

Department of Automatic Control

Modelling and Control of the Crazyflie
Quadrotor for Aggressive and

Autonomous Flight by Optical Flow
Driven State Estimation

Marcus Greiff

MSc Thesis
TFRT-6026
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2017 by Marcus Greiff. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2017

Abstract

The master thesis seeks to develop a control system for the Crazyflie 2.0
unmanned aerial vehicle to enable aggressive and autonomous flight. For this
purpose, different rigid-body models are considered, differing primarily in
their parametrisation of rotation. The property of differential flatness is ex-
plored and several means of parametrising trajectories in flat output space
are implemented. A new method of rotor control with parameter estimation is
developed and geometric controllers are implemented for rigid-body control.
Finally, state estimation is accomplished through a scalar-update extended
Kalman filter, where information from the internal measurement unit is fused
with positional information from camera systems, ultra-wide band systems,
optical flow measurements and laser ranging measurements. Capable of sus-
taining flight with any combination of the previously mentioned sensors, the
real-time implementation is showcased using polynomial motion-planning to
avoid known obstacles.

Acknowledgements

I would like to express my sincere thanks to the Professors Anders Roberts-
son and Bo Bernhardsson as well as Ph.D. student Fredrik Bagge Karlsson
for valuable advice and helpful theoretical discussions throughout the course
of the thesis. I also wish to thank Professor Karl-Johan Åström for helpful
discussions on the complementary filtering and enthusiastic encouragement.
In addition, would like to thank the members of Bitcraze AB individually.
Firstly, Arnaud Taffanel, for his patience and help with the EKF implemen-
tation and input on the firmware architecture. Secondly, Marcus Eliasson, for
help with the design and development of the expansion boards relating to op-
tical flow and laser ranging. Thirdly, Tobias Antonsson, for helpful discussions
on the rotor-loops and debugging of the Crazyflie radio. Fourthly, Kristof-
fer Richardsson, for discussions on the firmware implementation and ideas
relating to organisation of labour. Finally, Björn Mauritz, for support and
encouragement throughout the project. I would also like to thank Michael
Hamer, for his prior work on the extended Kalman filter, helpful discus-
sions on the control system throughout the thesis and help with tuning the
geometric controller. Finally, I would like to thank Daniel Nilsson, for his
contribution to the ROS implementation in the Kinect vision project.

Contents

1. Introduction 1
1.1 Outline of thesis . 2
1.2 Goals of thesis . 3

2. Modelling 4
2.1 Tait-Bryan rigid-body dynamics 4
2.2 Quaternion rigid-body dynamics 11
2.3 Rotor dynamics and coupling 14
2.4 Implementation considerations 17
2.5 Open loop response . 21
2.6 Summary . 23

3. Motion planning 24
3.1 Differential flatness . 26
3.2 Generation of flat output trajectories 32
3.3 Parametrization of flat outputs 38
3.4 Summary . 42

4. Rotor control 44
4.1 Open loop control . 44
4.2 Closed loop rotor control . 45
4.3 Rotor adaptation and estimation 50
4.4 Summary . 53

5. Rigid-body control 54
5.1 Saturations and controllability 55
5.2 Tait-Bryan parametrised control 57
5.3 Geometric control . 63
5.4 Summary . 68

6. Inner state estimation 69
6.1 Model independent estimation 70
6.2 Model based state estimation 75
6.3 MOCAP positioning . 78

Contents

6.4 UWB positioning . 84
6.5 Optical flow and laser positioning 92

7. Conclusions and summary 102

Bibliography 104

A. Modelling appendix 111
A.1 Identification of mappings 111
A.2 Continuous time DC motor parameters 113
A.3 Coriolis matrix definition . 115
A.4 Gimbal lock avoidance with Tait-Bryan angles 116
A.5 Quaternion rotations and relation to Tait-Bryan angles . . . 119
A.6 Quaternion rate of change 121
A.7 Quaternion state-space representation 122
A.8 Linearised systems . 123
A.9 Closed form system integration with constant terms 124
A.10 Cross product identities . 125
A.11 Time derivative of the rotation matrix 126

B. Controller appendix 127
B.1 Set-point weighed PID . 127
B.2 MRAC with MIT synthesis 128
B.3 Linear quadratic reaulators 130

C. State estimation appendix 132
C.1 Cramer-Rao lower bound in TOA 132
C.2 Robust protocols considering clock drift 133
C.3 The Extended kalman Filter 136
C.4 Multi-camera LS regression 138

Index of Acronyms

Acronym Description
UAV Unmanned Aerial Vehicle

EKF Extended Kalman Filter, a state estimator using system
dynamics

PID Proportional-Integral-Derivative regulator

LQR Linear-Quadratic Regulator

UWB Ultra-Wideband, referring to radio communication with a
large bandwith

TOA Time Of Arrival, a term used to describe a class of UWB -
positioning algorithms

MRAC Model Reference Adaptive Control, here for SISO systems
with MIT -rule synthesis

GA Genetic Algorithm, used in the motion-planning of the
rotor-craft

CIR Channel Impulse Response, used to determine time-stamps
in the TOA methods

RLS Recursive Least-Squares, here for on-linear parameter iden-
tification

LS Least-Squares, referring to any problem formulated and
solved in a least-squares sense

TSP The Travelling Salesman Problem, an integer-
programming problem

IMU Inertial Measurement Unit, contains a 3-axis gyroscope, a
3-axis accelerometer and a 3-axis magnetometer

Contents

Acronym Description
PD Proportional-Derivative control

PWM Pulse-Width Modulation, used in the rotor control

MOCAP Motion capture, here referring to camera systems

TWR Two-Way Ranging, a protocol for communication in the
UWB -system

TDOA Time Difference Of Arrival, a term used to describe a class
of UWB -positioning algorithms

SO(3) Isometric rotations in R3 with fixed origin

CRLB Cramer-Rao Lower Bound, a lower bound for any unbiased
estimator

DW1000 The radio chip implemented in the LPS

SISO Single-Input Single-Output, a class of dynamical systems

SFD Start of Frame Delimiter, used to time-stamp packets in
the UWB -network

SDS-TWR Symmetric-Double-Sided Two-Way Ranging, a communi-
cation protocol

QR Referring to the QR-decomposition of
matrices

MSE Mean Squared Error

LPS Loco Positioning System, an UWB -system being developed
by Bitcraze

DC Direct Current, with respect to the brushed motors imple-
mented in the UAV

SE(3) Euclidean group of isometric rotations in R3 with fixed
origin and fixed-sign determinant

ROS The Robot Operating System, a meta-operating system for
robotics

LP Low-Pass, referring to a filter which attenuates high fre-
quency spectral content

AHRS Attitude Heading and Reference Systems, a category of
complementary filters

MIT Massachusetts Institute of Technology

ZOH Zero-Order Hold, an approximation used when discretising
continuous systems

Contents

Acronym Description
TOF Time Of Flight, referring to communication in the UWB -

network or laser ranging
PCB Printed Circuit Board, a prototype board for electronics

FIM The Fischer Information Matrix, evaluated in order to com-
pute the CRLB

TV Time-Varying, either with respect to a dynamical system
or to a controller operating on a time-variant system

TI Time-Invariant, with respect to a dynamical system or to
a controller operating on a time-variant system

TDMA Time Division Multiple Access, a method of distributing
resources in a real-time system

SPR Strictly Positive Real, a condition for stability in
Lyapunov-rule MRAC

SPI Serial Peripheral Interface, a interface used for short dis-
tance communication

SLAM Simultaneous Localisation And Mapping

SISO Single-Input Multiple-Output, a class of dynamical sys-
tems

DWM1000 A module from Decawave implementing a resonance an-
tenna and the DW1000 IC

WLS Weighted Least-Squares, a variation of the standard LS
formulation

RSS Received Signal Strength, a method used in UWB -
positioning

QP Quadratic Programming, a class of optimisation problems

OWR One-Way Ranging, a communication protocol used in
UWB -positioning

MIMO Multiple-Input Multiple-Output, a class of dynamical sys-
tem

LE Leading-Edge algorithm, used to detect peaks in time series

JPL Jet Propulsion Laboratory

DF Differential Flatness

AW Anti-Windup, implemented in integrating controllers

1
Introduction

Autonomous aircraft control is an interesting and widely researched topic,
as it poses great theoretical challenges and can be considered for a vast
amount of applications. For instance, small unmanned aerial vehicles (UAV)
have previously been used to build temporary rope bridges between gorges,
with the intention of eventually aiding aid fire brigades and rescue work-
ers [Augugliaro et al., 2015]. Other, more distant prospects include UAV ’s
that navigate public spaces safely to perform basic tasks such as invento-
rying and refilling shelves in supermarkets. With the rapid development of
machine learning and technological innovations in embedded systems, ap-
plications concerning human interaction that were unimaginable ten years
ago are almost possible today and will be readily implementable in the near
future.

With development of such applications limited mainly by ceilings and
human imagination, a good method of progression is through open-source
collaboration. However, some significant hurdles need to be overcome be-
fore moving research forward and contributing to any UAV project. Certain
knowledge of control theory, electrical engineering and computer science is
needed, but a much greater constraint is the cost related to motion capture
systems (MOCAP). In well funded research labs, millimeter precision in po-
sitional estimation can be attained with high performance camera systems,
but this is certainly not an option for the individual researcher as the price
typically amounts to tens of thousands of dollars. Instead, more affordable
ultra-wideband (UWB) systems may be used for positional estimation with
precision on the decimetre scale at a tenth of the cost. Alternatively, cheaper
solutions can be envisioned with simple household cameras, offering good
precision in a very small flyable space. Finally, we may consider positional
estimation free from external systems altogether by using optical flow, where
a camera and laser is mounted directly on the UAV enabling autonomous
flight in a virtually unbounded space at a fraction of any other motion cap-
ture system.

1

Chapter 1. Introduction

This thesis seeks to provide basic building blocks for developers and re-
searchers, taking all of the above methods of positioning into account such
that the final product can be used in high performance labs and hobby imple-
mentations alike. Simultaneously, the work aspires to decrease the knowledge
threshold for developing algorithms on the UAV platform by contributing
well tested models to the open source community. The work is divided into
five main sections, each touching on current research including original find-
ings and conclusions based on either simulations or physical experiments.
The thesis contains the theoretical developments required to understand the
implementation, but only concerns the embedded inner control system used
for autonomous flight of the Crazyflie UAV. The sections on SLAM, the ROS
implementation and the outer control system are omitted entirely and will
be published in a more extensive second report.

1.1 Outline of thesis

In Chapter 2, general UAV rigid-body dynamics are derived with a dis-
cussion on the choice of rotation parametrisation and their consequences for
controllability. This section seeks to provide developers with well tested mod-
els to aid testing of future control systems. Three significant contributions
to the pre-existing research body include (i) an approximation enabling the
Tait-Bryan angle model to operate free of singularities, (ii) an analytically
derived error-synamics of the quaternion quad-rotor system free of trigono-
metric terms and (iii) a method of sampling linear temporal invariant systems
with constant terms, such as a gravitational force field.

In Chapter 3, four distinct methods of motion planning are detailed
and and implemented to simplify development of future applications. This
includes (i) a novel solver for the travelling salesman problem to find the
shortest distance through a subset of points in space, (ii) a new projective
algorithm for obstacle avoidance (iii) an implementation of a previously de-
fined quadratic program [Richter et al., 2013], and finally (iv) a derivation
of the differential flatness equations for the quaternion system for generating
system-compliant state trajectories.

In Chapter 4, a potential improvement of the current control system is
presented by introducing separate control loops with respect to each rotor.
Different approaches are simulated and compared with reference to error
metrics, finding good methods of parameter estimation and control with open
invitation to future development.

In Chapter 5, we present four of many tested rigid-body controllers
which were subsequently implemented in the UAV firmware to enable au-
tonomous flight. This includes a discussion on necessary saturations required
to operate the quad-rotor through aggressive looping manoeuvres in a real-

2

1.2 Goals of thesis

time context, as well as the presentation of a singularity free geometri-
cal controller [Lee et al., 2010] which has previously been implemented a
real-time context at Penn University [Mellinger and Kumar, 2011]. In addi-
tion, an extension is proposed to the standard Tait-Bryan LQR-type con-
trollers [Landry, 2015] [Tedrake, 2009], were integrating states with condi-
tional anti-windup are used to improve disturbance attenuation.

In Chapter 6, discussed the implemented system for state estima-
tion, building on previous work by Bitcraze AB and research by Michael
Hamer at the Swiss Federal Institute of Technology (ETH) [Mueller et al.,
2016] [Mueller, 2016] [Mueller et al., 2015]. This section discusses the the-
ory of enabling sensor fusion of inertial measurement unit IMU, MOCAP,
UWB, optical flow and laser ranging measurements in a variety of filters
and estimators. Our contributions to the implementation is primarily with
(i) development of algorithms for inclusion of optical flow and laser ranging
in the Extended Kalman filter, (ii) alternative static methods of estima-
tion with least-squares, (iii) means of MOCAP using simple Kinect and web
cameras, (iv) multi-path compensation in the UWB -measurements and (v)
implementation of bias compensated IMU filters based on the research of
Madgwick [Madgwick et al., 2011].

1.2 Goals of thesis

The goals of this thesis are many, but primarily concern two main points.
The first is to decrease knowledge barrier in developing applications with the
Crazyflie UAV and the second is to decrease the cost of positional state esti-
mation by implementing various means of positioning in a real-time context.
The primary goals are to

• Implement rigid-body and rotor models for the Crazyflie.

• Derive the differential flatness equations for the dynamics.

• Devise a robust rotor control system.

• Create means of loading and evaluating trajectories synchronously
across multiple UAV s.

• Implement an embedded SE(3) controller in the UAV firmware for
rigid-body control, as originally theorised in [Lee et al., 2010].

• Enamble embedded state estimation through a fusion of optical flow,
laser ranging, UWB and IMU measurements in an EKF.

All above goals have been met and will here be described in theoretical terms,
referring the interesting reader to [Greiff, 2017] for code and supplementing
notes on the real-time implementation.

3

2
Modelling

In this section, models will be derived to describe the rigid body dynamics of
the Crazyflie UAV. The intention is to not only use the models for simulating
and comparing controllers pre-implementation, but also to find a good model
for predicting the system time evolution in the Crayflie firmware, necessary
for model based state estimation. The goal of this section is to make evalua-
tion of the discrete time model computationally efficient, while maintaining
well conditioned dynamics regardless of the system state.

We will first present a common approach where the system equations are
derived with the Euler-Lagrange equations using a Tait-Bryan representation
of rotation, here in the extrinsic ZYX form. In contrast to the common Euler
angles, this parametrisation uses three different rotational axis and has been
used in various UAV applications for non-aggressive flight. It suffers on ac-
count of the trigonometric terms, which may lead to a Gimbal lock [Lepetit
and Fua, 2005] and a complete breakdown of the model. A method of getting
around this issue will be presented while maintaining the human readable
Tait-Bryan angles, however, due to it’s trigonometric terms, the Tait-Bryan
angle model remains a poor choice for any real-time implementation. An al-
ternative model will therefore be derived with the Newton-Euler equations
using the formalism of quaternions. The models will be compared in terms of
controllability and computational complexity with statements on when they
should be used. The state-space form of each model will be presented, as well
as the analytically derived error dynamics. Finally, means of model reduction
and efficient discretisation methods will be presented.

2.1 Tait-Bryan rigid-body dynamics

General quad-rotor dynamics with a Tait-Bryan angle parametrisation of
rotation have been the subject of much previous research [Luukkonen,
2011] [Castillo et al., 2005] [Raffo et al., 2010] [Castillo et al., 2004], and

4

2.1 Tait-Bryan rigid-body dynamics

will be presented to clarify nomenclature, enable a discussion on singulari-
ties and to serve as a benchmark when developing alternative models. For
future reference, we let p [m] denote the position of the UAV centre of mass
in a global Cartesian coordinate system, η [rad] denote the extrinsic ZYX
Tait-Bryan angles of the rigid-body rotation in the global coordinate system
and ω [rad/s] denote the angular velocities of the body coordinate system
relative the global coordinate system. Furthermore, Ωi [rad/s] denotes the
angular speed of the rotor i and finally, the vector s ∈ R6×1 denotes the
combined positional and angular of the rigid-body model.

p =

xy
z

 , η =

φθ
ψ

 , ω =

ωxωy
ωz

 , Ω =


Ω1

Ω2

Ω3

Ω4

 , s =

[
p
η

]
(2.1)

For absolute clarity, basis vectors in the respective coordinate systems
are written in bold font with a hat ·̂, where the sub-indexing ·G , ·I and ·B
refers to a vectors defined in the global, inertial and body coordinate sysrems
respectively. The inertial system, sub-indexed ·I , is centred at a position p in
the global frame, in the quadcopter centre of mass. Finally, the body frame,
sub-indexed ·B, is defined with origin in the centre of mass and, rotated by
from the inertial frame. This rotation is defined as an isometry with fixed
origin in a three-dimensional Euclidean space, SO(3), sub-indexed with ·GB
if rotating vectors from the the inertial or global frame to the body frame.
Conversely, maps from the body frame to the global or inertial frames are
denoted ·BG (see Figure 2.1).

With our choice of Tait-Bryan angles, rotation from the inertial coordi-
nate system to the body frame is done by a sequence of three orthogonal oper-
ators in matrix form, which when combined represent a rotation R ∈ SO(3)
[Palais and Palais, 2007]. By denoting ci = cos(i), si = sin(i), the rotation
matrices can be defined according to the ZYX order, referring to the sequence
in which the rotations are applied. Using rotations around three different axis
is commonly referred to as the extrinsic Tait-Bryan representation, in which

R(ψ) =

 cψ sψ 0
−sψ cψ 0

0 0 1

 , R(θ) =

cθ 0 −sθ
0 1 0
sθ 0 cθ

 , R(φ) =

1 0 0
0 cφ sφ
0 −sφ cφ


(2.2)

such that the complete rotational operator from the global to body frame is

5

Chapter 2. Modelling

Figure 2.1 Left: The global (blue), inertial (red) and body (green) co-
ordinate system used to describe the quadcopter rotations with the Tait-
Bryan angles of roll (φ), pitch (θ) and yaw (ψ) with the Tait-Bryan ZYX-
convention. Right: The Crazyflie with thrusts (red) and body basis vectors
in the plus- and cross-configurations. Rotor speeds, Ω, are defined with Ω1

and Ω3 right-handed with respect to ẑB while, Ω2 and Ω4 are left-handed.

given by

RGB = R(φ)R(θ)R(ψ) =

 cφcψ sψcφ −sθ
cψsθsφ − sψcφ sψsθsφ + cφcψ cθsφ
cψsθcφ + sφsψ sψsθcφ − cψsφ cφcθ

 ∈ SO(3).

(2.3)
We here note that by consequence of Euler’s rotational theorem [Palais and
Palais, 2007], the operator satisfies

ωG = R−1
GBωB = RT

GBωB = RBGωB. (2.4)

Furthermore, in solving the Newton-Euler and Euler-Lagrange equations in
later sections, we require angular rate vector of the quadcopter in the body
frame, ωB, to be expressed in terms of a change in Tait-Bryan angles [Castillo
et al., 2005] [Raffo et al., 2010]. The discrepancy is a result of of η̇ being
extrinsic, defined with respect to the inertial coordinate system. The map
from the angular rate vector to Tait-Bryan is computed by taking small
increments of the Tait-Bryan angles in time, computing the effect on the

6

2.1 Tait-Bryan rigid-body dynamics

rotation vector to find the inverse mapping. Let

ωB = I


∆φ
∆t
0
0

+R(φ)


0

∆θ
∆t
0

+R(φ)R(θ)


0
0

∆ψ
∆t

 =

1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ


∆φ
∆t
∆θ
∆t
∆ψ
∆t


(2.5)

which can be expressed in terms of η as

ωB =

1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

 η̇ = W(η)η̇ (2.6)

where W(η) is the mapping from η̇ to ωB [Castillo et al., 2005]. Here it
should be noted that the inverse mapping exists if and only if det(W(η)) =
cos(θ) 6= 0 which is not the case when θ = π(n+1/2), n ∈ N, where W−1(η)
becomes singular, a point which will be addressed in later sections.

Simplified rotor force dynamics From blade element theory, the force
generated by the rotor i with a rotor speed, Ωi [rad/s], is roughly proportional
to the rotor speed squared [Bangura et al., 2016]. Consequently, we let

fi ≈ kiΩ2
i (2.7)

in the positive ẑB direction with some constant, ki, where the thrust, T [N], is
the sum of the rotor forces. The above assumption is common when modelling
the forces of rotor UAV ’s [Chovancová et al., 2014] and was validated by
experimental data in Appendix A.1. Similarly, the torque around each
motor axis is assumed to be approximately

τMi
≈ biΩ2

i + IM Ω̇i (2.8)

where bi is a drag constant and IM is the rotor inertia [Luukkonen, 2011].
The considered system is symmetric in the x̂BŷB-plane, where each motor

axis is l [m] from the centre of mass. Assuming that ki ≈ k ∈ R+ ∀i,
bi ≈ b ∈ R+ ∀i and that we are using the cross-configuration (see Figure 2.1),
the thrust and torque vectors in the body coordinate system can be written

TB = T ẑB ,


0
0

k
4∑
i=1

Ω2
i

 , τ×B =

τφτθ
τψ

 ,


kl(−Ω2

1 − Ω2
2 + Ω2

3 + Ω2
4)/
√

2

kl(−Ω2
1 + Ω2

2 + Ω2
3 − Ω2

4)/
√

2
4∑
i=1

τMi


(2.9)

7

Chapter 2. Modelling

Alternatively, we could fly in the more conventional plus configuration,
where the x̂B-axis instead aligns with the arm on which motor 1 is mounted

τ+
B =

τφτθ
τψ

 ,


kl(−Ω2

2 + Ω2
4)

kl(−Ω2
1 + Ω2

3)
4∑
i=1

τMi

 (2.10)

in which special care needs to be taken in the state estimation as the sensory
frame is defined with respect to the ×-configuration. For future reference, we
define the affine maps M+

Ω2→τ ∈ R4×4 and M×
Ω2→τ ∈ R4×4 such that[

T τ+
B
]T

= M+
Ω2→τΩ

2 and
[
T τ×B

]T
= M×

Ω2→τΩ
2 (2.11)

respectively, which are both are invertible at all times, as det(M×
Ω2→τ) 6= 0

and det(M+
Ω2→τ) 6= 0 if l, b, k 6= 0. If a configuration is omitted, the cross-

configuration is used by default. Finally, the system identification of the
mappings is omitted for brevity, referring to Appendix A.1 for details on
the experiments.

