some care. The implementation of our distributed PPO (DPPO) is in TensorFlow, the
parameters reside on a parameter server, and workers synchronize their parameters after every
gradient step. Pseudocode and further details are provided in the supplemental material.
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Humanoid Reacher2-MemoryPlanar Walker

Figure 1: DPPO benchmark performance on the Planar Walker (left), Humanoid (middle), and
Memory Reacher (right) tasks. In all cases, DPPO achieves performance equivalent to TRPO, and
scales well with the number of workers used. The Memory Reacher task demonstrates that it can be
used with recurrent networks.

2.1 Evaluation of Distributed PPO

We compare DPPO to several baseline algorithms. The goal of these experiments is primarily to
establish that the algorithm allows robust policy optimization with limited parameter tuning and
that the algorithm scales effectively. We therefore perform the comparison on a selected number of
benchmark tasks related to our research interests, and compare to two algorithmic alternatives: TRPO
and continuous A3C. For details of the comparison please see the supplemental material.

Benchmark tasks We consider three continuous control tasks for benchmarking the algorithms.
All environments rely on the Mujoco physics engine [21]. Two tasks are locomotion tasks in obstacle-
free environments and the third task is a planar target-reaching task that requires memory. Planar
walker: a simple bipedal walker with 9 degrees-of-freedom (DoF) and 6 torque actuated joints. It
receives a primary reward proportional to its forward velocity, additional terms penalize control and
the violation of box constraints on torso height and angle. Episodes are terminated early when the
walker falls. Humanoid: The humanoid has 28 DoF and 21 acutated joints. The humanoid, too,
receives a reward primarily proportional to its velocity along the x-axis, as well as a constant reward
at every step that, together with episode termination upon falling, encourage it to not fall. Memory
reacher: A random-target reaching task with a simple 2 DoF robotic arm confined to the plane. The
target position is provided for the first 10 steps of each episode during which the arm is not allowed
to move. When the arm is allowed to move, the target has already disappeared and the RNN memory
must be relied upon in order for the arm to reach towards the correct target location. The reward in
this task is the distance between the positions of end-effector and target, and it tests the ability of
DPPO to optimize recurrent network policies.

Results Results depicted in Fig. 1 show that DPPO achieves performance similar to TRPO and that
DPPO scales well with the number of workers used, which can significantly reduce wall clock time.
Since it is fully gradient based it can also be used directly with recurrent networks as demonstrated
by the Memory reacher task. DPPO is also faster (in wallclock) than our implementation of A3C
when the same number of workers is used.

3 Methods: environments and models

Our goal is to study whether sophisticated locomotion skills can emerge from simple rewards
when learning from varied challenges with a spectrum of difficulty levels. Having validated our
scalable DPPO algorithm on simpler benchmark tasks, we next describe the settings in which we will
demonstrate the emergence of more complex behavior.

3.1 Training environments

In order to expose our agents to a diverse set of locomotion challenges we use a physical simulation
environment roughly analogous to a platform game, again implemented in Mujoco [21]. We procedu-
rally generate a large number of different terrains with a variety of obstacles; a different instance of
the terrain and obstacles is generated in each episode.
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Bodies We consider three different torque-controlled bodies, described roughly in terms of increas-
ing complexity. Planar walker: a simple walking body with 9 DoF and 6 actuated joints constrained
to the plane. Quadruped: a simple three-dimensional quadrupedal body with 12 DoF and 8 actuated
joints. Humanoid: a three-dimensional humanoid with 21 actuated dimensions and 28 DoF. The
bodies can be seen in action in figures 4, 5, and 7 respectively. Note that the Planar walker and
Humanoid bodies overlap with those used in the benchmarking tasks described in the previous section,
however the benchmark tasks only consisted of simple locomotion in an open plane.