Euler-Lagrange equations In order to use the above definitions and ex-
press the rotor dynamics using the principle of conservation of energy, we
first define the inertia tensor in the body coordinate system as

IB =

I11 0 0
0 I22 0
0 0 I33

 (2.12)

such that the total rotational energy of the UAV can be written Erot =
1
2ω

T
BIBωB. Finally, to make the model more accurate, air resistance is intro-

duced as reactionary force increasing with ṗ, similar to viscous friction. This
drag matrix is defined in the body frame as

DB =

D11 0 0
0 D22 0
0 0 D33

 (2.13)

whereD11 ≈ D22 < D33 on account of symmetry. In practice, the drag matrix
is usually small enough to a point where it can be disregarded completely,
but it is included here to make the simulations more accurate and to make
a point commonly missed in the modelling of UAV dynamics. In the work
of [Luukkonen, 2011] and [Raffo et al., 2010], the drag term is defined with
regards to the global translational velocity ṗG , when it in reality should be
defined in the body frame based on ṗB, as assymetries of the quadcopter
geometry makes the drag term dependent on the rigid-body rotation as well
as translational speed in the global frame.

8

2.1 Tait-Bryan rigid-body dynamics

With the above definitions, the complete Lagrangian can be written in
terms of the systems kinetic, rotational and potential energy as

L(s, ṡ) = Ekin + Erot + Epot =
1

2
mṗTG ṗG +

1

2
ωTBIBωB −mgpG ẑG (2.14)

for which Euler-Lagrange equations[
f
τ

]
=

d

dt

(∂L
∂ṡ

)
− ∂L
∂s
. (2.15)

are solved in accordance with Hamilton’s principle [Castillo et al.,
2005] [Raffo et al., 2010]. The drag term should not be included, as it
pertains to the dissipation rather than the conservation of energy.

Now, if we for the sake of simplicity assume that the drag matrix has a
close to constant diagonal such that D11 = D22 = D33 = d, which will be
validated by in the section on system identification, then it follows that the
drag term reduces to

mRBGDBR
T
BG = mdRBGIR

T
BG = mdI = mDB (2.16)

by Euler’s rotational theorem [Palais and Palais, 2007]. With this approxima-
tion, then there are no terms in the energy expression coupling the positional
and angular derivatives, and we may proceed by solving the system in terms
of (i) translation and (ii) angles independently as pointed out in [Castillo
et al., 2005]. If we first consider the translation with the force defined in the
global coordinates, then by Newton’s second law, equation (2.15) becomes

mp̈G = RBGTB −DBṗG −mgẑG (2.17)

In similar fashion, we write the rotational energy in the global frame by
equation (2.6) as

Erot =
1

2
ωTBIBωB =

1

2
η̇TWT (η)IBW(η)η̇ =

1

2
η̇TJ(η)η̇ (2.18)

denoting the matrix J(η) = WT (η)IBW(η) for convenience. The angular
part of the Euler-Lagrange equation then takes the form

τ =
d

dt

(1

2
η̇TJ(η) +

1

2
J(η)η̇

)
− 1

2

∂

∂η

(
η̇TJ(η)η̇

)
(2.19)

= J(η)η̈ + J̇(η)η̇ − 1

2

∂

∂η

(
η̇TJ(η)η̇

)
(2.20)

= J(η)η̈ + C(η, η̇)η̇ (2.21)

9

Chapter 2. Modelling

where the elements of C(η, η̇) was found using Matlab’s symbolic toolbox
(see Appendix A.3). In summary, the equations of motion in the Tait-Bryan
angle representation of rotation is given by{

p̈ = −gẑG + 1
mRBGTB − 1

mDBṗ

η̈ = J−1(η)(τB −C(η, η̇)η̇),
(2.22)

The same derivation has been done in much previous well cited work, using
slightly different nomenclature but arriving at similar results [Luukkonen,
2011] [Raffo et al., 2010] [Castillo et al., 2005]. While making assumptions
such as (i) independence between generated rotor thrusts and the transla-
tional speeds (2.7), (ii) time-invariance of the rotor model in (2.9) and (iii)
simplifications of both the inertial and drag tensors (2.12) (2.13), the model
is accurate enough to perform aggressive model based control in real-time ap-
plications [Landry, 2015]. As such, the points (i) to (iii) could be addressed
to improve performance, but a more pressing issue with respect to aggressive
flight is in the parametrisation of rotation which may give rise to dynamical
singularities.

Singularities and Gimbal lock The Tait-Bryan angle representation is
widely used but may give rise to dynamical singularities during aggressive
flights. This is commonly referred to as Gimbal lock [Lepetit and Fua, 2005],
and is a symptom of the parametrisation of the SO(3)-rotation which is
reflected in the map W(η) becoming singular for θ = (n + 1/2)π, implying
a singular matrix J(η) by (2.18). Recalling that R = R(ψ)R(θ)R(φ), it is
clear that a pitch of θ = (n+ 1/2)π, n ∈ N yields

R(φ, (n+ 1/2)π, ψ) =

 0 0 1
sin(φ+ ψ) cos(φ+ ψ) 0
− cos(φ+ ψ) sin(φ+ ψ) 0

 (2.23)

with the double angle formulae. Here, In this state, changing ψ and φ will only
rotate the the coordinate system around the z-axis and and we effectively
lose one degree of freedom, giving some intuition as to why the singularities
arise.

In order to simulate and evaluate control in the entire η-space, the sys-
tem (2.22) was augmented to keep the pitch constant at it’s most recently
feasible value θf when sufficiently close to the singularity. The modified sys-
tem dynamics become

η̈ =

{
J−1(φ, θ, ψ)(τ −C(η, η̇)η̇), if | cos(θ)| > ε

J−1(φ, θf , ψ)(τ −C(η, η̇)η̇), if | cos(θ)| ≤ ε
. (2.24)

In the Appendix A.4, it is shown that this is equivalent of bounding the
condition number, κJ(η) < κmax, of the J-matrix. As a consequence, the re-

10

2.2 Quaternion rigid-body dynamics

sulting system contains no dynamical singularities in finite time. To demon-
strate this modified Tait-Bryan angle model in critical flight, the continuous
time model is run with a discrete time controller which will be discussed in
later sections. The system is set to follow a lowpass filtered ramp reference
in pitch, θr(t), starting at θr(t = 4) = 0 [rad] and reaching a full revolution
at θr(t = 8) = 2π. Implementing the feasibility conditions with ε = 0.1,
we may then simulate flight through two singular regions where the original
Tait-Bryan angle dynamics blow up. The epsilon was chosen such that the
bound on the condition number of J(η) never exceeds 800, but can be made
smaller if need be (see Figure 2.2).

Figure 2.2 Left: Simulated system response (blue) when generating a
control signal sequence (black) to follow a reference in pitch (red) effectively
looping the quadcopter in the θ-direction, passing two singularity regions
(blue) where previous models break down. Right: The condition number of
κJ(θ) (black) as a function of θ for two numerical limits, ε1 = 0.1 (blue)
and ε1 = 0.05 (red) and corresponding bounds, κmax.

2.2 Quaternion rigid-body dynamics

The Tait-Bryan angles are intuitive and simple to use, but the computational
complexity required to evaluate the trigonometric functions makes the model
suboptimal for a real time implementation. To get around this issue entirely,
we will instead make use of the quaternion formalism, which represents the
rotation as a four dimensional complex number with one redundant degree
of freedom. For this discussion, we will use the Cayley-Dickson construc-

11

Chapter 2. Modelling

tion [Baez, 2005], where a quaternion is defined as

Q = a+ bi+ cj + dk ∈ H (2.25)

with {a, b, c, d} ∈ R and {i, j, k} being imaginary units. In this particular
construction, some noteworthy and useful algebraic identities are

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
(2.26)

To discuss the geometrical implications of the quaternion, we define it in
polar form by Euler’s identity

Q = e(vxi+vyj+vzk)θ/2 = cos(θ/2) + ivx sin(θ/2) + jvy sin(θ/2) + kvz sin(θ/2)
(2.27)

expressed in the compact notation

q =

[
cos(θ/2)

v sin(θ/2)

]
=


cos(θ/2)
vx sin(θ/2)
vy sin(θ/2)
vz sin(θ/2)

 =


qw
qx
qy
qz

 =

[
qw
qv

]
∈ R4×1 (2.28)

with a unit vector v =
[
vx vy vz

]T ∈ R3. In addition, the real and imagi-
nary parts of the quaternion are notated <{q} = qw ∈ R and ={q} = qv ∈
R3×1 respectively.

Here we may take two distinct approaches in defining the rotation, the
Hamilton form, commonly used in the field of robotics and compatible with
programs such as ROS and Eigen [Tully Foote, 2016], or we may opt for the
JPL form, developed for NASA and commonly used in the field of aerospace
engineering. The major difference between the two is the definition of the
product ij. In the Hamilton form the product is defined as ij = k as in equa-
tion (2.26), resulting in a right-handed rotation of θ around v, the rotational
axis. However, in the case of the JPL formulation, the product is defined as
ij = −k making the rotation left handed [Sola, 2012]. For the remainder of
this document, we will adopt the Hamilton form, resulting in the quaternion
product

p⊗ q =

[
pwqw − pTv qv

pwqv + qwpv + pv × qv

]
=


pwqw − pxqx − pyqy − pzqz
pwqx + pxqw + pyqz − pzqy
pwqy − pxqz + pyqw − pzqx
pwqz + pxqy − pyqx − pzqw

 (2.29)

when using the Cayley-Dickson construction (2.25) obtained using its basic
algebraic identities in the Hamilton form (2.26). The operation admits a
simple matrix form, as

p⊗ q = [p]Lq = [q]Rp (2.30)

12

2.2 Quaternion rigid-body dynamics

with

[q]L = qwI +

[
0 −qTv
qv [qv]×

]
, [q]R = qwI +

[
0 −qTv
qv −[qv]×

]
(2.31)

and [·]× denoting the skew symmetric operator

[qv]× =

 0 −qz qy
qz 0 −qx
−qy qx 0

 . (2.32)

with the inverse map [·]∨, such that [[qv]×]∨ = qv.
Furthermore, we define the complex conjugate and absolute value of the

quaternion similarly to standard complex numbers

q∗ =

[
qw
−qv

]
, ||q|| =

√
q∗ ⊗ q =

√
q2
w + q2

x + q2
y + q2

z (2.33)

which by using equation (2.29) can be shown to satisfy

q∗ ⊗ q = q⊗ q∗ =

[
||q||2

0

]
. (2.34)

With this result, the inverse of the quaternion can be expressed as

q−1 ⊗ q = q⊗ q−1 =

[
1
0

]
⇒ q−1 =

q∗

||q||2
. (2.35)

Finally, the quaternion rotation operation from xB to xG in relation to the
standard rotation matrix RBG ∈ SO(3) can be written

xG = RBGxB,

[
0

xG

]
= qBG ⊗

[
0

xB

]
⊗ q∗BG (2.36)

as shown using the vector rotation formula in the Appendix A.5.

Newton-Euler equations

When representing the system in terms of the previously defined quater-
nions instead of Tait-Bryan angles, some aspects of the model require new
thought. Instead of using the map W(·), we now need to define the quater-
nion time derivative in terms of the angular rates vector in the body frame,
ωB. Through a series of developments, shown in Appendix A.6, this rela-
tionship is given by

q̇ =
1

2
q⊗

[
0
ωB

]
. (2.37)

13

Chapter 2. Modelling

With this result, we may express the angular dependence in the quadcopter
model by means of quaternions using the Newton-Euler equations [Fresk and
Nikolakopoulos, 2013]. Similarly to the previous derivation with the Euler-
Lagrange equations, we denote the externally applied forces by the forces in
the global frame, FG , and torques in the body frame and τB respectively,
resulting in [

FG
τB

]
=

[
mI 0
0 IB

] [
p̈G
αB

]
+

[
0

ωB × IBωB

]
. (2.38)

where αB = ω̇B. We start by expressing the force equation in the global
frame, including the thrust in the body frame, the gravitational acceleration
and the drag from the air resistance, which yields the same equation as in the
Euler-Lagrange case. Using the relationship (2.37) we see that the angular
part of the Newton equation can be expressed by means of the quaternion
product, resulting in the complete system

p̈G =
1

m
=
{

q⊗
[

0
TB

]
⊗ q∗

}
− gẑG −

1

m
DGṗG

q̇ =
1

2
q⊗

[
0
ωB

]
ω̇B = I−1

B (τB − [ωB]×IBωB)

(2.39)

which admits a simple state-space representation if writing out the quater-
nion terms using (2.35) (2.31) (2.33) presented in Appendix A.7.

At this point, we have two non-linear rigid-body models of the UAV which
both may be written in state space form

ẋ(t) =A(x)x(t) + B(x)u(t) + G

y(t) =C(x)x(t)
(2.40)

with different dimensions and definitions of {x,A,B,C} (see Ap-
pendix A.7 A.8). Despite describing the same reality, the mathematical
properties of the models result in cases when they should not be considered.
Before these developments, we will first present the rotor dynamics of the
UAV.

2.3 Rotor dynamics and coupling

While the simplified rotor dynamics outlined in Section 2.1 may be used for
real-time control, the approximations of time-invariance and independence
between generated thrust and translational speeds may be crude during ag-
gressive flights [Powers et al., 2013]. Consequently, we will in this section

14

2.3 Rotor dynamics and coupling

develop a non-linear rotor model to yield more accurate simulations in eval-
uating control and enable discussions on current feedback rotor control.

The Crazyflie UAV implements a set of brushed motors (DC), controlled
by standard pulse-width modulation (PWM). The amplitude of the PWM
signal is U ∈ [0, 3.7] [V], its carrier frequency is 300 [kHz] with a frequency
duty cycle by d ∈ [0, 1]. For the purposes of modelling the complete UAV
dynamics, we will in this section describe the dynamics of a common DC
motor using Kirchhoff’s and Newton’s laws [Åström and Murray, 2010] before
investigating the effect of attaching a rotor.

Assume that the effective torque generated by the motor, T [Nm], is
proportional to the armature current i(t) by some constant Kt [Nm/A] and
that there exists viscous friction with some constant b [Nms]. Furthermore,
we define the rotor moment of inertia as J [kgm2] and the angular position
of the rotor is as µ(t) [rad], such that µ̇(t) = Ω(t) by the previous definitions.
Newton’s second law of motion then results in

Jµ̈(t) = T − bµ̇(t)⇔ µ̈(t) =
1

J

(
Kti(t) + fc(p, ṗ, ẑB)− bµ̇(t)

)
. (2.41)

where fc(·) is a term coupling the previously discussed quad-rotor dynamics
with the rotor dynamics. This coupling can be defined to capture effects of
translational speeds along the ẑB-axis and the ground effect during proximity
flights [Powers et al., 2013], but is generally disregarded and exact modelling
of aerodynamical effects remains an open research question.

Similarly to the mechanical equation, we assume that electro-motive force
e(t) to be proportional to µ̇(t) by a constant Ke [V/rad/s] and let the motor
have an inductance of L [H], and resistance of R [Ohm]. Applying a voltage
U(t) [V] to the motor, Kirchhoff’s law results in

Li̇(t) = −Ri(t) +U(t)− e(t)⇔ i̇(t) =
1

L

(
−Ri(t) +U(t)−Keµ̇(t)

)
. (2.42)

Combining (2.41) and (2.42) and disregarding coupling terms results in a

continuous time system with a state vector x(t) =
[
µ(t) µ̇(t) i(t)

]T
, and

a single control signal u(t) = U(t), which may be used for state estimation
in the real time implementation for model based rotor speed control.

When attaching the rotor to the shaft, the system exhibits behaviours
which that not captured in the linear dynamics. Measuring the rotor speed
response when setting the duty cycle from low to high shows that some system
parameters change significantly, seemingly with the rotor acceleration (see
Figure 2.3).

Consequently, we add a non-linear function to equation (2.41) and as-
sume this non-linearity to be proportional to the angular acceleration by
some constant α and dependant on the sign of the velocity, such that the

15

Chapter 2. Modelling

Figure 2.3 Left: The rotor speed step response of the physical brushless
DC rotor subject to a pulse where the duty cycle is set to d = 1 over two
seconds. Right: The rotor speed step response of the modelled non-linear
brushed DC rotor.

contribution differs based on whether |θ̇| is increasing or decreasing. The
mechanical equation then becomes

Jµ̈(t) = T − bµ̇(t) + f(µ̇(t), µ̈(t))⇒ (J − αsgn(µ̇(t)µ̈(t)))µ̈(t) = T − bµ̇(t)
(2.43)

which effectively can be thought of as variable rotor moment of inertia, with

J =

{
J+ if sgn(µ̇(t) · µ̈(t)) > 0

J− if sgn(µ̇(t) · µ̈(t)) < 0
. (2.44)

The single-input single-output (SISO) model of the nth rotor is then defined
by the system

ẋrn(t) = Ar
nxrn(t) + Br

nu
r
n(t) (2.45)

yrn(t) = Cr
nxrn(t) (2.46)

with a state vector xin(t) =
[
µn(t) µ̇n(t) in(t)

]T
, and a single control

signal un(t) = Un(t), and

Ar
n =

0 1 0
0 −b/J± Kt/J

±

0 −Ke/L −R/L

 , Br
n =

 0
0

1/L

 , Cr
n =

0
0
1

T . (2.47)

The system identification is omitted for brevity but described in Ap-
pendix A.2, resulting in the parameters used to generate the simulated
step response (see Figure 2.3).

16

2.4 Implementation considerations

2.4 Implementation considerations

Incorporating both a rigid-body model (2.24) (2.39) and four rotor SISO
models (2.45), the entire UAV system is described by the extended state
vector,

xe ,
[
(xr)T xT

]T
,
[
(xr1)T (xr2)T (xr3)T (xr4)T xT

]T
(2.48)

containing UAV with > 24 states. Such a model will render embedded model
based controllers and estimators infeasible if used in its entirety. In this sec-
tion, a set of assumptions will be made in order to reduce the model order and
the analytically linearised systems will be presented for model based control.
Finally, a cheap method of discretisation will be given, including constant
gravitational terms.

Model reduction If we assume that the translational rigid-body movement
does not affect the rotors in any way, then the rotor- and rigid-body UAV
dynamics may be decoupled. This results in one multiple-input multiple-
output (MIMO) rigid-body system and four decoupled SISO rotor systems
which may all be controlled independently (see Figure 2.4). For the rotor
control, we may simplify things further by assuming the approximation of
the rotor thrust being proportional to the rotor speed squared (2.7). This
enables open loop rotor control if restricting the rotation of the rotors to a
predefined direction, such that the inverse relationship is unique.

Figure 2.4 Top: The complete UAV model (top) with a coupling term
M(x) affecting the rotor dynamics. Bottom: Decoupling of rotor- and rigid-
body systems made possible if assuming that M(x) ≡ 0.

17

Chapter 2. Modelling

Linearisation In many considered controllers, the linearized system dy-
namics are used. Both the Tait-Bryan and quaternion rigid-body models, here
represented as a general non-linear system ẋ(t) = f(x(t),u(t)), solely depend
on the attitude and its derivative, the quadcopter mass, m, the inertial tensor
IB and the drag matrix DB. Consequently, any controller operating using the
linearized system will require very little system identification. Given a point
in the rigid-body state-space, x0, either of the two systems can be linearised
around a control signal trajectory, u0, such that the linearised system error
dynamics

x̃(t) = x(t)− x0(t), ũ(t) = u(t)− u0(t) (2.49)

are governed by
˙̃x(t) = Ã∆xx̃(t) + B̃∆uũ(t). (2.50)

the linearized system matrices are then computed as

Ã∆x =
∂f

∂x

∣∣∣
x0,u0

, B̃∆x =
∂f

∂u

∣∣∣
xr0u0

. (2.51)

As we are only interested in the Euler-Lagrange system close to a stable
hovering point, the linearised system is given in Appendix A.8 where in
addition an analytical expression of the linearised quaternion Newton-Euler
system is given for all possible combinations {x0,u0, IB,DB}.

Controllability The synthesis of many controllers, such as the large fam-
ily of LQR controllers, require complete controllability. For arbitrary linear
temporal-invariant (LTI) systems such as the linearised rigid-body dynamics
in Appendix A.8, we may determine the controllability by showing positive
definiteness of the controllability Gramian

Wc(0,∞) =

∫ ∞
0

eÃ∆xτ B̃∆xB̃T
∆x(eÃ∆xτ)T dτ ∈ Rn×n. (2.52)

which by the Cayley-Hamilton theorem [Vilfan, 1973] is equivalent to full
row-rank of the controllability matrix

C =
[
B̃∆x Ã∆xB̃∆x · · · Ãn−1

∆x B̃∆x

]
∈ Rn×nm. (2.53)

By this criteria, the Tait-Bryan angle system linearised around a stable
hovering state is completely controllable, satisfying rank(C) = 12. Attempts
at proofs of complete controllability for the non-linear Tait-Bryan angle dy-
namics have been done in a more general sense by Sato et.al., where the
property was presumably shown for all attitudes η [Sato, 2014]. However,
this is not the case for practical purposes. In a simple heuristic experiment,
uniformly distributing

η ∼ U(0, 2π), η̇ ∼ U(−1, 1), T ∼ U(0.1, 0.5) (2.54)

18

2.4 Implementation considerations

Figure 2.5 Left: The histogram of the linearised system controllability
matrix rank. Right : The correlation between the pitch θ and the system con-
trollability matrix rank, the infeasible region (n+ 1)π/2±arccos(ε) marked
red, and the red lines indicating the dynamical singularities in the η-space.

and analysing a total of 105 linearizations, the probability of finding a fully
controllable system is ≈ 0.9 (see Figure 2.5).

The controllability is strongly correlated with the pitch, θ, which greatly
reduces system controllability close to cos(θ) = 0 due to poor conditioning
in the angular equations (2.22). In Section 2.1, a method was presented to
of get around this issue such that complete controllability can be assumed
with high probability, making the model viable for time-varying model based
control in the entire η-space.

In contrast, the Newton-Euler quaternion model is not fully controllable,
as rank(C) = 12 6= 13, caused by the extra degree of freedom introduced by
the quaternion. A remedy to this may be to parametrise qw =

√
1− qTv qv in

the dynamics, but then information is lost regarding the sign of the real part,
only allowing for control on one hemisphere of the hypersphere of q ∈ H. The
issue of guaranteeing controllability in the Newton-Euler equations for LQR
synthesis is left as an open topic for future research.