Rewards We keep the reward for all tasks simple and consistent across terrains. The reward consists
of a main component proportional to the velocity along the x-axis, encouraging the agent to make
forward progress along the track, plus a small term penalizing torques. For the walker the reward also
includes the same box constraints on the pose as in section 2. For the quadruped and humanoid we
penalize deviations from the center of the track, and the humanoid receives an additional reward per
time-step for not falling. Details can be found in the supplemental material. We note that differences
in the reward functions across bodies are the consequence of us adapting previously proposed reward
functions (cf. e.g. [12, 18]) rather than the result of careful tuning, and while the reward functions
vary slightly across bodies we do not change them to elicit different behaviors for a single body.

Terrain and obstacles All of our courses are procedurally generated; in every episode a new course
is generated based on pre-defined statistics. We consider several different terrain and obstacle types:
(a) hurdles: hurdle-like obstacles of variable height and width that the walker needs to jump or climb
over; (b) gaps: gaps in the ground that must be jumped over; (c) variable terrain: a terrain with
different features such as ramps, gaps, hills, etc.; (d) slalom walls: walls that form obstacles that
require walking around, (e) platforms: platforms that hover above the ground which can be jumped
on or crouched under. Courses consist of a sequence of random instantiations of the above terrain
types within user-specified parameter ranges.

We train on different types of courses: single-type courses (e.g. gaps only, hurdles only, etc.); mixtures
of single-type courses (e.g. every episode a different terrain type is chosen); and mixed terrains
(individual courses consisting of more than one terrain type). We consider stationary courses for
which the obstacle statistics are effectively fixed over the the length of the course, and “curriculum”
courses in which the difficulty of the terrain increases gradually over the length of the course. Fig. 3
shows a few different course types.

Figure 2: Schematic of the network architecture.
We use an architecture similar to [22], consisting
of a component processing information local to the
controlled body (egocentric information; blue) and
a modulatory component that processes environ-
ment and task related “exteroceptive” information
such as the terrain shape (green).

Observations The agents receive two sets of
observations [22]: (1) a set of egocentric, “pro-
prioceptive” features containing joint angles and
angular velocities; for the Quadruped and Hu-
manoid these features also contain the readings
of a velocimeter, accelerometer, and a gyroscope
positioned at the torso providing egocentric ve-
locity and acceleration information, plus con-
tact sensors attached to the feet and legs. The
Humanoid also has torque sensors in the joints
of the lower limbs. (2) a set of “exteroceptive”
features containing task-relevant information in-
cluding the position with respect to the center
of the track as well as the profile of the terrain
ahead. Information about the terrain is provided
as an array of height measurements taken at
sampling points that translate along the x- and
y-axis with the body and the density of which
decreases with distance from the body. The Pla-
nar Walker is confined to the xz-plane (i.e. it
cannot move side-to-side), which simplifies its
perceptual features. See supplemental material
for details.
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Figure 3: Examples of the terrain types used in the experiments. Left to right and top to bottom:
hurdles, platforms, gaps, slalom walls, variable terrain.

Figure 4: Walker skills: Time-lapse images of a representative Planar Walker policy traversing rubble;
jumping over a hurdle; jumping over gaps and crouching to pass underneath a platform.

3.2 Policy parameterization

Similar to [22] we aim to achieve a separation of concerns between the basic locomotion skills
and terrain perception and navigation. We structure our policy into two subnetworks, one of which
receives only proprioceptive information, and the other which receives only exteroceptive information.
As explained in the previous paragraph with proprioceptive information we refer to information
that is independent of any task and local to the body while exteroceptive information includes a
representation of the terrain ahead. We compared this architecture to a simple fully connected neural
network and found that it greatly increased learning speed. Fig. 2 shows a schematic.

4 Results

We apply the Distributed PPO algorithm to a variety of bodies, terrains, and obstacles. Our aim is to
establish whether simple reward functions can lead to the emergence of sophisticated locomotion
skills when agents are trained in rich environments. We are further interested whether the terrain
structure can affect learning success and robustness of the resulting behavior.