Non-uniqueness and dynamical unwinding There is a fundamental
problem in considering multiple means of parametrising the rigid body rota-
tion in the same application. It is easily verified that the quaternion represen-
tation is anti-podal due to the quaternion-product being non-commutative,
meaning that R{q} = R{−q}. Creating a rotation matrix from a quaternion
is therefore a two-to-one map, while creating the quaternion from a rotation
matrix is non-unique and implies a loss of information. As a result, a quater-
nion generated from a rotation matrix may at times switch between q and
−q, commonly referred to as dynamical unwinding. Similarly, Tait-Bryan
parameterisations suffer on account of the trigonometric terms which make

19

Chapter 2. Modelling

any conversion from Tait-Bryan angles to rotation matrices a or quaternions
a many-to-one map.

Figure 2.6 Left : Safe rotation conversions (black) and conversions sus-
ceptible to dynamical unwinding (red). Top Right : Two instances of dy-
namical unwinding marked by circles when creating a quaternion attitude
representation, qc(t), from a rotation matrix representation, R(t). Bottom
Right : Dynamical unwinding in roll φc(t) marked with circles occurring
when recreating a Tait Bryan attitude from a continuous rotation matrix,
R(t).

From this we conclude that any application hoping to perform loops and
aggressive manoeuvres, must define a controller which operates on a rota-
tional parametrisation containing containing as much, or more, information
than the parametrisation used in the estimator. If for instance using a con-
troller operating on the Tait-Bryan angles, the estimator must contain a
Tait-Bryan model. If only using a quaternion or rotational matrix formula-
tion with Tait-Bryan control, the system becomes susceptible to dynamical
unwinding and may fail. As such, the most general controller will act on the
rotation matrix directly, and the most general estimator will operate on the
Tait-Bryan angles. With that said, in the real-time application we should
instead consider the quaternion formulation as it is more computationally
efficient, demonstrating once more why Tait-Bryan angles unsuitable for the
aggressive manoeuvres.

Discretization Regardless of the parametrisation of rotation, discrete time
integration of the system is required in both the model based control and the
state estimators. For this purpose, we assume that the system changes very
little over a time interval [tk, tk+h] and apply the zero-order hold ZOH time
integration [Chen and Francis, 2012]. In Appendix A.9, it is shown that an
arbitrary system with constant terms

ẋ(t) = Ax(t) + Bu(t) + G (2.55)

y(t) = Cy(t) (2.56)

20

2.5 Open loop response

with A ∈ RM×M , B ∈ RM×N , G ∈ RM×1, can be discretised to the form

ẋ(hk + h) = Φx(hk) + Γu(hk) + Ψ (2.57)

y(hk) = Cx(hk). (2.58)

by letting

M =

A B G
0 0 0
0 0 0

 ∈ R(M+N+1)×(M+N+1) (2.59)

where then

eM∆t =

∞∑
k=0

1

k!
(M∆t)k ≈ I+M∆t+O(||(M∆t)||22) =

Φ Γ Ψ
0 I 0
0 0 I

 . (2.60)

No sub-matrix in the Euler angle or Quaternion state space represen-
tations are nilpotent, but the definition of the matrix exponential is still a
powerful tool in solving the above equation numerically as the elements of
the matrices IB and DB are � 1. Higher order terms in the exponential
matrix sum will rapidly approach zero, and only including the first order
terms in the discretizations will be shown to be a good approximation of the
continuous time system.

2.5 Open loop response

To demonstrate the derived Newton-Euler quaternion dynamics and the im-
plementation, the model is simulated with identified parameters of drag and
inertia in the plus configuration. The reference rotor speeds, Ωr, are defined
as sinusoidal splines on five time intervals, deviating only slightly from the
signals required to maintain stable hovering position at a thrust of T = mg
[N]. Furthermore, the model response of translational speed in the global
frame ṗG is presented, as well as the ZYX Tait-Bryan angle parametrisation,
η, of the attitude quaternion, q for basic intuition. The example showcases
rotor dynamics as well as the derived method of system discretisation using
the first order exponential matrix formulation including the constant gravi-
tational term. The response of continuous time system (2.39) in translational
velocity and attitude (black) is compared to the discrete time model (2.57)
simulated at a rate of 60 [Hz] only including the first order terms in the
exponential matrix sum (red, blue and green) (see Figure 2.7).

On the first interval, I1 = [0, 0.5) [s], rotor speed is increased syn-
chronously across all rotors, effectively accelerating the quadcopter to a
slightly elevated position which is reflected in the z-component of the trans-
lational response. As the integral of the applied thrust is zero over I1, the

21

Chapter 2. Modelling

Figure 2.7 Simulation of the continuous and discrete time quaternion
UAV dynamics. Top left: Rotor speeds, Ω [rad/s], deviating slightly from
a stable hovering state by sinusoid splines. Top right: Resulting thrust [N]
and torques [Nm] of the rigid body system. Bottom left: Translational speed
in the global frame with the continuous time model (black) and with the
discrete time model (red, blue and green). Bottom right: The quaternion
attitude response, transformed into Tait-Bryan angles in continuous time
(black) and discrete time (red, blue and green).

speed is clearly ż(0) = ż(0.5) = 0 as a consequence of the conservation of
energy. Furthermore, the sequence will not generate any difference in rotor
speeds and thereby no torques, which is accurately reflected by the force and
torque response.

On the second interval, I2 = [0.5, 1.0) [s], the rotor speeds of motor 2
and 4 are varied sinusoidally with a phase offset of π [rad], which generates
a torque about the x-axis where the integral of the torque is zero over I2,
hence the roll increases while the remaining Tait-Bryan angles remain fixed.
The same reasoning applies to the second interval, I3 = [1.0, 1.5) [s], where
a torque about the y-axis rotates the already rotated frame and thereby
induces a change in not only pitch θ but also yaw ψ. The reason ψ is affected
by a rotation about the y-axis is due to the discrepancy between our choice
of Tait-Bryan angles and the body rates with respect to which the torques
are defined, recall ωB = W(η)ηG .

On the fourth interval, I4 = [1.5, 2.0) [s], the rotor speeds induce a positive
torque about the z-axis which cases the attitude to shift more dramatically.

22

2.6 Summary

This is partly due to all four rotors are cooperating in generating the torque,
which around the z-axis is governed by different parameters than the x and y
axes as shown in (2.9), (2.7) and(2.8). In addition, the inertia tensor IB does
not have a constant diagonal due to geometric asymmetries of the quad-
rotor.The attitude remains constant at some R 6= I and in this state the
thrust required to hover is not counteracting gravity. As a consequence the
z-component of the velocity grows negatively, eventually causing a crash
with the ground. Furthermore, the velocities increase linearly which is to be
expected during constant accelerations induced by constant thrust, and the
discretisation developed to its first order approximation provides an efficient
tool for evaluating the model in a real-time context at rates of 60 [Hz].

2.6 Summary

In this section, we have provided the definitions necessary to understand the
dynamics of the quad-rotor UAV in the context of both a Tait-Bryan and
quaternion parametrisation of the SO(3) rotation, detailing both the Newton-
Euler and Euler-Lagrange approaches. We have performed basic system iden-
tification of the maps from duty cycle to rotor thrust which validated results
from blade element theory [Bangura et al., 2016], and devised the maps from
thrust and torques to desired PWM duty cycle in the brushless motors in
both the “+”- and “×”-configurations respectively.

Furthermore, a continuous time rotor model has been derived to more ac-
curately simulate the system when synthesising and comparing controllers.
We have shown that the Tait-Bryan angle model may fail, and therefore
proposed a method for preserving dynamical feasibility and controllability
throughout the entire η-space. The quaternion model on the other hand is
not fully controllable and therefore not suited for synthesis of LQR con-
trollers. The rotation were discussed to illustrate potential problems when
using multiple parameterisations of rotation in the same system during ag-
gressive flight. Finally, analytical state space linearisations of the quaternion
and Tait-Bryan systems were given, and a computationally efficient method
of discretisation was derived.

23

3
Motion planning

In all conceivable quadcopter applications, robust motion planning is of out-
most importance. From an architectural perspective, this is arguably the most
challenging aspect of the thesis, as it strives to meet the needs of Bitcraze
AB, as well as the Robotics and Autonomous Systems Center (RASC) at
USC, the CDS departement of ETH and the Media Lab at MIT. Naturally,
a wide variety of problems had to be solved, and the specifications of the
system can be summarised in the following seven points (i)-(vii).

(i) Compliance with the rigid-body dynamics.

(ii) Being economical in terms of power usage.

(iii) Avoiding paths which intersect known static obstacles.

(iv) Avoiding dynamic obstacles.

(v) Loading and on-line evaluation of precomputed trajectories represented
with minimal information.

(vi) Compliance with current academic- and industry standards with .

(vii) Synchronising trajectory evaluation across multiple UAV ’s.

(viii) Scheduling events.

The above specifications have all been met in our implementation, and
therefore serves as holistic view of the real-time application. The specifica-
tions (i)-(iv) are handled on a host host computer, and (v-viii) are accom-
plished in the embedded system. This chapter mainly detalils the mathemat-
ics required to solve the problems, referring to [Greiff, 2017] for the code,
documentation and supplemental notes on the real-time implementation.

The first section concerns the model compliance, (i), and representation
of trajectories in minimal information, (v), with a discussion on differential
flatness. Here it will be shown that all states and control signals in the systems

24

Chapter 3. Motion planning

can be determined from a set of flat outputs, γ, presenting the equations as
implemented in the Crazyflie firmware. The theory, while requiring the fourth
order derivative of γ to be defined, allows for cheap on-line computation of
feed forward terms in any considered control system.

The second section concerns the generation of trajectories in flat output
space. Here we handle specification (ii) by equating the power consumption
to a distance travelled and solving a multi-dimensional travelling salesman
problem (TSP). For this purpose, a genetic algorithm (GA) is proposed to
mutate an initial feasible solution to a close-to-optimal solution with an upper
bound on computational time. The derived algorithm is capable of assign-
ing different priorities to subsets of M -dimensional points, P ∈ RM×N , with
corresponding times, T ∈ RN such as the higher priority points are guaran-
teed to be passed first. This algorithm is particularly useful if the points are
considered as “jobs” at which the quadcopter needs to perform a task, such
as reading a bar code or otherwise interacting with the environment.

The third section outlines how the points P from the TSP -GA solution
may be used to parametrise trajectories in flat output space, allowing the safe
evaluation of the flatness equations in the real-rime application and simulta-
neously satisfying (ii), (iii) and (vi). For this purpose, we consider a method
of polynomial interpolation [Richter et al., 2013] with a polynomial degree n,
where a constrained quadratic program (QP) is solved to minimise the fourth
positional derivative of a trajectory. The resulting “minimum snap” trajec-
tory is represented by a set of N polynomial coefficients, P ∈ RN(n+1), and
times, T. When choreographing many Crazyflies, programs such as Blender
is often used [Blender Online Community, 2016]. Here cubic Bezier curves
are used to create coordinated movement instead of polynomial splines, cre-
ating set of control points PB ∈ RN×4 and times T characterising the Bezier
curve [Jolly et al., 2009]. In addition, many users parametrise circular move-
ment by sinusoid trajectories described in terms of an amplitude A, initial
offset B, frequency and phase ω, ϕ as well as a time during which the trajec-
tory should be followed T. Finally, we also provide a method of evaluating
the linear segments from the GA directly by means of high-order smoothing.

The final specifications of synchronisation (vii) and event scheduling (viii)
were both met by modifying the Crazyflie driver, originally implemented
in [Hoenig et al., 2015], referring to [Greiff, 2017] for additional details on the
modifications. In summary, the proposed architecture will be shown to satisfy
the specifications (i)-(viii) and is general enough to allow the flat outputs to
be defined not only by compositions of the above mentioned trajectories, but
also have them start and finish at different points in time. Furthermore, it al-
lows the pre-loading, re-loading and synchronisation of trajectories, enabling
autonomous flight completely free from delays in communication between the
host computer and the Crazyflie.

25

Chapter 3. Motion planning

Figure 3.1 Embedded motion planning architecture in the Crazyflie.

3.1 Differential flatness

Differential flatness was first introduced by means of differential alge-
bra [Fliess et al., 1992], and has more recently been explored using Lie-
Bäckman transformation theory [Fliess et al., 1999]. Consider a very general
non-linear system, defined by x ∈ RM×1, u ∈ RN×1, and M ≥ N , which has
the property of being differentially flat. We may the find a set of flat outputs
γ ∈ RN×1,

γ = h(x,u, u̇, · · · ,u(r)) (3.1)

such that

x = fα(γ, γ̇, · · · ,γ(q)), u = fβ(γ, γ̇, · · · ,γ(q)). (3.2)

which allows the identification of all system states, including control signals
from the γ parameters without integration. If this property may be proven,
it provides a cheap method of evaluating a trajectory’s dynamical feasibility.
In addition, our specific rigid-body system (2.39) contains four input signals,
implying that motion planning need only be done in at most four dimensions,
minimising the information with which the trajectory is represented.

The Newton-Euler quaternion dynamics are fully actuated, symmetric
and holonomic, the system is likely therefore likely differentially flat in it’s
centre of mass [Murray et al., 1995]. As shown by many before us, flatness
can indeed be proven with q = 4 for simplified Newton Euler equations
excluding drag using a ZXY Tait-Bryan angle representation [Mellinger and
Kumar, 2011]. However, it should be noted that this need not be the case
when adopting the quaternion rotations due to the extra degree of freedom
introduced. Consequently, we will derive the flatness equations using the
ZYX Tait-Bryan angles and quaternion parametrization of the SO(3). First

26

3.1 Differential flatness

for the angular states, the for the angular rates, and finally for the angular
accelerations and control signal torques.

The equations will be tested by simulating the PD-stabilised continu-
ous time quaternion quad-rotor dynamics, numerically deriving the system
response of some chosen flat output γ to the fourth derivative and then
attempting to recreate the original system response using the flatness equa-
tions. If accurate, we should in each subsection be able to derive the exact
states and control signals based solely on γ, yielding a very visual accu-
racy test and interpretation of the theory. The controllers will be discussed
in later sections and are omitted here, but when simulating the system, we
let roll, pitch and yaw follow first order lowpass-filtered unit steps, such that
(φr(t), θr(t), ψr(t)) ∈ [−0.8, 0.8] [rad], and let the set-point in elevation follow
a sinusoidal reference with that zr(t) = 0.5 sin(0.75t) [m] (see Figure 3.2).

Figure 3.2 Closed PD-loop simulation of attitude and elevation of the
quaternion dynamics used to validate the flatness equation derivation and
implementation.

For future reference in the derivation of the DF -equations, we notate for
body rates and body accelerations relative the inertial frame by,

ω̇B =
[
ω̇x ω̇y ω̇z

]
=
[
αx αy αz

]
= αB [rad/s2], (3.3)

recall the cross product identity

u · (v × u) = v · (u× u) = 0 ∀ u,v ∈ R3, (3.4)

and note that the time derivative of a rotation RGB ∈ SO(3) can be written

ṘBG = RBG [ωB]× ⇔ ṘGB = −[ωB]×RGB (3.5)

as shown in Section A.11.

27

Chapter 3. Motion planning

Angular states and attitude As we are likely to control the position
of the quad-rotor in space, the quadcopter position p(t) = (x(t), y(t), z(t))
in the global frame is included in γ. The last output is chosen as the yaw
angle ψ(t) as in [Mellinger and Kumar, 2011], for reasons which will become
apparent. For this and all future discussion, we define the outputs

γ(t) =
[
γ1(t) γ2(t) γ3(t) γ4(t)

]T
,
[
x(t) y(t) z(t) ψ(t)

]T
(3.6)

and assume that γ(q) exists for q ≤ 4. To find the attitude, we simply need to
define φ(t) and θ(t) as a function of the flat outputs, which can be done by the
p̈-terms. The unit vector ẑB can be expressed in terms of ã = [γ̈1, γ̈2, γ̈3 +g]T

as

ẑB =
ã

||ã||2
, (3.7)

as the rotors, by design, are incapable of rotating with negative rotor speeds.
Analogously, the thrust control signal is simply

T = m||ã||2. (3.8)

Now, if we denote the unit vector ŷC = [cos(γ4 + π/2), sin(γ4 + π/2), 0]T as
the ŷG rotated ψ around ẑG , we may construct the unit vectors of the body
frame as

x̂B =
ŷC × ẑB
||ŷC × ẑB||2

, ŷB = ẑB × x̂B (3.9)

recalling that we are using the conventional ZYX Tait-Bryan angle repre-
sentation of rotation, differing from the derivation in [Mellinger and Kumar,
2011]. Determining the parameterisations of rotation can then be done by
solving the equation

RGB
[
x̂G ŷG ẑG

]
= RGBI = R(ψ)R(θ)R(φ) =

[
x̂B ŷB ẑB

]
(3.10)

giving the rotation matrix and implicitly the quaternion attitude, q, though
not uniquely due to the quaternion being anti-podal (see Section 2.4). Con-
sequently, the system is not completely differentially flat, however, the same
can be said with the commonly used Euler angle parametrisation which is
used successfully in many applications [Mellinger and Kumar, 2011] [Landry,
2015]. The only time caution must be taken is when performing looping ma-
noeuvres, in which case controllers acting directly on the rotation matrix
should be implemented. In addition, the equations become singular when
ŷC ||ẑB by (3.9) which should be avoided at all times. The derived equations
are here demonstrated by finding the real and imaginary parts of the attitude
quaternion q(t) from the flat outputs γ(t), yielding a perfect reconstruction
(see Figure 3.3).

28

3.1 Differential flatness

Figure 3.3 Closed PD-loop simulated attitude (line) and re-created at-
titude as computed by the flatness equations (dotted).

Angular velocities In determining the angular velocities of the system,
ωB, we may use the translational equation in the Newton-Euler system

mp̈ = T ẑB −mgẑG. (3.11)

The system may be differentiated with respect to time, where then

d

dt

(
mp̈
)

=
d

dt

(
T ẑB −mgẑG

)
⇒ mp(3) = Ṫ ẑB + ωB × T ẑB. (3.12)

By projecting the expression along the ẑB unit vector and using the cross
product identity (3.4), the thrust derivative in the body frame can be written
as

Ṫ = ẑB · Ṫ ẑB = mẑB · p(3). (3.13)

Combining equations (3.12) and (3.13), the cross product with angular rates
can be written

ωB × ẑB =
m

T
(p(3) − (ẑB · p(3))ẑB) (3.14)

which can be thought of as the projection of p(3) onto the plane spanned by
x̂B and ŷB. It is then evident that the angular components are

ωx = −ŷB · (ωB × ẑB) (3.15)

ωy = x̂B · (ωB × ẑB) (3.16)

where the final component, ωz, can be found by solving the associated angular
equation

RGB
[
x̂G ŷG ẑG

] ωxωy
ωz

 = RGBI

ωxωy
ωz

 =
[
x̂B ŷC ẑG

] φ̇θ̇
ψ̇

 (3.17)

29

Chapter 3. Motion planning

where the yaw derivative is known as ψ̇ = γ̇4 is a flat output. Denoting

the matrix product A =
[
x̂B ŷC ẑG

]−1
RGB, with elements aij , we may

express the missing Tait-Bryan angles and body rates as

ωz =
ψ̇ − a31ωx − a32ωy

a33
(3.18)

φ̇ = a11ωx + a12ωy + a13ωz . (3.19)

θ̇ = a21ωx + a22ωy + a23ωz (3.20)

These equations are shown to yield perfect reconstruction of the pitch and
roll rates as well as the body angular rate about ẑB (see Figure 3.4).

Figure 3.4 Closed PD-loop simulated angular rates and rates as com-
puted by the flatness equations.

Angular accelerations We now seek the angular accelerations in the body
frame, αB, before finally using the inverse dynamics to compute the control
signal torques. This can be done similarly to the angular velocities, by first
differentiating equation (3.11) twice with respect to time

mp(4) = T̈ ẑB + 2ωB × Ṫ ẑB + ωB × (ωB × T ẑB) +αB × T ẑB (3.21)

Similarly to the case of angular velocities, projecting the above expression
along zB and using the identity (3.4) results in

T̈ =ẑB · T̈ ẑB = ẑB ·
[
mp(4) − ωB × (ωB × T ẑB)

]
︸ ︷︷ ︸

v

= ẑB · v. (3.22)

Equation (3.21) can then be written in terms of the vector v, as

v = (ẑB · v)ẑB + 2
[
ωB ×m(ẑB · p(3))ẑB

]
+αB × T ẑB (3.23)

30

3.1 Differential flatness

where we again used the expression for Ṫ derived in (3.13). Now, the x and
y components can be computed similarly to the angular velocities by letting

αB × ẑB =
1

T

[
v − ẑB · v − 2ωB ×m(ẑB · p(3))ẑB

]
(3.24)

where then

αx = −ŷB · (αB × ẑB) (3.25)

αy = x̂B · (αB × ẑB) (3.26)

In order to compute the z-component of the angular accelerations, we differ-
entiate equation (3.17) with respect to time using the time derivative of the
rotation as expressed in equation (3.5),

([ωB]×RGB)ωB+RGBαB = ωB×φ̇x̂B+ωC×φ̇ŷC+
[
x̂B ŷC ẑG

]
η̈ ⇔ AαB+b = η̈

(3.27)

where A =
[
x̂B ŷC ẑG

]−1
RGB ∈ R3×3, just as in the case of the angular

velocities, and the vector b ∈ R3×1 is given by

b =
[
x̂B ŷC ẑG

]−1 [
([ωB]×RGB)ωB − ωB × φ̇x̂B − ωC × φ̇ŷC

]
. (3.28)

As ψ̈(t) = γ̈4(t) is a known flat output, the z-component of the angular
acceleration is then given by

αz =
ψ̈ − b31 − a31ωx − a32ωy

a33
. (3.29)

At this point, we have full knowledge of the system states and their time
derivatives from the flat outputs. Consequently, the system torques can be
computed by means of inverting the angular dynamics

τ r = IBαB + [ωB]×IBωB (3.30)

showing that quaternion Newton-Euler system is indeed differentially flat by
demonstrating (i)-(iii). In recreating the torques, the equations are tested by
using the fourth numerical derivative of the positional response of the non-
linear closed loop system. These naturally become very volatile when the
angular states become saturated, resulting in discontinuous first derivatives.
Despite this numerically induced error, the replication of torques is close to
perfect despite the induced numerical errors (see Figure 3.5).

This makes the embedded motion planning an extremely powerful, as
feed forward terms in torques and thrust can be computed directly from
parametrisation of the four flat outputs. In addition, the theory enables a
full system linearisation at any given point in time and implicitly prior veri-
fication of reachability in for instance the time varying LQR control scheme.