Planar Walker We train the walker on hurdles, gaps, platforms, and variable terrain separately,
on a mixed course containing all features interleaved, and on a mixture of terrains (i.e. the walker
was placed on different terrains in different episodes). It acquired a robust gait, learned to jump over
hurdles and gaps, and to walk over or crouch underneath platforms. All of these behaviors emerged
spontaneously, without special cased shaping rewards to induce each separate behaviour. Figure 4
shows motion sequences of the Planar Walker traversing a rubble-field, jumping over a hurdle, and
over gaps, and crouching under a platform. Examples of the respective behaviors can be found in the
supplemental video. The emergence of these skills was robust across seeds. At the end of learning
the Planar Walker jumped over hurdles nearly as tall as its own body.

Quadruped The quadruped is a generally less agile body than the walker but it adds a third
dimension to the control problem. We considered three different terrain types: variable terrain,
slalom walls, gaps, and a variation of the hurdles terrain which contained obstacles that can be
avoided, and others that require climbing or jumping.

The Quadruped, too, learns to navigate most obstacles quite reliably, with only small variations
across seeds. It discovers that jumping up or forward (in some cases with surprising accuracy) is a
suitable strategy to overcome hurdles, and gaps, and it learns to navigate walls, turning left and right
as appropriate – in both cases despite only receiving reward for moving forward. For the variation of
the hurdles-terrain it learns to distinguish between obstacles that it can and / or has to climb over,
and those it has to walk around. The variable terrain may seem easy but is, in fact, surprisingly hard
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Figure 5: Time-lapse images of a representative Quadruped policy traversing gaps (left); and
navigating obstacles (right)

a) b)

Figure 6: a) Curriculum training: Evaluation of policies trained on hurdle courses with different
statistics: “regular” courses contain arbitrarily interleaved high and low hurdles (blue); “curriculum”
courses gradually increase hurdle height over the course of the track (green). During training we eval-
uate both policies on validation courses with low/“easy" hurdles (left) and tall/“hard" hurdles (right).
The performance of the policy trained on the curriculum courses increases faster. b) Robustness of
Planar Walker policies (left) and Quadruped policies (right): We evaluate how training on hurdles
(green) increases policy robustness relative to training on flat terrain (blue). Policies are assessed on
courses with unobserved changes in ground friction, terrain surface (rubble), strength of the body
actuators, and incline of the ground plane. There is a notable advantage in some cases for policies
trained on the hurdle terrain. All plots show the average returns normalized for each terrain setting.

because the body shape of the Quadruped is poorly suited (i.e. the legs of the quadruped are short
compared to the variations in the terrain). Nevertheless it learns strategies to traverse reasonably
robustly. Fig. 5 shows some representative motion sequences; further examples can be found in the
supplemental video.

Analyses We investigate whether the nature of the terrain affects learning. In particular, it is easy
to imagine that training on, for instance, very tall hurdles only will not be effective. For training to
be successful in our setup it is required that the walker occasionally “solves” obstacles by chance
– and the probability of this happening, is, of course, minuscule when all hurdles are very tall. We
verify this by training a Planar Walker on two different types of hurdles-terrains. The first possesses
stationary statistics with high- and low hurdles being randomly interleaved. In the second terrain the
difficulty, as given by the minimum and maximum height of the hurdles, increases gradually over the
length of the course. We measure learning progress by evaluating policies during learning on two test
terrains, an easy one with shallow hurdles and a difficult one with tall hurdles. Results are shown in
Fig. 6a for a representative Planar Walker policy. The policy trained on the terrain with gradually
increasing difficulty improves faster than the one trained on a stationary terrain.

We further study whether training on varying terrains leads to more robust gaits compared to usual
task of moving forward on a plane. To this end we train Planar Walker and Quadruped policies on
a flat course as well as on the (more challenging) hurdles. We then evaluate representative policies
from each experiment with respect to their robustness to (a) unobserved variations in surface friction,
(b) unobserved rumble-strips, (c) changes in the model of the body, (d) unobserved inclines / declines
of the ground. Results depicted in Fig. 6b show a trend of training on hurdles increasing robustness
on other forms of unobserved variation in the terrain.