31

Chapter 3. Motion planning

Figure 3.5 Closed PD-loop simulated control signals and control signals
as computed by the flatness equations.

3.2 Generation of flat output trajectories

The travelling salesman problem (TSP) is an NP -hard LP -problem which re-
volves around finding the shortest path between a set ofN points in the plane,
and a method of solving this problem is a necessity if the UAV is to execute
a set of tasks with minimal fuel consumption. The TSP has been the sub-
ject of much previous research, see e.g. [Padberg and Rinaldi, 1987] [Moscato
and Norman, 1992], and there exist many solvers for the problem, commonly
divided into exact and heuristic methods. The exact methods, such as the
recursive branch-and-bound (BnB) described by [Balas and Toth, 1983] or
the good branch-and-cut (BnC) methods guarantee an optimal solution with
no upper bound on computational time. However, the heuristic algorithms
improve the current solution on every iteration, and can therefore be termi-
nated by some criterion yielding a close-to-optimal solution in upper bounded
computational time. Recent results on heuristic TSP solvers and convergence
criteria can be found in the work of [Noraini and Geraghty, 2011].

Problem formulation

The standard LP -problem formulation consists of finding the shortest closed
path in the plane connecting a set of points, P = {pi ∈ R2×1 | i = [1, N] ∈
N}, where each point is visited exactly once. The cost matrix, C ∈ RN×N , is
defined by its entries

ci,j = ||pi − pj ||2, i, j ∈ [1, N] (3.31)

32

3.2 Generation of flat output trajectories

and the path matrix X ∈ NN×N is defined as

xi,j =

{
1 if the points pi and pj are connected

0 otherwise
(3.32)

The problem is then to minimise the objective function

J(X) =

N∑
i=1

N∑
j=1

ci,jxi,j , (3.33)

subject to constraints ensuring that each point is arrived at and left exactly
once

N∑
j 6=i,i=1

xi,j = 1,

N∑
j 6=i,j=1

xi,j = 1. (3.34)

Notably, this formulation of the N -point TSP can be extended to a higher
dimension P > 2 by redefining pi ∈ RP , at the low additional cost of (P −
2)N2 arithmetic operations per added dimension, as C is computed only once
and then used as a lookup table.

The genetic algorithm

The genetic algorithm (GA) is based on a population of feasible solutions,
a set of permutation laws, and a selection criteria. On each iteration, the
population is shuffled by a set of permutation laws, and only the most fit
members with regards to the selection criteria survive to the next generation.
In this general case, a starting point is not needed, as all of the points are
connected in a closed path by (3.34). The approach is similar to the work
of [Noraini and Geraghty, 2011], but employs a different path representation,
additional permutation laws and a new convergence criteria which is later
extended to take point subset priorities into account.

For the N -point TSP, the path matrix X is reformulated as a path vector
s = [s1, · · · , sN] containing all integer numbers 0, ..., N − 1 with s0 = sN ,
thereby satisfying the feasibility conditions (3.34). In addition, the total pop-
ulation at iteration i is defined as Si containing pmax path vectors, and J(s)
denotes the cost of a path vector. On each iteration, all solution vectors are
extracted from Si in random subsets, G, containing four path vectors. In
each subset, the most fit solution with regards to the selection criteria, ŝ, is
subjected to three permutation laws while the remaining paths are discarded.
The best solution in each subset, along with its three permutations are then
included in Si+1, the population of the next generation.

The only two conditions for the permutation laws is (i) that the defini-
tion of a path vector is not violated and (ii) that ŝ is permuted at random.
Assuming that the integer numbers a, b ∈ [0, N − 1] are chosen at random

33

Chapter 3. Motion planning

for each subset G, we construct a total of three feasible laws. The first law,
A(·), extracts a portion of the vector from index a to index b, reverses the
segment, and inserts it at its original position. The second law B(·) swaps the
element at index a with the one at element b. The third law C(·) extracts the
element at index a and inserts it at index b, shifting all intermediary indices
one step in the vector (see Algorithm 1)

Regardless of system requirements and computational capabilities, the
monotonic cost function, J , will assume a general shape as shown in the work
of [Zhang and Korf, 1996]. An initial rapid decrease of the cost is followed
by a much slower convergence rate when approaching some limit point, with
a clear distinction between the two regions. Consequently, we consider the
best solution ŝi ⊂ Si at generation i to be close-to-optimal if

1− J(ŝi)

J(ŝiprev)
< εd, iprev = bεhic (3.35)

where the constants εh ∈ (0, 1) and εd determine the solution accuracy. Using
the general shape of the normalised cost function, the method holds for both
small and large N , and by letting εh ≈ 0.9, εd ≈ 0.1, smaller problems (N <
30) are solved quickly, and visibly good solutions are computed for larger
problems of N > 100.

Initialize: S0, C, pmax, imax, εd,
εh

for i = 0,...,imax do
if 1− J(ŝi)/J(ŝiprev) < εd
then

break
end
Si+1 = ∅
while Si 6= ∅ do

randomize G ⊂ Si
ŝ = min

s
(J(s)) ∀s ⊂ G

Si+1 = Si+1 ∪
{ŝ, A(ŝ), B(ŝ), C(ŝ)}
Si = Si \ G

end

end
Algorithm 1: The proposed GA
without priority assignment using the
A(·), B(·) and C(·) permutations.

34

3.2 Generation of flat output trajectories

Priority by local permutations

A benefit of this particular GA formulation is that it accommodates priority
assignment by local permutations through two simple modifications. Consider
a total of K priority subsets of Pk ⊂ P, where a lower integer k ∈ [1,K]
indicates a higher priority. Here we presume to have a starting point ps ⊂
P, as the direction and starting point of the path need to be known when
considering the priority subsets. To be clear, this implies N = 1 +

∑K
k=0 |Pk|

by (3.34) with | · | denoting set cardinality. Firstly, the initial path vector s0 is
organised with the index of the starting point ps first, followed by a sequence
of indexes of all points in the priority subsets in decreasing order of priority
before terminating at ps. Secondly, the permutation laws are set to act on a
subset of points sharing priority, preserving the segments in the vector while
shuffling the indices locally. Equivalent to solving many smaller TSPs in
parallel, the formulation has the added benefit of decreasing complexity with
the number of different priorities involved. In addition, rudimentary obstacle
avoidance can be achieved by locating lines from point i to j that intersect
the obstacle and letting ci,j = cj,i = ∞. This method can also be used to
test if the problem is poorly posed, as the objective function then takes the
value ∞ (see Fig. 3.6).

Complexity and performance

In the exact case, the computational complexity increases rapidly with the
number of cities, N . For the simplest possible brute force method of checking
all possible solutions, the worst-case complexity is obviously O(N !). When
adopting the implemented recursive BnB algorithm or the dynamical pro-
gramming approach of Held and Karp described by [Goemans and Bertsimas,
1991], the worst-case time complexity is slightly better but still exponential
as shown in the work of [Zhang and Korf, 1996]. The derived GA cannot be
examined in the traditional time-complexity sense, but we may relate it to
the worst-case complexity of the exact methods empirically by computing the
99% confidence interval [i−(N), i+(N)] of the number of iterations required
to converge, iconv(N), to a close to optimal solution by (3.35). By fitting poly-
nomials, p(N), of various degrees, a simple quadratic polynomial was found
to be a satisfactory fit of the upper confidence bound (see Fig. 3.7). Indeed,
the two-norm of the residual error is approximately ||̂i+(N) − p(N)||2 ≈ 60
when fitting polynomials of orders 2, 3, and 4. For this experiment, the pop-
ulation size is scaled linearly with N , leading to the total time complexity
of O(N3). We stress that this is not the true worst-case time complexity,
but still relatable to the exponential complexity of the two considered exact
algorithms indicating that the GA scales better with N .

Evaluation of the GA implementation is done by comparison to the BnB
solver, implemented as described by [Balas and Toth, 1983]. The performance

35

Chapter 3. Motion planning

Figure 3.6 The solution the TSP with N = 30 scattered points in
x, y ∈ [0, 100]. Top left: Close-to-optimal path for the standard problem
(black dashed). Top right: Solution implementing point priority subsets,
with the starting point (black), high priority points #11−20 (red), priority
points (green). Bottom left: Solution implementing point priority subsets
and an obstacle (blue). Bottom right: The path cost as a function of iter-
ation number with disabled convergence criterion for priority assignment
(black), with priority assignment (red) and with both priority and obstacle
avoidance (blue).

metrics are mean cost in meters, J̄ , and mean computational time in seconds,
t̄, examined when solving 50 random TSP in R2 with the coordinates uni-
formly distributed in x, y ∼ U(1, 100) without obstacles and priorities (see
Table 3.1).

The results on algorithmic complexity are clearly reflected in Table 3.1,
where the implemented BnB algorithm quickly converges to an optimal so-
lution for N < 13, slower for N = 13 and exceeding one minute for N > 13.
Interestingly, the GA converges to the same optimal values and is faster on
average for all problems N > 7. In addition, when N < 40 the computational
time is on the order of 4 [s], whereas the BnB fails to converge within 10
[min]. To relate the notion of computational times to larger values of N ,

36

3.2 Generation of flat output trajectories

Figure 3.7 Mean value and 99% confidence interval when solving M =
100 N -point TSP with N ∈ [6, 50] with a second order polynomial fitted to
the upper bound of the confidence interval. In this experiment, the popu-
lation size is defined as 2N + 60 and the convergence parameters are set to
εh = 0.9 and εd = 0.1 respectively.

Table 3.1 Mean computational time t̄ [s] and mean cost J̄ [m] when
solving 50 random N -point TSP using the GA and BnB solvers

N t̄ (GA) t̄ (BnB) J̄ (GA) J̄ (BnB)
7 0.0849 0.03 238 238
8 0.0913 0.11 266 266
9 0.0985 0.25 278 278
10 0.1106 0.65 292 292
11 0.1138 3.64 300 300
12 0.1324 4.17 305 305
13 0.1402 48.01 326 326
20 0.3155 - 401 -
30 1.4472 - 504 -
40 4.5259 - 563 -
50 10.9911 - 621 -

a simple test was done by computing the N = 100 TSP, converging to a
close-to-optimal solution in < 2 [min] with no path crossing, aligning nicely
with fitted polynomial complexity theory above (see Fig. 3.7). Clearly, the
algorithm can be extremely powerful in a quadcopter UAV application in
R3. If the robot has a battery life of 10 minutes, and each job takes ∼ 15
seconds, we would at most require the handling of N = 40 jobs and the GA
could then be used to enable autonomous navigation between jobs during
the entire battery lifetime.

37

Chapter 3. Motion planning

3.3 Parametrization of flat outputs

A condition for using the powerful flatness equations is full knowledge of the
flat outputs as defined in equation (3.6) and up to and including the fourth
order derivatives. There are naturally a wide variety of parameterisations
satisfying these conditions compatible with the output of the TSP -GA, and
for the sake of usability we will consider Bezier and sinusoid functions, as well
as polynomial splines complemented with constraints to avoid both static and
dynamic obstacles.

Point-wise parametrisation with smoothing

In the simplest use case, points in flat output space generated by the TSP -
GA, P, is used directly with each point, pk ∈ P, having an assigned time Tk ∈
T during which it is used as a reference point. This discrete parametrisation
encompasses the sending of single positional set points, where then Tk →∞,
but the resulting trajectory is discontinuous and obviously incompatible with
the system dynamics. The first order derivative is an impulse and the flatness
equations will fail as a consequence.

In order to make the discrete reference trajectory γ(t) compliant with
system dynamics and enable use of the flatness equations, we let

Γ(s) =
[
X(s),Y(s),Z(s),Ψ(s)

]T
=
[
L{x(t)}s,L{y(t)}s,L{z(t)}s,L{ψ(t)}s

]T
(3.36)

denote the Laplace domain equivalent of the discrete reference trajectory.
Applying a lowpass filter of order n with unit static gain

G(s) =
an

(s+ a)n
(3.37)

to each element in Γ(s) results in a smoothened curve, Γ̂(s) = G(s)Γ(s),
which has two notable properties. The first observation is that for a one di-
mensional unit step θ(t), L{αθ(t)} = αL{θ(t)}, implying that the positional

part of the path Γ̂(s) will always be linear in R3. The second property is that
any flat output derivative of order ≤ n is finite and can be determined by

L
{
∂x(t)

∂t

}
s

= sX(s)− x(0). (3.38)

Consequently, we form a smoothing single-input multiple-output SIMO filter
F(s) and assume that at the time of commanding a unit step, x(0) = x′(0) =
x′′(0) = x(3)(0) = 0. Discretisation with Tustin’s approximation at a time

38

3.3 Parametrization of flat outputs

step of h [s], yielding the pulse transfer function

F(s) =
an

(s+ a)n


s4

s3

s2

s
1

⇒ H(z) =
1

A(z)


B4(z)
B3(z)
B2(z)
B1(z)
B0(z)

 (3.39)

Implementing the difference equation with n = 5, a = 7.5, h = 0.02 was
shown to preserve numerical stability and generate discrete time references[

x
(4)
s (hk) x

(3)
s (hk) ẍs(hk) ẋs(hk) xs(hk)

]T
= H(z)x(hk) (3.40)

such that the magnitude three dimensional acceleration

||a(hk)||2 =
√
ẍ2
s(hk) + ÿ2

s(hk) + z̈2
s(hk) < 10 [m/s2] (3.41)

for reference changes within the unit cube, comparable to the physical system
constraints in maximum possible thrust. This method is applied to each
flat output dimension at a low computational cost and allows the flatness
equations to be applied safely to the discrete point sequence (see 3.8).

Figure 3.8 Response of the discrete time SIMO filter with {n = 5, a =
7.5, h = 0.02}, here applied to a typical one dimensional discontinuous
trajectory including the first two smoothed derivative terms.

Cubic bezier parameterisation

The quadratic Bezier curve with arbitrary dimension is defined by a start-
ing point, an intermediate control point and a terminal and terminal point
b0, b1, b2 ∈ R, with the corresponding quadratic curve

Bb0,b1,b2(t) = (1− t)[(1− t)b0 + tb1] + t[(1− t)b1 + tb2], t ∈ [0, 1]. (3.42)

39

Chapter 3. Motion planning

However, the more standard method of parameterisations such as the output
of Blender is the cubic Bezier curve [Blender Online Community, 2016], which
then includes two control points,

Bb0,b1,b2,b3(t) = (1− t)Bb0,b1,b2(t) + tBb1,b2,b3(t), t ∈ [0, 1]. (3.43)

Clearly, in this format the kth spline is defined by a set of points Bk =
{bk,0, bk,1, bk,2, bk,3} ∈ R4 and a time interval [0, Tk] ∈ R+ during which
the spline should be followed. Note that with the Bezier curve, the fourth
derivative is zero at all times, indicating that we can’t make full use of the
flatness implementation as the fourth derivative used in computing reference
torques will be zero at all times. An analogy can be made to restricting the
use of the flatness by only providing a non-zero acceleration, which results
in traditional positional feed-forward terms and no additional knowledge on
the angular rate, angular acceleration or torque feed forward terms.

Sinusodial parameterisation

The sinusoidal parametrisation on the other hand can assume non-zero values
in the fourth derivative. Here we consider curves with a linear amplitude in
t, where the kth spline takes the form

(Ak +Bkt) sin(ωk(t0,k + t) + ϕk) + Ck, t ∈ [0, Tk] (3.44)

for some constants Sk = {Ak, Bk, Ck, t0,k, ωk, ϕk} ∈ R6 defined on a time
span Tk ∈ R+ (see 3.9).

Figure 3.9 Example of a flat output trajectory containing cubic Bezier
curves with the corresponding control points, sinusoid parameterisations
and smoothed linear segments.

Constrained polynomial parameterisation

For the polynomial splines, we consider the method presented by [Richter
et al., 2013] where a one dimensional trajectory segment composed of n

40

3.3 Parametrization of flat outputs

polynomials P1(t), ..., Pn(t),

Pk(t) =

N∑
i=0

pk,it
i, t ∈ [0, Tk] (3.45)

with a maximum degree of deg(Pk) = N , and a corresponding coefficient
vector p(k) = [pk,0, ..., pk,N]T . The problem is to minimise a cost function for
such every polynomial spline

J(Tk) =

∫ Tk

0

c0Pk(t)2 + c1P
′
k(t)2 + ...+ cNP

(N)
k (t)2dt = pT(k)Q(k)pk (3.46)

preserving continuity and enforcing boundary conditions. The complete con-
strained QP -formulation, including all n polynomials is then

Minimize
(n∑
k=1

J(Tk)
)

subject to Ap− b = 0 (3.47)

where
(3.48)

n∑
k=1

J(Tk) =
[
p(1) · · · p(n)

] Q(1) 0 0

0
. . . 0

0 0 Q(n)


p(1)

...
p(n)

 = pTQp. (3.49)

Boundary conditions can be enforced for each spline by finding a matrix

A(k)p(k) = b(k) (3.50)

for every know derivative at the time t = 0 (collected in A0) and time t = Tk
(collected in AT). With nc boundary conditions for the kth spline, then

A(k) =

[
A0,k

AT,k

]
∈ Rnc×N+1 and b(k) =

[
b0,k

bT,k

]
∈ Rnc×1 (3.51)

For the remaining, free boundary endpoints where no fixed derivative is spec-
ified, the splines on each side of a boundary point are set equal by enforcing

AT,kpk −A0,k+1pk+1 = 0. (3.52)

Dynamic obstacle avoidance

A powerful addition to the motion planning is to include knowledge about
dynamical objects in the environment to update the trajectory in real-time
without re-generating the trajectory. Consider a non-rotating obstacle, S ∈
R3, restricted to a subset of space on t ∈ [0, Ttot], where Ttot =

∑n
k=1 Tk, the

41

Chapter 3. Motion planning

total time interval on which the generated trajectory is defined. En example
of such a non-rotating object is a pendulum swinging in a two dimensional
plane.

Now, if the obstacle stands still, any feasible positional trajectory p(t)
may clearly come close but never intersect S. If instead S follows an un-
known trajectory f(t) ∈ R3 with f(0) = 0, any trajectory which is feasible
at the time of generation may collide with the obstacle. However, if know
a set of N points, C = {c0, ..., cN} ∈ R3, on the reference trajectory which
come close to a known obstacle at the time of generation, then we may esti-
mate the trajectory of the object and shift the already generated trajectory
accordingly. Let

d(t) = min
c∈C

(||pr(t)− c||2) (3.53)

If we define a weight function with w′(0) = w′(1) = w(1) = 0, w(0) = 1, such
that

w(x) =

{
2x3 − 3x2 + 1 if x ≤ 1

0 if x > 1 or pr(t) ∈ int(Si)
(3.54)

The updated positional trajectory, p̂r(t), is simply

p̂r(t) =
[
1− w

(d(t)

dmax

)]
pr(t) + w

(d(t)

dmax

)
f(t). (3.55)

This method is simple, highly situational and performs very poorly if we
have many obstacles, if these are very volatile and if the obstacles move far
away from the N spheres with a radius dmax centred around the points in
C. However, it can be useful if demonstrating flight through a thrown hoop
or a swinging pendulum. To demonstrate this, a simulation was done for a
trajectory consisting of six splines in R3, passing through a hollow obstacle
moving along an initially unknown, but later estimated trajectory f(t) (see
Fig. 3.10).

3.4 Summary

In this section, the theory behind the implemented embedded sequence gen-
erator was presented. Firstly, the property of differential flatness was shown
for the quaternion Newton-Euler dynamics, suggesting a parameterisation
of position and yaw in order to generate feed forward terms in body rates
and torques. Secondly, a genetic algorithm was proposed to mutate a feasi-
ble path into a close-to-optimal solution detailing the shortest path between
a set of points considering obstacles and varying priority across the points.
Thirdly, several methods of parametrising the trajectories in flat output space

42

3.4 Summary

Figure 3.10 Polynomial minimum snap trajectories in R3 passing
through a hollow, non-rotating obstacle S moving along a periodical trajec-
tory c + f(t) at the time t = 0 (red), t = 1 (blue) and t = 1.5 (green).

were presented and implemented in the embedded system, supporting pre-
loading for completely autonomous flight. Combined, the proposed method
of motion-planning satisfies the specifications

(i) Compliance with the rigid-body dynamics.

(ii) Being economical in terms of power usage.

(iii) Avoiding paths which intersect known static obstacles.

(iv) Avoiding dynamic obstacles.

(v) Loading and on-line evaluation of precomputed trajectories represented
with minimal information.

(vi) Compliance with current academic- and industry standards with .

(vii) Synchronising trajectory evaluation across multiple UAV ’s.

(viii) Scheduling events.

with (i) and (v) discussed in the first section on differential flatness. The
specifications (ii) and (iii) were discussed in the second section on the TSP -
GA, the specifications (vi) was handled through various means of trajectory
parametrisation and the reader is referred to [Greiff, 2017] for the implemen-
tation of the communication and details on the methods of synchronising
trajectories and scheduling events pertaining to specifications (vii) and (viii).

43

4
Rotor control

In this section, we consider the direct open loop rotor control which was
implemented in the embedded UAV firmware, discussing possible improve-
ments. The brushless DC motors are by convention controlled through pulse
width modulation (PWM), where duty cycles are set to control the rotor
speeds and implicitly thrusts. This can be done by simply applying a series
of maps or functions identified in the system identification, generating PWM
necessary to achieve the thrust and torques in the rigid body control (see Sec-
tion A.1). However, we also outline a possible improvement where rotors are
run with current feedback in a separate micro-controller using on-line param-
eter identification to increase system robustness. In addition to making the
power distribution more robust in the face of time varying parameters, the
considered change would also migrate some of the computational effort from
the current central processing unit, enabling higher sampling rates across the
control system for increased performance.

4.1 Open loop control

The simplest conceivable method of rotor control is to use the affine maps
from PWM duty cycle to rotor thrust, Md→T ∈ R4×4 and rotor speeds
squared to rotor thrust, MΩ2→T ∈ R4×4, defined in Section A.1. In addi-
tion, knowing the map from rotor speeds squared to total thrust and body
torques, MΩ2→τ ∈ R4×4, as given in (2.11), the desired PWM duty cy-

cles dr(t) =
[
d1(t) d2(t) d3(t) d4(t)

]T ∈ [0, 1]4 are easily computed from
references in total thrust, Tr(t) [N], and desired rigid body torques, τ r(t)
[Nm],

dr(t) = M−1
d→T

(
MΩ2→T

(
M−1

Ω2→τ

([
Tr(t) τ r(t)

]T)))
. (4.1)

While functional and currently used in the real-time implementation, the de-
scribed method of rotor power distribution assumes time invariance in the

44

4.2 Closed loop rotor control

affine maps, which is not the case with parameters such as the PWM to thrust
ratio, k, which depends greatly on the battery charge. Operating under the
assumption of time invariance, increased robustness of the controllers for at-
titude and translation is required in order to support aggressive manoeuvres
throughout battery lifetime.