Humanoid Our final set of experiments considers the 28-DoF Humanoid, a considerably more
complex body than Planar Walker and Quadruped. The set of terrains is qualitatively similar to the
ones used for the other bodies, including gaps, hurdles, a variable terrain, as well as the slalom walls.
We also trained agents on mixtures of the above terrains.
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Figure 7: Time lapse sequences of the Humanoid navigating different terrains

As for the previous experiments we considered a simple reward function, primarily proportional to the
velocity along the x-axis (see above). We experimented with two alternative termination conditions:
(a) episodes were terminated when the minimum distance between head and feet fell below 0.9m; (b)
episodes were terminated when the minimum distance between head and ground fell below 1.1m.

In general, the humanoid presents a considerably harder learning problem largely because with
its relatively large number of degrees of freedoms it is prone to exploit redundancies in the task
specification and / or to get stuck in local optima, resulting in entertaining but visually unsatisfactory
gaits. Learning results tend to be sensitive to the particular algorithm, exploration strategy, reward
function, termination condition, and weight initialization.

The results we obtained for the humanoid were indeed much more diverse than for the other two
bodies, with significant variations across seeds for the same setting of the hyperparameters. Some
of the variations in the behaviors were associated with differences in learning speed and asymptotic
performance (suggesting a local optimum); others were not (suggesting alternative solution strategies).

Nevertheless we obtained for each terrain several well performing agents, both in terms of performance
and in terms of visually pleasing gaits. Fig. 7 shows several examples of agents trained on gaps,
hurdles, slalom walls, and variable terrain. As in the previous experiments the terrain diversity and
the inherent curriculum led the agents to discover robust gaits, the ability to overcome obstacles, to
jump across gaps, and to navigate slalom courses. We highlight several solution strategies for each
terrain in the supplemental video, including less visually appealing ones. To test the robustness of the
learned behaviors we further constructed two test courses with (a) statistics rather different from the
training terrains and (b) unobserved perturbations in the form of see-saws and random forces applied
to the Humanoid’s torso, which is also presented in the video. Qualitatively we see moderately large
levels of robustness to these probe challenges (see supplemental video).

5 Related work

Physics-based character animation is a long-standing and active field that has produced a large body
of work with impressive results endowing simulated characters with locomotion and other movement
skills (see [23] for a review). For instance, [24] show sophisticated skill sequencing for maneuvering
obstacles on a parametric terrain, while [25, 26, 27] demonstrate how terrain adaptive behaviors or
other skilled movements can emerge as the result of optimization problems. While there are very
diverse approaches, essentially all rely on significant prior knowledge of the problem domain and
many on demonstrations such as motion capture data.

Basic locomotion behaviors learned end-to-end via RL have been demonstrated, for instance, by
[7, 12, 6, 13] or guided policy search [10]. Locomotion in the context of higher-level tasks has been
considered in [22]. Terrain-adaptive locomotion with RL has been demonstrated by [28], but they
still impose considerable structure on their solution. Impressive results were recently achieved with
learned locomotion controllers for a 3D humanoid body [29], but these rely on a domain-specific
structure and human motion capture data to bootstrap the movement skills for navigating flat terrains.

The idea of curricula is long-standing in the machine learning literature (e.g. [30]). It has been
exploited for learning movement skills for instance by [31]. The present work combines and develops
elements from many of these research threads, but pushes uniquely far in a particular direction –
using simple RL rewards and curriculum training to produce adaptive locomotion in challenging
environments while imposing only limited structure on the policy and behavior.
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6 Discussion

We have investigated the question whether and to what extent training agents in a rich environment
can lead to the emergence of behaviors that are not directly incentivized via the reward function.
This departs from the common setup in control where a reward function is carefully tuned to achieve
particular solutions. Instead, we use deliberately simple and generic reward functions but train the
agent over a wide range of environmental conditions. Our experiments suggest that training on
diverse terrain can indeed lead to the development of non-trivial locomotion skills such as jumping,
crouching, and turning for which designing a sensible reward is not easy. While we do not claim that
environmental variations will be sufficient, we believe that training agents in richer environments
and on a broader spectrum of tasks than is commonly done today is likely to improve the quality and
robustness of the learned behaviors – and also the ease with which they can be learned. In that sense,
choosing a seemingly more complex environment may actually make learning easier.
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A Distributed PPO

A.1 Algorithm details

Pseudocode for the Distributed PPO algorithm is provided in Algorithm Boxes 2 and 3. W is the
number of workers; D sets a threshold for the number of workers whose gradients must be available
to update the parameters. M,B is the number of sub-iterations with policy and baseline updates
given a batch of datapoints. T is the number of data points collected per worker before parameter
updates are computed. K is the number of time steps for computing K-step returns and truncated
backprop through time (for RNNs)

Algorithm 2 Distributed Proximal Policy Optimization (chief)

for i ∈ {1, · · · , N} do
for j ∈ {1, · · · ,M} do

Wait until at least W −D gradients wrt. θ are available
average gradients and update global θ

end for
for j ∈ {1, · · · , B} do

Wait until at least W −D gradients wrt. φ are available
average gradients and update global φ

end for
end for

Algorithm 3 Distributed Proximal Policy Optimization (worker)

for i ∈ {1, · · · , N} do
for w ∈ {1, · · ·T/K} do

Run policy πθ for K timesteps, collecting {st, at, rt} for t ∈ {(i− 1)K, . . . , iK − 1}
Estimate return R̂t =

∑iK−1
t=(i−1)K γ

t−(i−1)Krt + γKVφ(siK)

Estimate advantages Ât = R̂t − Vφ(st)
Store partial trajectory information

end for
πold ← πθ
for m ∈ {1, · · · ,M} do
JPPO(θ) =

∑T
t=1

πθ(at|st)
πold(at|st)

Ât − λKL[πold|πθ]− ξmax(0,KL[πold|πθ]− 2KLtarget)
2

if KL[πold|πθ > 4KLtarget then
break and continue with next outer iteration i+ 1

end if
Compute∇θJPPO
send gradient wrt. to θ to chief
wait until gradient accepted or dropped; update parameters

end for
for b ∈ {1, · · · , B} do
LBL(φ) = −

∑T
t=1(R̂t − Vφ(st))

2

Compute∇φLBL
send gradient wrt. to φ to chief
wait until gradient accepted or dropped; update parameters

end for
if KL[πold|πθ] > βhighKLtarget then
λ← α̃λ

else if KL[πold|πθ] < βlowKLtarget then
λ← λ/α̃

end if
end for

Normalization Following [20] we perform the following normalization steps:

1. We normalize observations (or states st) by subtracting the mean and dividing by the
standard deviation using the statistics aggregated over the course of the entire experiment.
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2. We scale the reward by a running estimate of its standard deviation, again aggregated over
the course of the entire experiment.

3. We use per-batch normalization of the advantages.

Sharing of algorithm parameters across workers In the distributed setting we have found it to
be important to share relevant statistics for data normalization across workers. Normalization is
applied during data collection and statistics are updated locally after every environment step. Local
changes to the statistics are applied to the global statistics after data collection when an iteration is
complete (not shown in pseudo-code). The time-varying regularization parameter λ is also shared
across workers but updates are determined based on local statistics based on the average KL computed
locally for each worker, and applied separately by each worker with an adjusted α̃ = 1 + (α− 1)/K.

Additional trust region constraint We also adopt an additional penalty term that becomes active
when the KL exceeds the desired change by a certain margin (the threshold is 2KLtarget in our case).
In our distributed implementation this criterion is tested and applied on a per-worker basis.

Stability is further improved by early stopping when changes lead to too large a change in the KL.