4.2 Closed loop rotor control

As an alternate approach for future hardware revisions, an additional micro-
controller could be added to the Crazyflie for the sole purpose of high rate ro-
tor control. Such an implementation could also include two H-bridges, allow-
ing the rotors to run in reverse for even more aggressive manoeuvres, which
is currently impossible due to the definition of rotor signs in MΩ2→τ ∈ R4×4.
Having presented the current method of rotor control, we will in this section
investigate the idea of closed loop rotor control in theory detailing promising
controllers and parameter estimators in discrete time.

For this discussion, we recall the SISO rotor from Section 2.3, with
a control signal voltage Ui(t) [V], and state current Ii(t) [A] and angular
velocity Ωi(t) [rad], disregarding the rotor position. In the Laplace domain,
we let Ui(s) = L{Ui(t)}s with similar notations for Ii(s) and Ωi(s). By the
relationship of the SISO motor system from Ui(s) to Ωi(s),[

G
(i)
U→Ω(s)

G
(i)
U→I(s)

]
=

[
Kt

LJ±
1
Ls+ b

LJ±

]
1

s2 +
(

b
J± + R

L

)
s+

(
bR+KtKe

LJ±

) (4.2)

nterestingly, the two transfer functions share the same characteristic poly-
nomial, and contains the factor Kt/LJ

± in the numerator. If we assume
knowledge of time invariant parameters of resistance R [Ohm] and induc-
tance L [H], we may capture the variance in the model as changes in inertia
J±, viscous friction b and constant Kt by estimating the parameters in the
transfer function from Ui(s) to Ii(s) alone, allowing the complete identifica-
tion of the coefficients in the voltage to rotor speed dynamics. As such, we
will in this section consider controllers and methods of parameter and state
estimation for each SISO system independently.

PID control

As a first attempt, the PID controller is implemented in parallel form due
to its simplicity, described in detail in Appendix B.1. It uses forward dif-
ference discretisation for the I-part and backward differences for the D-part.
All controller terms are included, anti-windup is used with control signal
saturations umin and umax, and set-point weighting is included through two
scalar parameters α and β. The PID control, while not being restricted to

45

Chapter 4. Rotor control

linear systems, might require gain scheduling depending on how much the
rotor dynamics change in time. For the purposes of this example, the con-
troller was tuned to satisfy the specifications based on the identified rotor
model (see Table A.2), resulting in the parameters in Table 4.1.

Table 4.1 Discrete time PID parameters used in the simulations.

Parameter K Ti Td N γ β h umin umax
Value 0.0015 0.1 0.025 100 0.4 0.6 0.002 500 4500

MRAC control

An alternative to the PID controller is to use model reference adaptive control
(MRAC) in which each SISO rotor system is made to follow a reference
model Gm(s) by adaption using two scalar control gains, Γu and Γy. In order
to synthesise the controller using the Lyapunov rule, the dynamics must be

sufficiently well modelled and the function G
(i)
U→Ω(s) needs to be strictly

positive real (SPR) for the Kalman-Yokovic-Popov lemma to apply [Iwasaki
and Hara, 2005]. However, the condition

lim
ω→∞

ω2<[G
(i)
U→Ω(iω)] > 0 (4.3)

results in a contradiction as nω2(d2 − ω2) < 0 when |ω| >
√
d2 = 7.8 with

the identified parameters (see Table A.2). We conclude that the rotor system
considered is not SPR, disqualifying it from controller synthesis using the
Lyapunov rule. Instead, the controller is derived using the MIT -rule (see
derivation in Appendix B.2), where the reference model is defined as a
continuous time second order Hurwitz system

Gm(s) =
Bm(s)

Am(s)
=

αω2
m

s2 + 2ξmωms+ ω2
m

=
αω2

m

s2 + 2ξmωms+ am0
, (4.4)

initially with ωm = 10 and ξm = 0.707 conforming to industry standard
damping and the speed of the rotor system. In addition, the parameter α
is included such that the static gain of the reference model matches the
Gm(0) ≈ α ≈ n/d2. Similarly to the PID controller, the MRAC was tuned
to satisfy the specifications when run on the identified rotor model (see Ta-
ble A.2), resulting in the parameters in Table 4.2.

Error metric

In order to test performance, we define the error as integrated mean squared
error (MSE) of two time varying vectors r(t),x(t) ∈ RN×1 defined on t ∈

46

4.2 Closed loop rotor control

Table 4.2 Continuous time MRAC parameters used in the simulations.

Parameter Γu Γy ωm ξm α
Value 1.8 · 10−8 1.6 · 10−8 16.4 0.707 1780

[ti, tf] using the l2-norm || · ||2,

Ep(r(t),x(t)) =

∫ tf

ti

(||r(t)− x(t)||2)1/pdt. (4.5)

For the purposes of evaluate the rotor control and parameter estimation,
we let p = 1 for future reference. All comparison will be done with respect
to the available options, such that if we have a total of N tested controller
responses xi(t), i ∈ [1, N] which are supposed to follow a reference r(t),
then the performance of controller k will be measured by

Ekp (r,xk) =
Ep(r,xk)

min
i∈[1,N]

(
Ep(r,xi)

) . (4.6)

In this way, the controller minimising the MSE to a power of p will yield
Ekp (r,xk) = 1 while all other controllers will indicate how many magnitudes
worse the reference was followed with respect to the integrated MSE.

Simulation study and comparison

For the purpose of simulating and comparing rotor control, we assume the
thrust tor rotor speed squared ratio k(t) ≡ 2.2 · 10−8. In addition, knowing
that the Crazyflie weighs m ≈ 0.027 [kg], the angular speed required to hover
can be computed as

Ωh(t) ≈
√

m · g
4 · k(t)

≡
√

0.027 · 9.81

4 · 2.2 · 10−8
≈ 1750 [rad/s] (4.7)

In evaluating the rotor control, we consider controllers that operate well in
the interval Ω ∈ [1000, 2500]4 [rad/s] and can start from a resting state,
at Ω(t0) = U(t0) = i(t0) = 0. In addition, we assume that the angular
rate measurements are corrupted by zero mean white gaussian noise vk ∼
N (0, 15) [rad/s] and perform the simulation tests at a sample rate of 500
[Hz] (see Figure 4.1). The first simulation (1) computes the error between
the rotor speed, Ω(t), and reference, Ωr(t) staring from rest at Ω(t0) = 0
subject to a step with an amplitude of Ωmax = ||Ω(t)||∞ = 2500 [rad/s]. In
both the MRAC and the PID, the rotor very quickly reaches the reference,
but the MRAC is slightly slow on account of the adaptive gains starting

47

Chapter 4. Rotor control

Figure 4.1 Top: Simulated performance of the two rotor controllers PID
(blue) and MRAC (red) when running a an aggressive pulse reference
(black). Here, t ∈ [0, 4] corresponds to test (1), test (2) is run with the
constant load disturbance at t ∈ [10, 23] and test (4) is run without load
disturbance and starting the rotor at ω(0) = 1750. Middle: The control
signals corresponding to the response in the top plot, showing the load dis-
turbance (black, dashed). Bottom: Following a smooth sinusoidal trajectory
corresponding to test (3).

48

4.2 Closed loop rotor control

at θu(t0) = θy(t0) = 0 (see Table 4.3). The second test (2) compares the
controllers’ disturbance rejecting properties by giving a very aggressive pulse
reference rotor speed, alternating between 1750 ± 750 at a period of 8 [s],
then applying a load disturbance starting at t = 10 and ending at t =
23 [s]. Here we let Ω(t0) = Ωmax as we are not interested in capturing
the initial rise time in the error norm computation. The purposes of this
test is to see how the closed loop system rotors reacts when, for instance,
entangling a strand of hair in a rotor or loosing part of a propeller. Both of
which imply a sudden shift in the input signal required to retain the same
reference rotor speed. Demonstrably, the PID controller, as expected, handles
the disturbances very well, while the MRAC controller struggles to handle
the constant offset. Both converge, to the reference, but convergence is much
faster in the PID controller. In the third simulation (3) the controllers are
set to follow a smooth sinusoidal reference trajectory, alternating between
Ωmin and Ωmax at a rate of 1 [rad/s]. Here we assume that the rotor starts
at Ω(t0) = 1750 [rad/s] to avoid influencing the error norm with the initial
rise time difference. The controllers are comparable, performing very well and
only introducing a slight phase lag between the intended trajectory and the
actual response. When in (4) performing a similar experiment with a pulse
reference rotor speed alternating between 1700± 800 at a period of 8 [s], we
again see that the PID outperforms the MRAC, but only by a slim margin
(see Table 4.3).

Table 4.3 Relative error norm in controller response during simulation
tests.

Test EPIDp=1 (Ωr,Ω) EMRAC
p=1 (Ωr,Ω)

(1) rise 1 2.24
(2) load 1 2.78
(3) smooth 1.13 1
(4) aggressive 1 1.36

In conclusion, both the MRAC and the PID can be used, but when com-
pared against each other in the relevant specifications the PID outperformed
the MRAC slightly. In addition, the PID controller is easier to implement
in real time and should therefore be preferred above the MRAC. The only
reason for choose the MRAC is to include the non-linear rotor dynamics
in the model used in the outer control loop, in which case we could simply
approximate the closed loop SISO rotor by the reference model Gm(s) and
simply assume that any un-modelled non-linearities arising from the coupling
of the rotors to the quadcopter dynamics are handled by the adaptive gains.

49

Chapter 4. Rotor control

4.3 Rotor adaptation and estimation

Due to simplifications made in the quadcopter dynamics to attain computa-
tional feasibility in the state estimators and controllers, approximations such
as the effects of velocities along the ẑB direction will affect the rotor dynamics
are disregarded completely. To enable robust on-line parameter estimation
of the characteristic polynomial of GI→Ω in order to determine GU→Ω, two
variations of the least squares algorithms are considered. As time variation
is expected, it is essential to include a forgetting factor, λ, in the algorithm
formulation. For this discussion, we let

H
(i)
U→I(z) = Z{G(i)

U→I(s)} =
B(z)

A(z)
with B(z) =

nb∑
i=0

biz
i, A(z) =

na∑
i=0

aiz
i,

(4.8)
be the zero-order hold ZOH discrete time equivalent of the continuous time
system, such that deg(B(z)) = 1 and the polynomial A(z) is of a degree
deg(A(z)) = 2 and monic. Furthermore, we let denote the current and am-
plitude at time t = hk by Uk and Ik respectively. This allows us to express
the system as

Ik = ϕTk θ + ek (4.9)

where ek is white gaussian noise, if defining the regressor vector

ϕk =
[
−Ik−1 −Ik−2 Uk−1 Uk−2

]T ∈ R4×1, (4.10)

and the corresponding parameter vector and parameter estimate at time k

θ =
[
a1 a0 b1 b0

]T ∈ R4×1, θ̂k =
[
â1,k â0,k b̂1,k b̂0,k

]T ∈ R4×1.
(4.11)

Using a forgetting factor λ and an initial covariance matrix P0 = δI4×4 for
some δ ∈ R+, given a new current measurement Ik, the standard discrete
time RLS algorithm is defined by the equations

εk = Ik −ϕTk θ̂k−1

Pk =
1

λ

(
Pk−1 −

Pk−1ϕkϕ
T
kPk−1

1 +ϕTkPk−1ϕk

)
(4.12)

θ̂k = θ̂k−1 + εkPkθ̂k−1

It is, however, well known that introducing the forgetting factor causes the
norm of the covariance matrix Pk to increase exponentially with time if the
signal is not sufficiently exciting, referred to as estimator wind-up. In the
quadcopter dynamics, such an event may occur if a stable hovering position
is kept for some time in which case the system dynamics hopefully remain

50

4.3 Rotor adaptation and estimation

constant and any estimated parameter (with the exception of k) would likely
be fix. To combat estimator wind-up, we could consider using a covariance
reset at certain intervals in time, but a slightly more refined approach would
be to use a regularized constant-trace RLS algorithm which enforces a con-
stant covariance matrix trace, tr(Pk). The algorithm is widely used and can
be written

εk = Ik −ϕTk θ̂k−1

Kk =
Pk−1ϕk

λ+ϕTkPk−1ϕk

P̄k =
1

λ

(
Pk−1 −

Pk−1ϕkϕ
T
kPk−1

1 +ϕTkPk−1ϕk

)
(4.13)

Pk = c1
P̄k

tr(P̄k)
+ c2I4×4

θ̂k = θ̂k−1 + εkKkθ̂k−1.

Having estimated the parameters of H
(i)
U→I(z), we may use the inverse dis-

cretisation to determine the time varying coefficients J and b of the transfer

function G
(i)
U→I(s), corresponding to d1, which may then be used in the previ-

ously derived MRAC controller and in estimating the rotor speed with model
based estimators.

Simulation study and comparison

To demonstrate the implementation and the differences in the RLS algo-
rithms, the two estimators (4.12) and (4.13) were applied to the voltage-
current rotor dynamics (see Table A.2), is discretised at h = 0.002 [s] using
ZOH, resulting in the nominal parameter values a1 ≈ −1.95, a0 ≈ 0.97,
b1 ≈ 0.02, b0 ≈ −0.02. It should be noted that the poles of this system are
very close to the unit circle, as the characteristic polynomial has roots in
|z1,2| ≈ 0.98. The pulse transfer function is initialised with the nominal pa-
rameter values, and the bi parameters are varied in time using a sinusoidal
perturbations with amplitudes of 0.01. The parameters were initialised with
the values in Table 4.4, and the system was simulated with a persistently
exciting sinusoidal voltage in order for the standard RLS algorithm to con-
verge.

Two simulations were run, the first with an initial estimate of θ̂0 = 0 for
t ∈ [0, 5]to compare initial parameter convergence, and the second simulation

with θ̂0 = θ0 for t ∈ [0, 60] to compare transient parameter estimation. In
both considered tests, the constant trace formulation far outperformed the
standard RLS estimator in the integrated MSE error metric (see Table 4.5).

The parameter estimations show that the two-norm of the covariance
matrix standard RLS algorithm varies greatly in time, and that it demon-

51

Chapter 4. Rotor control

Table 4.4 Parameters used in simulating the RLS estimators.

Algorithm δ λ c1 c2
Standard RLS 10−4 0.97 ∼ ∼

Constant trace RLS 10−1 0.95 105 10−2

Table 4.5 Relative error in the parameter estimation during simulation
tests.

Test ERLSp=1 (θ, θ̂) EctRLSp=1 (θ, θ̂)

(1) initial convergence 14.79 1
(2) transient estimate 5.65 1

strates an exponential growth when introducing the forgetting factor (see
Figure 4.2).

Figure 4.2 Example of parameter identification with RLS and ct-RLS
algorithms showing the initial convergence behaviour when θ̂0 = 0 and the
transient parameter estimation.

A tradeoff has to be made between fast estimation and stability. As can be
seen in this example, λ = 0.97 enables good parameter estimation at the cost
of coming close to diverging at t ≈ 16 [s] with the standard RLS algorithm.
If we expect to hover in a stable position, the reference signals and system
dynamics will be close to constant, potentially resulting in a rapidly growing
covariance matrix and total instability unless we introduce some means of

52

4.4 Summary

covariance resetting in the RLS formulation. The ct-RLS algorithm on the
other hand provides an upper bound on the l2-norm of the covariance matrix
and will not diverge in the event of a constant input signal. At worst, the
parameters will remain constant and fail to converge to their true values.

4.4 Summary

In this section, we have presented a simple means of rotor control using the
identified maps from desired rigid-body thrusts and torques to rotor thrusts
and finally to PWM duty cycles of the brushless DC motors. The imple-
mented method of control does not take time variance into account, and
instead a rotor control system was considered with PID or MRAC regula-
tion and RLS or ct-RLS parameter estimation, where the PID and ct-RLS
proved superior for the considered rotor dynamics. The theory holds great
promise and could potentially improve the robustness of the entire UAV
control system, but currently remains in the theoretical realm. It will be im-
plemented and tested in a real-time context in a separate M.Sc. project at
LTH this spring.

53

5
Rigid-body control

Methods of rigid-body control are commonly developed in the Tait-Bryan
parametrisation of rotation using one of three approaches to control. The
first and simplest form of control is based on PID-control theory [Luukkonen,
2011], which has previously been used to great effect in real time applica-
tions as they may include feed forward terms computed by the property of
differential flatness shown in Section 3.1. The second form of control relies
on linear quadratic regulator theory (LQR) to stabilise the system [Castillo
et al., 2005]. This may be done with a recursive and time-varying form as the
system is differentially flat [Landry, 2015] and implement means of reach-
ability verification by sums of squares optimisation as shown in [Tedrake,
2009]. The third and final category of controllers are predictive controllers,
which are roughly equivalent to the LQR controllers when considering a time
varying system over a finite control horizon or may be synthesised using H∞-
theory as shown in [Raffo et al., 2010].

In this chapter, we will first develop a method of saturating control sig-
nals in order to preserve controllability at all times, applicable to all prior
mentioned methods of control. The considered system must be suitable for
implementation in the embedded application to enable autonomous flight.
Consequently, we do not consider the time varying LQR-type and predictive
controllers due to computational constraints. We will introduce the control
problem by defining methods commonly used in the Tait-Bryan parametri-
sation, compared in simulation with respect to

(i) Follow smooth references in the form of sinusoids

(ii) Follow aggressive references in the form of LP -filtered steps

(iii) Follow aggressive looping references assuming perfect state knowledge

(iv) Disturbance rejection with respect to varying mass

Having described the present methods of Tait-Bryan based control we will
proceed with a real-time example. As rotation is parametrised as a rotation

54

5.1 Saturations and controllability

matrix in the real-time application, the conventional Tait-Bryan controllers
will not be implemented due to the phenomenon of dynamical unwinding (see
Section 2.4). Instead, we present a computationally light method of geo-
metric control acting directly on the rotation matrix, as originally theorised
in [Lee et al., 2010]. The method has been subject to rigorous theoretical
analysis on robustness and proven to work in real-time [Mellinger and Ku-
mar, 2011]. In theory, a system implementing the geometric controller should
be capable of satisfying the points (i)-(iii) even in a real-time context.

5.1 Saturations and controllability

In previous work, stabilising controllers implemented system dynamics lin-
earised around a stable hovering state and were proven to work well [Castillo
et al., 2005]. However, the implemented controller must be able to operate in
the entire η-space during aggressive flights, effectively excluding many con-
ventional approaches. As an illustrative example of this, consider a commonly
used continuous-time PD-controller with a Tait-Bryan parametrisation of ro-
tation to map attitude and elevation errors to thrusts and torques [Luukko-
nen, 2011]. The equations may be summarised as

T =(g +KD,z(żr − ż) +KP,z(zr − z))
m

cos(φ) cos(θ)

τφ =(KD,φ(φ̇r − φ̇) +KP,φ(φr − φ))I11

τθ =(KD,θ(θ̇r − θ̇) +KP,θ(θr − θ))I22

τψ =(KD,ψ(ψ̇r − ψ̇) +KP,ψ(ψr − ψ))I33

(5.1)

where Ki,j ∈ R+ is a control parameter, which, when correctly tuned, results
in a stable hovering system if setting all references zero. However, if we were
to let φ = π/2, T → ∞. Consequently, a saturation on the thrust T ∈
[Tmin, Tmax] ∀t is required for the controller to remain feasible. However, if
the upper bound is set too high in the controller, we might require a total
thrust greater than what the motors are capable of generating. The difference
in rotor speeds could then be zero, and we may find the system in a state
where, by (2.9), τφ = τθ = τψ = 0 regardless of the reference torques. In
this case the system will not be controllable until it has drifted away from
the saturated state. By a similar argument, letting Tmin be close to zero also
diminishes controllability, and the problem can be solved by letting

0 ≤ ε4 · kΩ2
min < 4 · kΩ2

min = Tmin < Tmax = (1− ε)4 · kΩ2
max < 4 · kΩ2

max,
(5.2)

where [Ωmin,Ωmax] denotes the rotor speed saturation limits and ε ∈ (0, 1/2)
determines how close the angular saturation is to the thrust saturation.

55

Chapter 5. Rigid-body control

The final aspect that needs to be addressed is that the thrust should be
limited differently depending on the system state. If Tmax >> mg and the
attitude state changes quickly, the quad-rotor may reach a state where it is
quickly accelerating towards the ground. This behaviour can be avoided by
defining Tmax differently depending on the sign of α = arccos(RBG · ẑB). We
introduce the smooth function

{
Tmax = T+ if α > 0

Tmax = T− + (T+ − T−) sin2n(α) if α < 0
(5.3)

for some n ∈ N+, guaranteeing that the controller thrust remains within well
defined bounds (see Figure 5.1). The example shows not only how the thrust
saturations vary with n, but also hints to how conventional controllers fail
when considering aggressive flight where a negative product RBG · ẑB occurs,
and a negative thrust is given for π/2 < α < π/2 as a consequence. For
future reference, we define the saturations as SΩ(Ω), where each element Ωi
is saturated to [Ωmin,Ωmax]. In addition, we let ST (T), where the thrust
is saturated such that T ∈ [Tmin, Tmax] by equation (5.3), and let Sτ (τ)
saturate the torque control signals such that τφ, τθ, τψ ∈ [τmin, τmax] where
the relationship in equation (5.2) is assumed with the cross configuration
in (2.9).

Figure 5.1 Computed thrust reference in the Tait-Bryan parametrised
PD control system at various attitudes characterised by α. Looping the
UAV without the saturations is impossible if using the simplified rotor-loop
control, resulting in complex valued PWM signals, but made possible with
the saturation function ST (T), here shown for various orders n = {1, 2, 3}
with ε = 0.05.

56

5.2 Tait-Bryan parametrised control

5.2 Tait-Bryan parametrised control

The most common way of devising controllers for UAV control is to con-
sider the Tait-Bryan parametrisation of rotation. These methods of control,
while subject to dynamical singularities induced by the gimbal lock, can be
made to operate in the entire η-space if adopting the approximation pre-
sented in Section 2.1. As the position and angular states cannot be con-
trolled completely independently, the control system will be developed in two
steps. The first is a stabilising inner attitude and elevation control, for which
PID and LQR controllers will be considered. The second part is a tracking
positional control in which positional errors are mapped to references in the
Tait-Bryan angles. In this section, reference trajectories in control signals and
states are sub-indexed with ·r and all simulations are made using the Euler-
Lagrange rigid-body model with a Tait-Bryan parametrisation presented in
Section 2.1.

Attitude and elevation control

As a first attempt at attitude control, a method similar to the PD control
originally presented in [Luukkonen, 2011] is used to map control errors in
Tait-Bryan angles to the corresponding torques and errors elevation to to-
tal thrust as given in (5.1). However, the thrust and torques are instead
computed with the discrete time PID-regulators defined in Appendix B.1,
referred to as CT (z) for the thrust and Cτ (z) for torques. In addition, feed-
forward terms from the flatness equations are included, and the absolute
value of the rotational term cos(φ) cos(θ) is taken in the thrust computation,
such that

T = Tr +
m

| cos(φ) cos(θ)|
CT (z)[zr(t)− z(t)] (5.4)

and

τφ =τφ,r + I11Cτ (z)[φr(t)− φ(t)]

τθ =τθ,r + I22Cτ (z)[θr(t)− θ(t)] (5.5)

τφ =τψ,r + I33Cτ (z)[ψr(t)− ψ(t)].

By applying the previously defined saturations ST (·),Sτ (·) and SΩ(·), oper-
ation in the complete η-space is enabled at a low computational cost.

Linear quadratic regulator As an alternative to the PID controllers de-
scribed above, we also consider the linear quadratic regulator (LQR) which
has been used to great effect in previous work [Landry, 2015]. In the LQR, a
quadratic cost function is minimised over an infinite horizon through a pro-
portional matrix feedback, denoted K, as derived in Appendix B.3. By this
definition, errors in the states and control signals are punished by positive

57

Chapter 5. Rigid-body control

definite matrices Q and R respectively, which can be modified to tune the
controller. In the synthesis of our the linear quadratic regulator, the UAV
dynamics are truncated to exclude the positional states in x and y, such that

x(t) =
[
z ż ηT η̇T

]T ∈ R8×1, u(t) =
[
T τφ τθ τψ

]T ∈ R4×1.
(5.6)

We first define x̃(t) = xr(t) − x(t) and ũ(t) = ur(t) − u(t) as the deviation
from a known reference trajectory in states, xr(t), and control signals, ur(t),
generated from the differential flatness equations. The corresponding error
dynamics of the truncated system are easily inferred from the linearized Tait-
Bryan dynamics as given in Section A.8, where then

˙̃x(t) =Ã∆xx̃(t) + B̃∆uũ(t). (5.7)

By linearising about the stable hovering point and computing the gain, a time
invariant regulator TI-LQR may be formed. Similarly to the PD controller
of Lukkonen (5.1), this method of control becomes infeasible if operation far
from the point of linearisation. A more computationally demanding option is
to linearise the system about the reference trajectory and re-computing the
LQR gain on each time step by solving the associated Riccati equation (see
Section B.3), resulting in a time varying controller TV-LQR. In both the
time varying and time invariant case, a condition for the Riccati equation to
admit a solution is complete controllability of the system (5.7), which may
be assumed to hold with high probability if using the approximation outlined
in Section 2.1.

Integration and conditional anti-windup An inherent disadvantage
with the standard LQR-formulation is that it, in essence, is a proportional
state feedback controller and may give rise to stationary errors. To combat
this issue, we let

Ci =

[
1 0 01×3 01×3

03×1 03×1 I3×3 03×3

]
∈ R4×8 (5.8)

and introduce four additional states as the integrated control errors,

xi(t) =

∫ t

0

Ci[xr(τ)− x(τ)]dτ =

∫ t

0

Cix̃(τ)dτ ∈ R4×1, xi(0) = 0. (5.9)

The derivative control errors are not integrated in order to avoid duplicate
definitions of positional and angular control and preserve the full control-
lability of the model. In this form, the extended state-space error dynam-
ics may then be expressed in terms of an extended state vector xe(t) =[
x̃(t) xi(t)

]T ∈ R12×1 with the matrices

Ae =

[
Ã∆x 08×4

Ci 04×4

]
∈ R12×12, Be =

[
B̃∆u

04×4

]
∈ R12×4 (5.10)

58

5.2 Tait-Bryan parametrised control

allowing the extended system to be written

˙̃xe(t) =Ãex̃e(t) + B̃eũ(t). (5.11)

In order to allow large integral gains, a conditional anti-windup scheme
(AW) is implemented to disable integral action when the total system thrust
is in a saturated state. This is accomplished by simply letting Ci = 0 when
the thrust is in a saturated state ST (T)−T = 0 (see Figure 5.2). The consid-
ered formulation can be used to improve control and increase robustness to
disturbances in applications less constrained by computational power, where
it is compatible both with the LQR-type and predictive methods presented
in [Landry, 2015] [Tedrake, 2009] [Raffo et al., 2010].

Figure 5.2 Left: The standard LQR controller operating on the error dy-
namics. Right: The LQR controller with integrating states and conditional
anti-windup, controlling the rigid-body UAV process P(s).

Positional control With the previously defined inner controllers, compu-
tationally demanding outer model-predictive controllers can be run safely on
the host computer at lower rates than the inner stabilising system. However,
for the purpose of embedded autonomous control, we make use of standard
PID formulation defined in Section B.1 once again. A two degree of freedom
controller for the xy-translation is considered, mapping positional control er-
ror in the global frame, e(t) = pr(t)−p(t), to references pitch and roll. The
general idea is to determine the angular references so as to make ẑB ap-

proach the vector
[
ex(t) ey(t)

]T
in the global xy-plane, done by mapping

the control errors in the global frame to the body, such that[
φ(t)
θ(t)

]
=

[
φr(t)
θr(t)

]
+

[
0 −1 0
1 0 0

]Cx(z) 0 0
0 Cy(z) 0
0 0 0

RGBe(t), (5.12)

which holds in the entire η-space, allows for variable ψ-references and is
compatible with any stabilising controller defined in the previous section.

59

Chapter 5. Rigid-body control

Simulation study

In order to demonstrate the above theory, a set of simulations were run
with the identified Crazyflie parameters. The rotors are saturated by Ωi ∈
[0, 2500] [rad/s], and, if applicable, the thrust saturations are computed with
ε = 0.01 and n = 1, saturating the torques to τφ, τθ, τψ ∈ [−0.1, 0.1] [N ·m].
Furthermore, the inner controllers are assumed to run at a rate of 500 [Hz]
in order to achieve good stabilising control of the fast UAV dynamics.

For the TV-LQR controller, the diagonal positive-definite cost matrices
were tuned according to

R = diag([103, 107, 107, 107]) ∈ R4×4

Q = diag([104, 103, 102, 102, 102, 10, 10, 10]) ∈ R8×8

and similarly, in the TV-LQRiAW controller synthesis, the cost matrices
were determined as

R = diag([103, 107, 107, 107]) ∈ R4×4

Q = diag([104, 103, 102, 102, 102, 10, 10, 10, 105, 103, 103, 103]) ∈ R12×12.

In all simulations, the PID controllers were implemented in parallel form,
described in detail in Appendix B.1. Using forward difference discretisa-
tion for the I-part and backward differences for the D-part, the controllers
were tuned according to Table 5.1 with - indicating omitted terms in the
formulation.

Table 5.1 Discrete time PID parameters used in the simulations.

Controller K Ti Td N γ β h umin umax
CT (z) 10 - 5 100 1 1 0.002 - -
Cτ (z) 13 - 7 100 1 1 0.002 -0.1 0.1
Cx(z) 0.20 100 0.24 10 1 1 0.002 -10 10
Cy(z) 0.20 100 0.24 10 1 1 0.002 -10 10

Inner stabilising control with mass disturbance rejection Similar to
the analysis of the rotor loop, comparison between the controllers is done in
the relative integrated MSE metric, as defined in 4.2. Three tests are done
to determine performance. The first test lets the closed loop system follow
lowpass filtered unit steps in elevation and attitude with a single pole in 0.5
[rad/s], such that zr(t) ∈ [0, 3] [m] and φr(t), θr(t), ψr(t) ∈ [−0.8, 0.8] [rad].

The second simulation concerns smooth reference following, where sinu-
soidal references are followed with a frequency of w = 1 [rad/s] such that
zr(t) ∈ [1, 3] [m]and φr(t), θr(t), ψr(t) ∈ [−0.8, 0.8] [rad] where the the phase
of the references in attitude differ by 2π/3.

60

5.2 Tait-Bryan parametrised control

In the third and most interesting test, references similar to that of the
first test are followed and the system mass is suddenly increased from m =
0.027 to m = 0.035 [kg] at t=15 [s] before reverting to its original value
of m = 0.027 [kg] at t=35 [s]. In this case, the MSE error is evaluated for
t ∈ [10, 40] [s] to capture the behaviour of a temporary increase in mass (see
Table 5.2 and Table 5.3).

Table 5.2 Relative error norm in controller elevation response.

Test EPIDp=1 (zr, z) ELQRp=1 (zr, z) ELQRiAWp=1 (zr, z)

(1) step 2.01 1.43 1
(2) sinusoid 3.26 1.18 1
(3) mass load 2.32 2.73 1

Table 5.3 Relative error norm in controller attitude response.

Test EPIDp=1 (ηr,η) ELQRp=1 (ηr,η) ELQRiAWp=1 (ηr,η)

(1) step 24.30 1.25 1
(2) sinusoid 24.72 1.46 1
(3) mass load 10.43 1.1806 1

It is clear that the LQR-type controllers outperform the considered PID-
type in the first two test-cases when operating relatively close to the stable
hovering point, both for smooth and more aggressive references. However,
this is assuming we have perfect knowledge of the system parameters in the
LQR synthesis which is generally not the case in a physical ystem. It should
be noted that the error metric is designed to clearly distinguish between the
controller performances, and despite their differences, all tested controllers
work sufficiently well to be considered for a real-time implementation (see
Figure 5.3).

In the third test, we consider a shifting mass which may occur when the
UAV picks up a small object. This disturbance is attenuated well in the
LQRiAW due to the integration, and stationary error is clearly visible in
the standard LQR controller as expected with proportional state feedback.
Similarly, the PD elevation control is sensitive to mass changes and performs
worse than the common LQR controllers

Conditional anti-windup in LQR The considered conditional anti-
windup in the time varying LQR-formulation is a powerful tool in attenuating
disturbances, as it allows for greater punishment of the integral states through
the Q matrix without risking large overshoots. To demonstrate the effect of

61

Chapter 5. Rigid-body control

Figure 5.3 Comparison between the stabilising rigid-body controllers
with simulated elevation, z, and roll, θ, when applying a mass load dis-
turbance on t ∈ [15, 45].

the implemented AW scheme, the model was set to follow lowpass filtered
unit step references over t ∈ [0, 30] [s] with a closed loop LQRi -regulator (see
Figure 5.4). While in a non-saturated state, the two controllers yield the same
system response, but the LQRi controller starts oscillating and threatens to
diverge if the reference changes are large.

Figure 5.4 The effect of including conditional anti-windup in the LQRi
controllers.

Looping manoeuvre with PID control As the PID is to be implemented
in the embedded system due to computational constraints, the close loop sys-
tem was set to perform a looping manoeuvre to demonstrate the effects of
the saturations and stabilising control (see Figure 5.5). By increasing eleva-
tion temporarily and simultaneously ramping the reference in pitch θr(t), the
UAV performs a loop over 1.5 [s] before stabilising in less than one second
after completing the manoeuvre. Note here that the non-linear saturations
allow the PWM signals to be split even when the thrust is in a saturated
state, such that the reference in pitch reference may be followed at all times.

62

5.3 Geometric control

Figure 5.5 Top left: The reference elevation, zr, and the elevation re-
sponse z during the looping manoeuvre. Top right: The reference pitch, θr,
and the pitch response θ. Bottom left: Generated PWM duty cycles for the
motors during the loop. Bottom right: Saturation limits of in the thrust
control signal as a function of time.

In addition, the saturation limits show the upper bound on the thrust de-
creases significantly when the quad-rotor is upside down, as designed in the
definition of ST (·). Finally system stabilises at a pitch of 2π after complet-
ing the loop, showing that two infeasible regions with gimbal lock have been
traversed successfully during the manoeuvre.

5.3 Geometric control

While there is some merit to using the simple PID-control with the Tait-
Bryan angle representation, which was shown to be capable of performing
complex manoeuvres such as looping, significant improvements can be made
if abandoning the parametrisation entirely [Lee et al., 2010]. In the considered
control system, full use is made of the flatness equations using force control
with feedforward terms for translation in a computationally light controller.
The positional control errors and velocity control errors are first defined as

e(t) = pr(t)− p(t), and ė(t) = ṗr(t)− ṗ(t) (5.13)

respectively. Including compensation for gravity and acceleration feed-
forward terms, the thrust along the body zB unit vector can be written

T = TG · ẑB = (Kpe(t) + Kvė(t) +mgẑG +mp̈r(t)) · (RT
BG ẑG). (5.14)

In contrast to previously defined controllers, the geometric attitude control
makes use of the reference rotation, Rr, the reference body rates, ωr, and

63

Chapter 5. Rigid-body control

feed-forward torques, τ r, from the differential flatness. With this information,
we define the attitude error function

Ψ(RBG ,Rr) =
1

2
tr[I−RT

r RBG] (5.15)

omitting the need for parametrising the rotation in the degenerate quaternion
or Tait-Bryan attitude spaces. This function is locally positive definite around
RBG = Rr, as shown in [Bullo and Lewis, 2004]. Consequently, with the vee
map [·]∨ defined in Section 2.1 as the inverse operation to the map [·]×, it
may be shown that Ψ(RBG ,Rr) is minimised with respect to RBG for

eR(t) = −1

2
[RT

r RBG −RT
BGRr]

∨ = 0⇒ RBG = Rr. (5.16)

The idea is then to adjust define the rigid-body torques using eR(t) in order
to make the physical rotation, RBG , approach the intended rotation, Rr, as
originally done in [Lee et al., 2010].

With the the body rate, ωB, is estimated or measured directly from the
gyroscope, we may also form a body rate feedback law based on the rotation
matrix time derivative identities presented in Appendix A.11. Clearly, the
error between the reference and actual time derivative of the rotation, when
compared in the same tangent spaces satisfy,

ṘBG − Ṙr(R
T
r RBG) = RBG [ωB]× −Rr[ωr]×(RT

r RBG) (5.17)

Which may be written

RBG([ωB]× −RT
BGRr[ωr]×RT

r RBG) = RBG([ωB −RT
BGRrωr]×) (5.18)

using Euler’s rotational theorem (2.4) and the identities in Appendix A.10.
We may then form a rotational time derivative control error

eω(t) = RT
BGRrωr − ωB = 0⇒ ṘBG = Ṙr. (5.19)

A simple attitude controller may then be formed byτxτy
τx

 = KReR(t) + Kωeω(t) (5.20)

giving rise to a seemingly robust control system used to great effect both in
many practical applications [Mellinger and Kumar, 2011]. However, if com-
plementing the controller with feedforward torques from the flatness equa-
tions (3.30) computed using the Newton-Euler equations (2.39), such thatτxτy

τx

 = KReR(t) + Kωeω(t) + τ r(t), (5.21)

64

5.3 Geometric control

some interesting stability properties may be proven. Notably, the above con-
troller gives rise to near global exponential stability with respect to the flat
outputs [Lee et al., 2010]. If

Ψ(RBG(t0),Rr(t0)) < 2 (5.22)

and

||eω(t0)||2 <
2

λmax(IB)
Kω(2−Ψ(RBG(t0),Rr(t0))) (5.23)

then, for some a, b > 0 is has been proven in [Lee et al., 2010] that

Ψ(RBG(t),Rr(t)) ≤ min{2, ae−bt} (5.24)

As such, the controller provides a guarantees on stability that has not yet
been proved for the simpler PID-control system.

Experimental results

All presented systems, including PID, TI -LQR, TI -LQRiAW and geometric
feedback control, were implemented separately in the embedded system for
autonomous control. However, for the purposes of demonstrating the appli-
cation, we will in this section only consider the geometric tracking SE(3)-
control system. The controller proved very difficult to tune and proved far
less robust than anticipated in the simulations, with performance varying
greatly between quad-rotors. Three conceivable causes for this behaviour can
be imagined, the first being noise induced by the motor vibrations, as the
accelerometer is mounted in the same physical frame as the motors without
damping. The second possible cause is the UWB -positioning system measure-
ment variance, which is in the decimetre range as shown in later sections.
The third potential problem is in the controller implementation itself, and
more specifically the definition of rotational control errors, er(t). Surpris-
ingly, the translational tuning Kp = 0.2 · I and Kd = 0.08 · I in (5.14) was
found to be optimal both in simulation and the real time application, how-
ever, the rotational tuning parameters had to be lowered by a factor of 10,
to KR = 0.06 · I and Kω = 0.00025 · I in the attitude control (5.21), for the
system to retain stability. This hints at a discrepancy between the physical
system and the identified inertial parameters, and possibly an error in the
firmware implementation of eR(t).

The full control system was set up with UWB state estimation imple-
menting the geometric SE(3) controller with the above tuning. The system
was run autonomously with the embedded evaluation of pre-loaded trajec-
tories using the flatness equations to compute the feed-forward terms. The
first test shows the system response to step changes in elevation, alternating
between z = 1.2 and z = 1.8 at a period of t = 5 [s] using the smoothing
filter to enable evaluation of the DF equations (see Figure 5.6).

65

Chapter 5. Rigid-body control

Figure 5.6 Left : Evaluated positional reference trajectory and estimated
position as logged from the Crazyflie during autonomous flight with UWB
localiaztion. Right : Attitude error function.

There is a slight overshoot in position due to the very aggressive tuning set
to enable following of polynomial, sinusoid and Bezier curve trajectories. This
can be remedied by moving the pole of the smoothing filter closer to origin
in the embedded motion planning, here set to ω = −7.5 in the experiments.
This enables operation close to the dynamical constraints, while retaining
stability in the system. The attitude error function Ψ(RBG ,Rr) increases
slightly while ascending to a maximum elevation of z = 1.8, which is done
in < 1 [s], and then remains close to zero as intended, being continuously
minimised by the controller.

For less aggressive trajectories, such as a sinusoid parametrised movement
in the xy-plane, the controller manages to follow the positional reference tra-
jectory nicely considering the rather large estimator variance in the UWB
system (see Figure 5.7). In this example, the reference trajectory was set
to retain a height of zr(t) = 1 [m] and move in a perfect circle, defined
by (xr(t), yr(t)) = (cos(2t), sin(2t)) which implies moving around the circle
seven times in less than 20 seconds. In addition, the yaw reference was set to
ψ = −0.3 [rad] throughout the experiment, showing not only that reference
trajectories may be followed in the entire flat output space, but also that
the flatness implementation is correct, as the generated references in pitch
and roll are followed and seemingly compliant with the system dynamics.
When instead considering a unit step trajectory in the xy-plane, the aggres-
sive smoothing once again results in positional overshoots, as each edge of
the square is traversed in 2.5 seconds. While showcasing the translational
response, this example also demonstrates that the infeasible trajectories gen-
erated by the TSP -GA may be loaded directly into the Crazyflie via the
radio and followed autonomously.

66

5.3 Geometric control

Figure 5.7 Following unit sinusoid (Top) and unit step (Bottom) refer-
ence trajectories in the xy-plane with UWB localiaztion. Left : References
and estimated position and attitude. Right Positional trajectory in the xy-
plane with UWB localiaztion.

The final example illustrates the motion planning and obstacle avoidance
by generating a composite trajectory consisting of polynomial splines and
unit steps. The trajectory is generated to avoid two tables and then used
for autonomous navigation (see Figure 5.8). This demonstrates controller
performance in cluttered environments, showing that high performance UAV
applications are possible without expensive MOCAP systems.

67

Chapter 5. Rigid-body control

Figure 5.8 Top: Linear path (black) and generated reference trajectory
(blue) as evaluated in the UAV firmware and the estimated position (red)
avoiding two tables (green).

5.4 Summary

In this chapter, three distinct methods for rigid body control of the Crazyflie
were derived with non-linear saturations to guarantee controllability of the
UAV. A PID-control system was presented which proved capable of per-
forming complex manoeuvres such as loops in simulation. The LQR-type
controllers were presented, and an modification including the integration of
positional errors was implemented with conditional anti-windup scheme to
improve disturbance attenuation in the event of changing mass. Finally the
geometric SE(3) controller was presented. Despite being being very difficult
to tune and less robust than anticipated with respect to motor induced noise,
the geometric controller performance was tested in a real-time application
with UWB -localisation. The presented experiments demonstrati that the en-
tire embedded real-time control system, with on-line trajectory evaluation,
differential flatness equations and geometric tracking control is functional. It
also shows that high performance autonomous control is possible with simple
UWB estimation.

68

6
Inner state estimation

State estimation of the UAV can be accomplished in many ways, and a vast
amount of factors need to be taken into consideration when formulating real-
time compliant algorithms. The implementation should be a valid option
for high performance research labs and private hobby implementations alike,
and must therefore support a wide range of sensory equipment with vary-
ing degrees of precision. In this section we therefore consider (i) the IMU
measurements, (ii) various motion capture systems (MOCAP), (iii) optical
flow measurements, (iv) laser ranging and finally (v) UWB positioning. The
goal is to support fusion of all possible combinations with information ar-
riving at variable rates, and for this purpose, three types of state estimators
are considered. As the IMU sensor is mounted on the UAV, it can be as-
sumed to provide information at all times. Hence, in the minimal system
of using only (i) the IMU, complementary filtering in the form of quater-
nion attitude heading and reference systems (AHRS) will be used. When
additional sensory data is available, a scalar update extended Kalman filter
(EKF) formulation will be developed, building on the preexisting work by
Hamer [Mueller, 2016] [Mueller et al., 2015].

An advantage of the family of Kalman filters is their simple modification
to support sensor fusion by including measurement equations in the update
step. If done correctly, the drivers may push available information into the
filter in any combination (i)-(v) without recompiling the firmware. Conse-
quently, we will first present the filters and then proceed to discuss the sen-
sors (ii)-(v) independently in terms of their fundamental limitations, outlier
structure and measurement equations, detailing exactly how they enter the
estimator update step. In addition, for (ii) the MOCAP systems, standalone
methods of positional estimation will be given for stereo- and mono-vision
cameras separately, enabling use of high performance systems such as Vicon
or low performance cameras such as the Kinect. As for (iii) the optical flow
and (iv) the laser ranging, the necessary drivers and developed hardware will
be discussed in brevity. Finally for the UWB -system, two separate methods
of ranging will be presented and robust ranging protocols will be described.