A.2 Algorithm comparison

TRPO has been established as a robust algorithm that learns high-performing policies and requires
little parameter tuning. Our primary concern was therefore whether DPPO can achieve results
comparable to TRPO. Secondarily, we were interested in whether the algorithm scales to large
numbers of workers and allows speeding up experiments where large numbers of data points are
required to obtain reliable gradient estimates. We therefore compare to TRPO in a regime where
a large number number samples is used to compute parameter updates (N = 100000). For simple
tasks we expect TRPO to produce good results in this regime (for the benchmark tasks a smaller N
would likely be sufficient).

For DPPO we perform a coarse search over learning rate for policy and baseline. All experiments
in section 2.1 use the same learning rates (0.00005 and 0.0001 respectively.) In each iteration we
use batches of size of 64000 (walker), 128000 (humanoid), and 24000 (reacher) time steps. Data
collection and gradient computation are distributed across varying numbers of workers. Due to
early termination this number is sometimes smaller (when an episode terminates early the remaining
steps in the current unroll window of length K are being ignored during gradient calculation). An
alternative point of comparison would be to use a fixed overall number of time steps and vary the
number of time steps per worker.

Networks use tanh nonlinearities and parameterize the mean and standard deviation of a condi-
tional Gaussian distribution over actions. Network sizes were as follows: Planar Walker: 300,200;
Humanoid: 300,200,100; Memory Reacher: 200; and 100 LSTM units.

For A3C with continuous actions we also perform a coarse search over relevant hyper parameters,
especially the learning rate and entropy cost. Due to differences in the code base network architectures
were not exactly identical to those used for DPPO but used the same numbers of hidden units.

We note that a like-for-like comparison of the algorithms is difficult since they are implemented
in different code bases and especially for distributed algorithms performance in wall clock time is
affected both by conceptual changes to the algorithm as well as by implementation choices. A more
careful benchmarking of several recent high-throughput algorithms will be the subject of future work.

B Additional experimental details

B.1 Observations

For all courses terrain height (and platform height where applicable) was provided as a heightfield
where each "pixel" indicates the height of the terrain (platform) within a small region. This heightfield
was then sampled at particular points relative to the position of the agent.

Planar walker The exteroceptive features for the planar walker consist of sampling points of the
terrain and, where applicable, platform height. There were 50 equally spaced points along the x-axis

13



starting 2m behind the agent and extending 8m ahead. Platform height was represented separately
from terrain height with a separate set of sampling points. In addition the exteroceptive features
contained the height of the walker body above the ground (measured at its current location) as well as
the difference between the agents position and the next sampling grid center (the intention behind
this last input is to resolve the aliasing arising from the piece-wise constant terrain representation
with finite sampling).

Quadruped & Humanoid The Quadruped and Humanoid use the same set of exteroceptive
features, effectively a two-dimensional version of what is used for the walker. The sampling points
are placed on a variable-resolution grid and range from 1.2m behind the agent to 5.6m ahead of it
along the x-axis as well as 4m to the left and to the right. To reduce dimensionality of the input data
sampling density decreases with increasing distance from the position of the body. In addition to the
height samples the exteroceptive features include the height of the body above the ground, and the x
and y distance of the walker body to the next sampling grid center (to reduce aliasing; see above).

B.2 Rewards

Planar walker r = 10.0vx + 0.5nz − |∆h − 1.2| − 10.0I[∆h < 0.3]− 0.1‖u‖2

Here nz is the projection of the z-axis of the torso coordinate frame onto the z-axis of the global
coordinate frame (this value varies from 1.0 to -1.0) depending on whether the Planar Walker’s torso
is upright or upside down. ∆h is the height of the Planar Walker’s torso above the feet. I[·] is the
indicator function. vx is the velocity along the x-axis.

Quadruped r = vx + 0.05nz − 0.01‖u‖2 where nz is the projection of the z-axis of the torso
coordinate frame onto the z-axis of the global coordinate frame (this value varies from 1.0 to -1.0)
depending on whether the Quadruped is upright or upside down.

Humanoid r = min(vx, vmax) − 0.005(v2x + v2y) − 0.05y2 − 0.02‖u‖2 + 0.02 where vmax is a
cutoff for the velocity reward which we usually set to 4m/s.
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