69

Chapter 6. Inner state estimation

Figure 6.1 The inner state estimation with four blocks, the sensor block
containing five separate sensors (i)-(v) for which information is communi-
cated through one of three protocols, SPI, I2C or the , Crazy Real-Time
Protocol (CRTP) developed by Bitcraze. The sensory information is de-
coded in the driver block and fused with each other in the filter block to
estimate the UAV states.

In addition, the Cramer-Rao lower bound (CRLB) [Sengijpta, 1995] is de-
rived and used to relate the UWB -estimators to their theoretical limitations
as a function of the anchor UWB placement. Finally, static estimation in the
form of least-squares estimators (LS) will be derived for positional estima-
tion in the UWB system, which may either be outputted directly or included
in the dynamical filters to increase the amount of information included.

6.1 Model independent estimation

As the inertial measurement unit (IMU) is mounted to the UAV, all consid-
ered methods of state estimation will include gyroscope and accelerometer
measurements as a starting point. The Crazyflie implements the MPU-9250
package [InvenSense, 2014] which also provides magnetometer information,
here discarded due to the many magnetic disturbances in indoor environ-
ments. It should be noted that the IMU is mounted in the same hardware
frame as the motors without damping, and caution must be taken when
handling the data as noise from the motors will be aliased when down-
sampled, potentially corrupting the spectral content at lower frequencies.
The nominal range of operation for the motors is Ωmin ≈ 500 < Ωi < 2500

70

6.1 Model independent estimation

[rad/s], with a stable hovering state occurring at Ωhover = Ωi ≈ 1700 [rad/s]
∀i ∈ {1, 2, 3, 4}.

The lowest rate at which the IMU -sensor data is acquired is at fs = 500
[Hz]. This corresponds to a Nyqvist frequency of fN = 250 [Hz], resulting in
the aliasing of all accelerometer and gyroscopic disturbances at angular rates
of Ω > 2πfN ≈ 1570 [rad/s] according to the Nyquist-Shannon sampling
theorem [Unser, 2000]. In this mode of operation, the system performance
is affected by the aliasing even when attempting to retain a stable hovering
state as Ωh > 2πfN . Consequently, a low-pass filter with a pole in s = 500π
[rad/s] and unit static gain was implemented in the IMU driver and run
at a rate of 1000 [Hz], causing a negligible phase lag in the measurements
while attenuating the motor noise at a low computational cost. With this
precaution in place, we will proceed to discuss the model independent com-
plementary AHRS filter developed by Madgwick for IMU -based attitude
estimation [Madgwick et al., 2011].

Attitude heading and reference systems

A simple form of attitude estimation is the complementary AHRS -type fil-
ters, where gyroscopic measurements of angular rates in the body frame using
the quaternion formalism in (2.36),

ωq =
[
0 ωB

]T
=
[
0 ωx ωy ωz

]T
. (6.1)

Similarly, the accelerometer measurements are defined as

aq =
[
0 aB

]T
=
[
0 ax ay az

]T
. (6.2)

The objective of the AHRS is to combine fuse this sensory data in order to
determine the rotation quaternion from the body to global frame

qBG =
[
qw qx qy qz

]T
. (6.3)

The typical approach is to align accelerometer measurement with a nor-
malised gravitational field

gq =
[
0 0 0 −1

]T
, (6.4)

here defined in the global coordinate system to find noisy approximations of
the rotation about the x̂B- and ŷB-axis, complemented by integrated gyro-
scopic measurements. In doing so, the drift in the angular estimates caused
by the numerical integration of angular rates states is mitigated, but the
rotation around the body z-axis will still be drift in time which is detri-
mental to autonomous control. However, as the yaw rate is known from the

71

Chapter 6. Inner state estimation

gyroscopic measurements, the method is still of use in simpler joy-stick veloc-
ity control. Instead of the conventional Tait-Bryan angle parametrisation of
rotation which is susceptible to gimbal lock, we will instead use the quater-
nion formulation with steepest descent optimisation as originally proposed
by Madgwick et.al. [Madgwick et al., 2011].

Integration and optimization Using equation (2.37) from Section 2.2,
we may express time derivative of the rotational quaternion in terms of the
measured body rates as

q̇BG =
1

2
qBG ⊗ ωq. (6.5)

using the simple quaternion product (2.29). Discretising using forward Euler
integration and with the forward shift operator, z, yielding the estimated
quaternion of rotation from the gyroscope measurements as

q
(gyro)
BG = qBGz

−1 + ∆t
(1

2
qBGz

−1 ⊗ ωq
)
. (6.6)

provided we know the sample rate and initial conditions of the system, which

is qBG =
[
1 0 0 0

]T
if the quadcopter starts at φ = ψ = θ = 0.

In order to get a rate of change in the quaternion from the accelerometer
data, a simple optimisation problem to find the quaternion which best aligns
the gravitational acceleration with the measured acceleration. This is done
by using the quaternion rotation equation (2.36) in defining the function

F(qBG ,g
q,aq) = qBG ⊗ gq ⊗ q∗BG − aq (6.7)

and solving the optimisation problem

min
qBG∈H

(
C(qBG ,g

q,aq)
)

where C(·) =
1

2
F(·)TF(·). (6.8)

In Madgwick’s filter, the gradient descent method is used with a single
iteration, effectively allowing the optimisation program to be written in terms
of the forward shift operator, z, as

q
(acc)
BG ≈ qBGz

−1 − µ ∇C(qBGz
−1,gq,aq)

||∇C(qBGz−1,gq,aq)||2
. (6.9)

The advantages of the method is that it can be defined in terms of the
function F(·), as

∇C(·) =
1

2
∇F(·)TF(·) (6.10)

where both ∇F(·) and F(·) are well defined and cheaply computed.

72

6.1 Model independent estimation

Special caution should here be taken, as the original derivation of the filter
assumes the body frame and sensory frame are defined with ẑB = −ẑS , result-
ing in different signs in the gq quaternion, hence we get different definitions
of the function and gradients than in the original filter derivation [Madgwick
et al., 2011].

Two substantial objections can be made at this point. The first is that
clearly works best if the translational acceleration is small. This is an inher-
ent issue in any complementary filtering technique relying on aligning the
accelerometer measurements with the gravitational field. If the intention is

to fly aggressively, the influence of q
(acc)
BG must be made small. The second

objection is that the filter never converges to a desired attitude. However,
this is generally is not a problem as convergence is not a necessity if the con-
stant µ is chosen to make the steps of the optimisation is made very small.
Intuitively, the integration of the gyroscopic data causes filter divergence and
µ should simply be set large enough to counteract this divergence. As such,
and due to the normalisation in the gradient method, any filter constant
µ = α∆t||q̇BG ||2 with α > 1 will prevent the filter from diverging.

Sensor fusion and bias compensation Having formulated the quater-
nion optimisation problem, Madgwick sets the convergence rate of the gradi-
ent descent formulation, µ/∆t, equal to the divergence rate of the gyroscope
measurements, β. This divergence rate may be computed as the rate of the
linear drift in attitude when IMU perfectly still and integrating the gyro-
scope data. The standard complementary filter equations are then used to
combine the high-frequency characteristics of the integrated gyroscope data
with the low-frequency characteristics of the attitude estimated through the
gradient descent optimisation,

q̂BG = γq
(acc)
BG + (1− γ)q

(ω)
BG . γ ∈ [0, 1]. (6.11)

Using the proposed filter fusion coefficient γ = β∆t/µ� 1, the filter can be
written on the compact form

q̂BG = q̂BGz
−1 + ∆t

(1

2
(qBGz

−1 ⊗ ωq)− β ∇C(qBGz
−1,gq,aq)

||∇C(qBGz−1,gq,aq)||2

)
(6.12)

In the work of Madgwick, it also was shown that the quaternion rate of change
as estimated by the accelerometer data can be used to estimate the gyroscope
bias. By inverting the formula for the quaternion rate of change (2.37), the
gyroscope bias, ωbias, can be expressed as the static component of the angular
rates as estimated by the accelerometer[

0
ωbias

]
= 2

∫
q∗BGz

−1 ⊗ ∇C(qBGz
−1,gq,aq)

||∇C(qBGz−1,gq,aq)||2
dt (6.13)

73

Chapter 6. Inner state estimation

where then the bias compensated angular rates can be written

ωcomp = ωB − ζωbias (6.14)

including a weight ζ, as in the original bias compensation. The weight is in-
cluded to control the convergence rate of the gyroscope bias estimate, which
should be tuned situationally or gain scheduled depending on the applica-
tion. Formulated this way, the filter has the advantage of operating without
singularities in the entire attitude-space, but also suffers from a drift in the
estimated rotation about the zB axis when only using the 6 degree of freedom
IMU in spite of the bias compensation, as no magnetometer data is included
in the filter formulation.

In order to validate the above theory before implementing the filter in
the Crazyflie firmware, a simple simulation was run when controlling the
Newton-Euler quaternion model using the geometric SE(3) controller (see
Figure 6.2).

Figure 6.2 The closed loop quaternion-model set to follow a LP-filtered
elevation references with a period of 10 [s], random LP-filtered references
in roll and pitch φr(t), θr(t) ∈ [−0.8, 0.8] [rad] with a period of 5 [s], sinu-
soidal yaw reference ψr(t) = sin(0.5t). The resulting IMU measurements are
corrupted by biased noise corresponding to 0.1 [degrees/s] of acceleration
(top left) and accelerations (top right) are then filtered using Madgwick’s
method arriving at estimates very close to the true values.

While following random references in elevation and attitude, body rates
and body accelerations were corrupted by gaussian noise and linear drifts.

74

6.2 Model based state estimation

From these measurements, the attitude was estimated, parametrised in Tait-
Bryan ZYX angles and compared to the true angular response, yielding slight
errors but near perfect estimation in the simulation time, validating the im-
plementation against previous theory derived originally by Madgwick [Madg-
wick et al., 2011]. The presented bias-compensated six degree of freedom filter
was subsequently implemented in the Crazyflie firmware.

6.2 Model based state estimation

Much prior work has been done on UAV state estimation in navigation sys-
tems, and the standard approach is to implement variations of the extended
Kalman filter (EKF) [Huxel and Bishop, 2009]. This is done for good rea-
son, as the employed approximations, while restrictive in terms of robustness,
makes EKF computationally efficient compared to alternatives such as the
standard unscented Kalman filters (UKF) [Wan and Van Der Merwe, 2000]
and Bayesian particle filters (GPF) [Arulampalam et al., 2002] [Hol et
al., 2006] [Douc and Cappé, 2005]. Prior to this thesis, an EKF had been
implemented for sensor fusion of time-of-arrival (TOA) measurements from
the UWB LPS [Mueller, 2016] [Mueller et al., 2015]. As a consequence, we
will present the current estimator equations together with modifications to
improve performance, discuss numerical stability and potential issues with
observability.

Assumptions and definitions

Consider the discrete time system

xk+1 = f(xk,uk,wk) ∈ RN×1

yk = h(xk,vk) ∈ RM×1
(6.15)

with gaussian noise wk and vk with the covariance properties

E
{[

wk

vk

]}
= 0 E

{[
wk

vk

] [
wk

vk

]T}
=

[
Q 0
0 R

]
(6.16)

for some positive definite Q ∈ RN×N , R ∈ RM×M , thereby assuming un-
correlated state- and measurement noise. This approximation may be crude
and should be revisited in future research, as the gyroscope and accelerom-
eter are mounted in the same frame and likely subject to the similar noise
from the motors. In the EKF, just as in the standard Kalman filter, the state
vector probability density function, p(xk|Sk) conditioned by the sequence of
past measurements and control signals Sk = {y0, · · · ,yk,u0, · · · ,uk−1}, is
propagated through time in two steps. As the system (C.16) is assumed to

75

Chapter 6. Inner state estimation

be non-linear, the EKF uses a first order multivariate Taylor-approximation
to predict a future state, xfk , which is then corrected through filtering using a
Kalman gain resulting in the sub-optimal estimate x̂k. The reader is referred
to Appendix C.3 complete derivation of the standard EKF, but for future
reference, we define the system Jacobians

Fk =
∂f(x,u,0)

∂x

∣∣∣
x̂k,uk

Hk =
∂h(x,0)

∂x

∣∣∣
xf
k ,uk

(6.17)

where Fk can be expressed analytically at all times in the quaternion dynam-
ics, and Hk depends on the available measurements. In addition, if assuming
that noise may be non-additive, we let

Wk =
∂f(x,u,wk)

∂w

∣∣∣
x̂k,uk,wk

Vk =
∂h(x,vk)

∂v

∣∣∣
xf
k ,uk,vk

. (6.18)

Observability

In all Kalman filters, the property of observability is of vital importance for
estimator stability. Any unobservable state will per definition not be seen
through the measurement equation h(xk,vk), cannot be corrected and will
therefore never converge to a meaningful solution. The UAV dynamics are
highly non-linear, greatly complicating the notion of observability, but some
insight can be gained from analysing the linearised system constituted by
the error dynamics of the linearised system {Fk,Hk}. Observability for a
specific linearisation in the EKF can then be determined by computing the
observability Gramian

Wo(0,∞) =

∫ ∞
0

(eFkτ)THT
kHke

Fkτdτ ∈ Rn×n. (6.19)

which by the Cayley-Hamilton theorem [Vilfan, 1973] is equivalent to full
row-rank of the observability matrix

O =

HkF
0
k

...
HkF

n
k

 ∈ Rnm×n−1. (6.20)

To illustrate the effects of observability on state estimation in the UAV dy-
namics in the context of the EKF, consider the simple one dimensional double
integrator given by, ẍ = u, with a non-linear measurement equation h(x, ẋ).
In state-space form, the discrete-time system at a time-step of ∆t is written

xk+1 = Ax + Bu =

[
1 ∆t
0 1

]
x +

[
∆t2/2

∆t

]
u with x =

[
x
ẋ

]
,u =

[
0
u

]
,

(6.21)

76

6.2 Model based state estimation

where due to the system being linear and time invariant, Fk = A ∀k.
If the measurement equation contains information on the position,

h(x, ẋ) = αx ⇒ Hk =
[
α 0

]
⇒ rank(O) = 2. In the second case, we

assume it only contains information on the velocity, and h(x, ẋ) = αẋ ⇒
Hk =

[
0 α

]
⇒ rank(O) = 1 6= 2 making the positional state unobservable.

In the third case, we have composite measurements, such as h(x, ẋ) = αxẋ,
where for instance x = β 6= 0, ẋ ≡ 0 ⇒ Hk ≡

[
0 αβ

]
⇒ rank(O) = 1 6= 2

resulting in a locally unobservable position, x.
As the translational dynamics of the quadcopter is a triple integrator in

essence, we can only guarantee stability if the measurement equation con-
tains information on the zeroth order states, that is translation and attitude.
If it only provides second order derivative information (as from the IMU
accelerometer) the filter will quickly diverge in a quatratic fashion for the
positional states. However, if complementing this with first order derivative
information (as from optical flow), we will se a slower divergence as a linear
drift in the positional estimates. Global convergence can only be attained if
including zeroth order information (as from the UWB LPS or MOCAP sys-
tems). In the final case of a composite measurement equation, we may tem-
porarily loose information depending on its structure, potentially rendering
the system locally unobservable even with zeroth order measurements.

Kalman gain approximation

In many IMU driven navigation systems, the most costly aspect of the EKF
is the inversion and many matrix operations of the gain computation and
subsequent covariance update. A crude approximation of the true Kalman
gain can sometimes be used to great effect if the system is highly observable,
where the measurements are included in a scalar fashion [Huxel and Bishop,

2009]. Here, we let εi = zik−hi(x
f
k ,0) denote the error between measurement

and prediction in the measurement equation of index i where i ∈ 1, · · · ,M .
Furthermore, let Hi

k denote the corresponding row in the measurement Ja-
cobian, let Ki

k be a Kalman gain column vector and Rii be the ith diagonal
element of R. This allows for measurements to enter but naturally comes at
the cost of the Kalman gain decreasing on each iteration i due to the injection
of measurement noise in the covariance matrix. As such, the first measure-
ments in the sequence {1, ...,M} will affect the posterior covariance matrix
greatly, while the later contributions will have little effect on the estimate.
This can be remedied somewhat by including the more reliable measurements
first in the sequence {1, ...,M} [Huxel and Bishop, 2009].

Joseph form update and numerical stability

The EKF is not an optimal filter as opposed to the standard Kalman filter,
and the first order approximation could potentially be a crude approximation

77

Chapter 6. Inner state estimation

if the dynamics are highly non-linear. In addition, the estimate and covari-
ance matrices do not accurately capture the conditional probability density
function p(xk|Sk) and few guarantees can be made regarding its convergence
properties. A precaution to decrease the risk of estimator divergence due to
numerical errors is to use the Joseph correction, computing the covariance
matrix according to (C.29) in order to preserve symmetry. We may also en-
force symmetry and check boundedness of Pk on each correction, resetting
the filter if necessary (see Algorithm 2).

Receive uk−1,yk;

Prediction step
xfk = f(x̂k−1,uk−1,0);

Pf
k = Fk−1Pk−1F

T
k−1 + Wk−1QWT

k−1;

Correction step
for i = 1,...,M do

εi = yik − hi(x
f
k ,0);

Ki
k = Pf

k(Hi
k)T /[Hi

kP
f
k(Hi

k)T + Vi
kR

ii(Vi
k)T];

x̂k = xfk + Ki
kε
i;

Pk = (I−Ki
kH

i
k)Pf

k(I−Ki
kH

i
k)T + Ki

kV
i
kR

ii(Vi
k)T (Ki

k)T ;

xfk = x̂k, Pf
k = Pk;

end

x̂k = xfk , Pk = Pf
k ;

Pk = 1
2 (Pk + PT

k);

Algorithm 2: The scalar update Joseph-form EKF with enforced
symmetry

6.3 MOCAP positioning

In the considered motion capture positioning, the goal is to locate a single
UAV using any one of two camera types. In all considered applications, a
taken image, I ∈ RNx×Ny , is defined by a total of Nx and Ny pixels. Each
pixel, Ii,j , may contain data on either greyscale brightness, as with common
web cameras, or depth d ∈ R+ [m] as with disparity image functionality in
the more advanced Kinect cameras [ASUS, 2016]. Throughout this section,
we presume to know the camera angle of aperture, denoted θpx, θpy. With this
limited information, we will proceed to develop methods of state estimation
for both single- and multiple camera systems, making use of depth informa-
tion when available and detailing how the information enters the EKF.

78

6.3 MOCAP positioning

Measurement equations and limitations

In order to distinguish an object in the frame, a set of N background im-
ages, Ibi , are taken and the mean image is computed Īb =

∑N
i=1 Ibi /N . The

resulting image is subtracted from any subsequently taken image, resulting
in a difference image Idiff = I − Īb. The difference image is then lowpass
filtered by convolution with a simpler gaussian blur kernel

F =
1

16

1 2 1
2 4 2
1 2 1

 (6.22)

such that the convolved image becomes

Ĩdiff = F ∗ Idiff =

2∑
n=0

2∑
m=0

Fn,mIdiffi−n,j−m (6.23)

Next, all the M pixel indices (i, j) corresponding to pixels in the convolved

image satisfying Ĩdiffi,j > ε for some numerical limit ε ∈ R+ are used to find
a pixel “centre of pixel mass”, by

(n̄x, n̄y) =
⌈ 1

M

M∑
n=1

(i, j)
⌉

(6.24)

where then, by necessity, n̄x ∈ [1, Ny] and n̄y ∈ [1, Ny].
Next, we presume to know the camera position of the ith camera in the

room, ci ∈ R3, in the global frame, G. Furthermore, the calibrated normal of
the direction in which the camera is facing, ncali ∈ R3, with a corresponding
rotation Rcal

i ∈ R3×3 such that ncali = Rcal
i [0, 0, 1]T are both presumed to

be known. The direction in which the UAV supposedly is can be determined
by defining

αx = θx

(nx
Nx
− 1

2

)
, αy = θy

(ny
Ny
− 1

2

)
(6.25)

letting

Rx =

1 0 0
0 cos(αx) − sin(αx)
0 sin(αx) cos(αx)

 , Ry =

cos(αy) 0 − sin(αy)
0 1

sin(αy) 0 cos(αy)


(6.26)

and finally forming
ni = Rcal

i RxRy[0, 0, 1]T . (6.27)

With this theory, we have means of determining the direction of the detected
UAV from a fixed camera position in the global frame. However, the method
assumes that the UAV is the only moving object in the scene.

79

Chapter 6. Inner state estimation

Cameras with depth vision In the case of the Kinect cameras, which
provide disparity images with depths, we only need a single camera to provide
the position of the UAV in the global frame. The general expression of taking
the mean from N cameras is given by

p =
[
x y z

]T
=

1

N

N∑
i=1

ci + dini. (6.28)

Entering the information in the EKF as rows in the vector-valued mea-
surement function, h(x,0) is trivial. We simply let hrow(x,0) = xx̂,
hrow+1(x,0) = yŷ, hrow+2(x,0) = zẑ with ŷ denoting the position of the
state y in the state vector x. In all cases, the jacobians simply become
Hrow(x) = x̂, Hrow+1(x) = ŷ, Hrow+2(x) = ẑ.

Cameras without depth vision Consider a set of lines li = ci+ tni, t ∈
R given by the camera positions ci and normal directions ni. Generally, these
lines are unlikely to intersect, and instead, we must find the point closest to
all of these lines in some optimal sense. In the standard LS formulation, the
closest distance squared between an arbitrary point p ∈ R3 and a line li may
then be written,

||p− li||22 = (ci − p)T (I− nin
T
i)(ci − p) (6.29)

as shown in Appendix C.4 using the projector Pi = I − nin
T
i . The total

cost of an arbitrary point p for a total of N lines can then be defined as

J(p) =

N∑
i=1

||p− li||22 =

N∑
i=1

(ci − p)T (I− nin
T
i)(ci − p) (6.30)

which, when differentiated with respect to p gives an extremal point at

∂J(p)

∂p
= −2(I− nin

T
i)(ci − p) = 0 (6.31)

which is indeed a minimum, as

∂2J(p)

∂p2
= 2(I− nin

T
i) = 2P (6.32)

is positive semidefinite on account of P being idempotent. With this result,
we simply form the linear system

A =

N∑
i=1

(I− nin
T
i), b = (I− nin

T
i)ci (6.33)

80

6.3 MOCAP positioning

from which the LS estimate of the position can be written

p̂ = arg min
p
||Ap− b̂||2 = A†b̂ (6.34)

as solved by the standard Normal equations where A† = (ATA)−1AT de-
notes the lefthand Moore-Penrose pseudo-inverse [Trefethen and Bau III,
1997]. This LS formulation enables depth estimation from two or more cam-
eras, improving with the number of cameras included. If implementing two
cameras, care must be taken as any situation with l1 and l2 being near
parallel will result in a poorly conditioned system. From the LS estimate,
the measurement equations and corresponding measurement Jacobians are
formed just as in the case of depth vision cameras above (see Figure 6.3)

Figure 6.3 True and estimated position using the LS formulation in a
four camera system and perturbing the true normals slightly.

81

Chapter 6. Inner state estimation

Real-time example

To demonstrate the real-time implementation with MOCAP estimation us-
ing depth sensing cameras, the Crazyflie was set to swing in a string of length
r [m], estimating the position using the EKF with a single Kinect 1 cam-
era [ASUS, 2016]. To verify the implementation, we consider the dynamics
of a three dimensional damped spherical pendulum derived using the Euler-
Lagrange equations and Hamilton’s principle in a spherical coordinate sys-
tem [Young et al., 2007]. When complemented with energy dissipation due
to air resistance, b, the governing equations may be written

θ̈ =
(
θ̇2 cos(φ) +

g

r

)
sin(φ)− br|φ̇|φ̇

m
sin(φ)

φ̈ = −2
θ̇φ̇

tan(φ)
− br sin(φ̇)|θ̇|θ̇

m

,


x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(φ)

(6.35)
By simulation of the spherical pendulum model, we may visually compare
the estimated position of the UAV with the governing dynamics of the pen-
dulum, determined by initial conditions and parameters of mass, m = 0.027
[kg], pendulum length, r = 2 [m], drag coefficient b = 0.001 [rad2/kg] and
gravitational acceleration g = 9.81 [m/s2](see Figure 6.4). As expected, the
mass follows an elliptical trajectory when approaching the stationary point
in (r, θ, ψ) = (−2, 0, 0). Close to this point, we may approximately model
movement along the x- and y-axes as an under-damped harmonic oscillator

ẍ+ 2ξω0ẋ+ ω2
0x = 0 (6.36)

for which it is easily verified that the general solution may be written

x(t) = A0e
−ξω0t cos(ω0

√
(1− ξ2)t+ φ) (6.37)

when ξ2 < 1 [Glad and Ljung, 2000]. By generating an estimated trajectory
of the swinging mass, the coefficients {A0, ξ, ω0, φ} may be fitted with a non-
linear regression, showing that the estimator accurately follows a trajectory
compliant with the spherical pendulum dynamics (see Figure 6.4).

The chosen example illustrates a problem of positioning using a single
Kinect camera, occurring when |x(t)| is large. Here the UAV comes close
to the boundary of the flyable volume, which is approximately 1 [m3] due
to the small size of the quad-rotor and limitations of the camera. At these
points, we are more likely to loose track of the UAV resulting in many outlier
measurements during which the EKF updates without correction, resulting
in a deviations from the fitted trajectory. Furthermore, this example shows
not only that the Kinect implementation is functional, but more importantly
that the EKF implementation works. Consequently, any MOCAP system

82

6.3 MOCAP positioning

Figure 6.4 Top left Simulation of the spherical pendulum in R3. Top
center Projection of the trajectory in the xy-plane Top right Estimated
position using the Kinect 1 and posterior simulated response. Center: Mea-
sured position (xm, ym, zm) as computed from (n̄x, n̄y), estimated position
(x, y, z) and fitted damped harmonic oscillation (black). Bottom: Estimated
position, x, and measured position, xm, including outliers.

83

Chapter 6. Inner state estimation

outputting an estimated position of the UAV may be used instead of the
Kinect, including the web-camera approach with LS estimation and more
advanced systems such as the VICON. In fact, the VICON system has al-
ready been run with the EKF at ETH [Mueller et al., 2016].

6.4 UWB positioning

There exist many ways of passively estimating positions in an UWB system
which can be employed depending on the hardware at hand. One of the sim-
pler approaches is to use anchors designed to detect the angle of arrival (AOA)
at which the wavefront hits their antenna [Pahlavan et al., 2002]. An alterna-
tive method is the received signal strength approach (RSS), which has proven
especially effective for multi-path echoes in non-line-of-sight (NLOS) condi-
tions [Akgul, 2010] [Gentile et al., 2013]. Here, a logarithmic power-distance
relationship is used to determine estimate position by analysing the signal
amplitude in the receivers. The third an final method is commonly referred to
as the time-of-flight (TOF) approach. In this case, data is encoded in pack-
ets and transmitted using an UWB -radio, detailing a precise time when the
packet is sent. By comparing the time stamps at which the data was trans-
mitted and received, the time lag in the communication may be computed
giving a very accurate ranging measurements if the clocks of the system are
synchronised [Ledergerber et al., 2015]. The TOF methods can be used for
passive localisation using the time difference of arrival method TDOA and
for more robust active estimation using the time of arrival method(TOA),
both of which will be developed in this section.

Hardware

In the case of the DW1000 chip, the only supported modes of ranging is
the time of flight type methods [Decawave, 2014c], as the the transmission
(TX) and receiving (RX) timestamps as computed internally in the chip.
Therefore, we only consider localization by TOA and TDOA positioning in
this section.

In an UWB LPS consisting of a network of DW1000 chips, information is
exchanged in accordance with the IEEE 802.15.4a standard [Group, 2004].By
this standard, each encoded packet must consist of four distinct parts which
will be described briefly for the sake of context and to enable a discussion on
channel impulse response (CIR) in the noise modelling. The first two parts of
the packet are the preamble sequence and the start of frame delimiter (SFD),
both transmitted by emitting single pulses at a known time interval. This
allows the coding of ternary sequences, whereby a positive impulse is denoted
” + ” , a negative pulse as ” − ” and an omitted pulse symbolises ”0”. The
preamble is implemented to enable identification of the frequency band on

84

6.4 UWB positioning

which the data is sent, and may be defined by as much as 4096 symbols. The
much shorter SFD-sequence is species the end of the preamble sequence and
is used to determine the precise time-stamps at which the packet arrives. The
third part is the physical layer header (PHR), defining the rate and length at
which the fourth part of the packet, the data field, is coded. While the binary
coding of information is very interesting in itself, this section will primarily
concern the preamble and how it is used to compute the time of flight.

Prior to this thesis, the DW1000 chip had been implemented in an ex-
pansion board on the Crazyflie and in a set of radio anchors by Bitcraze
AB, refer to [Bitcraze UWB LPS] for more details on the electronics and
mechanics of the positioning system.

Measurement equations and limitations

Consider an unknown position, p ∈ R3 [m], of a chip (tag) capable of send-
ing timestamped packets to a set of i other chips (anchors) at known fixed
positions pi ∈ R3. Many problems become apparent when attempting to im-
plement such a system. Firstly, the clocks in the robot and the anchors will
not be perfectly synchronised, resulting in grave estimation errors. A tempo-
rary offset of nano seconds in the clocks will translate to an offset in meters
in the distance as the packets are transferred at the speed of light, c. This
problem is unavoidable, and a concrete example is the properties of the room
temperature crystal oscillator (RTXO) in the DWM chips, which results in
clock frequency variations on the order of ±0.5 [ppm] in the first minute af-
ter startup [Decawave, 2014b]. To cope with this issue, some method of clock
synchronisation or estimate of clock difference, Θi, between the anchor i and
the robot needs to be considered. Another problem is the stochastic mea-
surement noise, which varies depending on the robots location relative the
anchors due to the non-isotropic radiation patterns of the DWM chip [De-
cawave, 2014d]. However, for the sake of simplicity, we consider complete
isotropy in the antenna and independent and identically distributed mea-
surement noise wi ∼ N (0, tσ2

i). To get an idea of system performance, a
standard deviation of tσi ≈ 0.36 · 10−10 [s] was measured in a line-of-sight
TOA measurement with the DWM chip at a range of 1.5 [m]. This corre-
sponds roughly to the worst case ±0.1 [m] ranging accuracy guaranteed by
the manufacturers of the chip [Decawave, 2014d]. Throughout this section,
results will be presented with reference to a nominal and known anchor po-
sitions in R3 constituting a flyable space of 45 [m3] corresponding to a large
room (see Table 6.1).

Time of arrival In the TOA method, we consider the measurement equa-
tion with respect to the time of flight ti with respect to anchor i. Any time
of flight measurement then yields a distance ranging through the relation-
ship di = cti [m] with c [m/s] denoting the speed of light. The measurement

85

Chapter 6. Inner state estimation

Table 6.1 Nominal known anchor positions.

Anchor (i) 1 2 3 4 5 6
xi [m] -1.5 -1.5 -1.5 1.5 1.5 1.5
yi [m] -3 0 3 3 0 -3
zi [m] 3 0 3 0 3 0
c tσi [m] 0.08 0.08 0.08 0.08 0.08 0.08

equation may be formulated as

t̂i =
||p− pi||2

c
−Θi + wi, (6.38)

where it is evident that problem of variable clock rates will have a great effect
on the measured time difference, t̂i. The possible values of solutions p of each
measurement resides on a sphere centred around the pi in R3. In this case
we will either have to consider some means of multilateration to compute the
intersecting points, or include the measurements directly in the dynamical
estimator, as previously done in the work of Hamer [Mueller et al., 2015].

In the real-time implementation, communication between the robot and
anchors is bidirectional for increased robustness with respect to constant
clock offsets and linear clock drift. Details on the implemented symmetric
double-sided two way ranging (SDS-TWR) protocol complete with an error
analysis can be found in Appendix C.2. As the protocol is bidirectional,
each anchor will be locked to a on pre-determined time intervals using time-
division multiple access (TDMA) in a Round-Robin fashion [Chan, 2007].
Consequently, we note that a very a limited number of robots can be run in
the same anchor system with this protocol in place. However, as the SDS-
TWR protocol eliminates clock drift, the TOA information enter the EKF
as hrow(x,0) = ct̂i , d̂i, where then

Hrow(x) =
∂d̂i
∂x

=
(x− xi)x̂+ (y − yi)ŷ + (z − zi)ẑ

||p− p||2
, (6.39)

where ŷ denotes the position of the state y in the state vector x.

Time difference of arrival In the TDOA case, we effectively compare
two TOA measurements from a pair of anchors {i, j}, and the measurement
equation becomes

t̂i,j = t̂i − t̂j =
||p− pi||2 − ||p− pj ||2

c
−Θi + Θj + wi − wj . (6.40)

Consider a set of anchors with perfectly synchronised clocks, which can be
done in real-time by anchor-to-anchor communication using the SDS-TWR

86

6.4 UWB positioning

protocol. Then Θi−Θj = 0, and there is no need for bidirectional communi-
cation with the robot. This allows unlimites swarms of UAV s to run in the
same LPS, but naturally comes at the cost of a more complex measurement
equation, which effectively can be seen as finding the intersection of a set of
hyperbola in R3 (see Figure 6.5). Similarly to the TOA case, the measure-

ment equation is written hrow(x,0) = ct̂i,j , d̂i,j , forming the measurement
Jacobian as in (6.41), with

Hrow(x) =
∂d̂i
∂x
− ∂d̂j
∂x

. (6.41)

Figure 6.5 Left. Localisation of the Crazyflie (green) in the xy-plane
with TOA measurements. Center Localisation of the Crazyflie (green) in
the xy-plane with TDOA measurements. Right: The CRLB in the xy-plane
for TOA assuming no clock drift at z = 1.5 [m] in the nominal anchor
positions where dσi = c tσi ≈ 0.08 [m].

Performance bounds The theoretical performance bounds of the consid-
ered TOA and TDOA methods have been investigated rigorously in previous
work [Kaune, 2012] [Ledergerber et al., 2015] [Gentile et al., 2013]. The most
common method is to evaluate the minimum variance of the positional esti-
mate, p̂, in terms of the Cramer-Rao lower bound (CRLB), which is valid
regardless of the estimator scheme and as long as the estimate is unbiased
E[p̂] = p̂. The CRLB, here derived in R3, can be written

E[(p̂− p)(p̂− p)T] ≥ I−1(p) (6.42)

in which the variance of the estimate is bounded from below by the inverse of
the Fisher Information Matrix (FIM), I(p) [Sengijpta, 1995] [Gentile et al.,

87

Chapter 6. Inner state estimation

2013]. The FIM is given by

I(p) = E
[(
∇p ln

(
f(d̂|p)

))2]
(6.43)

where f(d̂|p) denotes the probability density function of the multivariate
gaussian distribution of ranging measurements, conditioned by the true po-
sition of the robot p (see Appendix C.1 for the complete derivation). Note
that computing the bound for the TOA case only assumes knowledge of the
anchor positions pi and the standard deviations of the TOA measurements of
each anchor tσi. It can therefore easily be modified to study the effect of non-
isotropic radiation patterns and anchor failures, which is left open for future
research. Having determined this bound in the nominal anchor configuration,
we have method of analysing the error induced by the UWB anchor position,
which in our chosen configuration of anchors according to Table 6.1 yields
reasonable positional estimate bounds within the convex hull of the anchors
(see Figure 6.5). Here the CRLB is plotted in the xy-plane at z = 1.5, show-
ing that the configuration will allow flight even outside of the convex hull of
the anchors at a cost of a degraded estimate, with similar results ∀z ∈ [0, 3]
[m]. In the chosen configuration, the CRLB indicates that our best case po-
sitional estimate will yield standard deviations & 1.8 · dσi = 1.8c · tσi ≈ 15
[cm], which will be our reference when evaluating the estimator performance.

Noise model

In order to discuss ways of modelling disturbances we must first consider the
SFD sequence, s[n], is used in the computation of time of flight measurement.
Conforming with the IEEE 802.15.4a standard, s[n] is chosen as one of two
ternary Ipatov-type sequences containing N ∈ {8, 64} symbols, where for the
N = 8 case,

s[n] = {0,+, 0,−,+, 0, 0,−}. (6.44)

This sequence has the property of being near perfectly periodically auto-
correlative, which is of vital importance when trying to locate packets in
an incoming signal x[n] containing one or more sequences s[n] corrupted
by noise. Autocorrelation of the SFD sequence, rss[l], can be evaluated in
several metrics, such as the magnitude of Golay merit factor,

FG = N2
(

2

N−1∑
l=1

r2
ss[l]

)−1

, (6.45)

a measure of how small the squared autocorrelation r2
ss[l] ∀l 6= 0 is relative

r2
ss[0]. If the merit factor FG is large, it is clear that applying a a simple cross-

correlative convolution on x[n] will yield peaks when the SFD sequence is
encountered, have small side-lobes for l ∈ [1−N,N − 1]\{0}, and be close to

88

6.4 UWB positioning

zero at all other times, as the correlation between s[n] and a white random
sequence is zero. For the N = 8 symbol ternary sequence defined in (6.44),
FG = 21.3, comparable to binary sequences which rarely exceed FG = 6 for
any choice of N [Jedwab et al., 2013].

The cross-correlation between the received signal and the SFD sequence
at a time lag of l is then

rsx[l] = (s ∗ x)[l] =

∞∑
n=−∞

s∗[n]x[n− l] (6.46)

yielding well defined peaks at delays, τ , corresponding to when a packet is
received, of which the first forms the time of flight measurement t̂i in the
TOA/TDOA cases.

The time evolution of the cross correlation is commonly referred to as
the channel impulse response (CIR), C(t, τ) ∈ C, [Walree, 2011] [Tse and
Viswanath, 2005]. The CIR is computed in the DW1000 chip and can be
read from an accumulator memory where it is generated at rates between
294− 5263 [Hz] depending on the preamble length, channel bandwidth and
chosen SFD sequence [Decawave, 2014a] (see Figure 6.6). We have no way of
knowing exactly how it is done due to intellectual property restrictions, but
the working assumption is that a cross correlation similar to that of (6.46)
is implemented.

Figure 6.6 Measured channel impulse response when moving the out of
the line of sight during t ∈ [17, 27] [s].

To find the peaks of the CIR, commonly referred to as multi-path com-
ponents, the DW1000 chip implements a Leading Edge (LE) algorithm due
to it’s simplicity. This algorithm typically defines two rectangular windowed

89

Chapter 6. Inner state estimation

means

ws[l] =
1

Ns

Ns−1∑
i=0

|rsx[l − i]|, wl[l] =
1

Nl

Nl−1∑
i=0

|rsx[l − i]|, (6.47)

where the small and large windows ws[n] and wl[n] contain Ns and Nl mea-
surement points respectively. The windowed means are run on the the CIR
amplitude are compared in time, detecting a peak at the first instance when
the conditions

ws[l]− εlwl[l] > 0 ∧ ws[l] > εt (6.48)

are met for some constant εl < 1 and εt relating to the noise floor (see
Figure 6.7).

Figure 6.7 The leading edge algorithm applied to a the cross covariance
(bottom) of a simulated channel measurement (top) including three SFD
headers of varying amplitude and large amounts of white gaussian noise. In
this demonstrative example, εl = 0.8 and εt = 4

With this background we proceed to model the measurement noise in a
multi-path environment. If the s[n] component in x[n] is attenuated by a
factor of α < 1 from the nominal value rsx(0) due to reflections and distance

90

6.4 UWB positioning

travelled, this will be visible in the amplitude of the cross-correlation, as for
y[n] = αx[n], clearly

rsy =

∞∑
n=−∞

s∗[n]αy[n+ l] = α

∞∑
n=−∞

s∗[n]x[n+ l] = αrsx[l]. (6.49)

This is depicted seen in Figure 6.7, and the result allows the determination
of accuracy in the ranging and the modelling of measurement noise in the
dynamical filter. For this purpose we crudely assume that the CIR amplitude
decreases proportionally to the distance travelled by the packet squared,
C(t, t̂i) ∝ (ct̂i)

−2. If so, the metric d̂2
i |C(t, t̂i)| ∈ R will be be roughly constant

regardless of the ranging time of flight in an echo free environment. However,
every time the signal is reflected, some energy will be lost to the environment
and we may therefore let the noise in the time of flight measurement of the
EKF be written

hrow(0,v) =
(
αd̂2

i |C(t, t̂i)|
)−1

vtof (t) (6.50)

where the gain α = 10−4 is included to normalize the CIR amplitude and
vtof (t) ∼ N (0,d σ2

i), determined to be dσi ≈ 0.2 [m] experimentally.
Interestingly, by applying a second LE algorithm to the CIR, significant

multi-path components can be tracked in time, and their phase and ampli-
tude could be used for simultaneous localisation and mapping SLAM [Kuang
et al., 2013], potentially eliminating the need for multiple anchors. However,
due to the low resolution of the CIR with each time delay corresponding
to ≈ 1 [ns], we can only detect multi-path components at distance inter-
vals of ≈ 0.33m, which is much more coarse than typical testbeds used in
UWB SLAM research. In addition, computational constraints imposed by
the STM32 micro-controller makes meaningful multi-path component track-
ing impossible in the embedded real-time application. Better modelling of
noise based on CIR and multi-path component tracking is left an open invi-
tation to future research.

Real-time example

Due to a lack of ground truth data, the performance of the CIR compensated
noise model in the EKF was only compared to the original implementation
of Mike Hamer with respect to the estimated position relative the reference
position. By circling a small wall of tables in a known elliptic orbit using
the SE(3) control system, the anchors are intermittently be blocked by the
walls, and multi-path components will be registered instead of the direct
path, degrading the estimator performance (see Figure 6.8).

The experiment hints at a slight improvement in performance using the
CIR-compensation, but nothing can be said with certainty except that the

91

Chapter 6. Inner state estimation

Figure 6.8 Positional estimation of the Crazyflie when following an el-
liptic orbit around in non-line-of-sight conditions with and without CIR
multi-path compensation, the UWB measurements in TOA-form with gy-
roscopic and accelerometer measurements in the embedded scalar EKF.

method does not seem to improve the estimation significantly to warrant
the additional computational resources required. Many reasons combine to
explain this result. Firstly, there is redundancy in the number of anchors
used on the nominal configuration. When determining the position, no more
than three anchor-to-robot measurements are required, and we have as many
reliable measurements at all times in the tested configuration. Secondly, the
implemented relationship between the distance measurement and the CIR
amplitude is a crude approximation of reality, and could be improved using
results from RSS research [Srinivasa and Haenggi, 2009]. Thirdly, the EKF
operates under the assumption of gaussian state distributions which is a poor
approximation both with and without CIR compensation. Despite this, both
the CIR-compensated and regular EKF are robust to a point where they may
be used with confidence, as demonstrated in Section 5. In conclusion, no
significant improvement was seen when using the CIR-compensation in the
TOA ranging, but the use of multi-path components should be investigated
further in order to increase positional accuracy in non-line-of-sight conditions.

6.5 Optical flow and laser positioning

While systems such as Vicon, Optitrack and Qualisys yield mm-precision
accuracy at rates exceeding 100 [Hz], the previously discussed UWB LPS
with SDS-TWR protocol and CIR-compensation was shown to yield mea-
surements with dm-precision at a fraction of the cost, but only supporting
small numbers of quad-rotors with the time division multiple access (TDMA)
technique. When instead using TDOA ranging, the LPS supports an ar-
bitrary number of quad-rotors by eliminating the two-way communication.

92

6.5 Optical flow and laser positioning

However, the measurement accuracy suffers greatly with flight becoming near
impossible outside of the convex hull of the anchors [Mueller et al., 2015].

The aforementioned methods have two common drawbacks, they require
(i) external anchors and cameras to be set up and (ii) line of sight with the
quadcopter, restricting flight to a certain visible volume in space. While self
evident in the camera system, this was shown conclusively in the UWB case
by studying the CRLB outside of the convex hull of the anchors. Conse-
quently, in a practical application where the UAV is to perform well in a
larger room such as a supermarket, alternate methods have to be considered.
In this section, we develop the necessary framework for optical flow and laser
estimation, with all sensory equipment fixed to the UAV. This allows for com-
plete autonomy at a low monetary cost with no need for external systems,
removing the upper bound on flyable volume and and enabling operation in
non-line-of-sight conditions.

The term optical flow refers to a flow of two-dimensional images, in which
certain features, such as patterns or pixel intensities, are tracked in time. This
can be done in many ways, and a substantial body of research has dealt with
creating robust methods of determining how images are translated [Horn
and Schunck, 1981] and the methods’ performance in terms of robustness
and accuracy [Barron et al., 1994]. Our work is not concerned with how the
pixel counts (nx, ny) ∈ N0 are derived, but rather how this information can
be included in a Bayesian filter and fused with additional sensory information
at variable rates.

Sensor preliminaries

Many interesting means of sensing optical flow exist, and we have been
granted access to an alpha-prototype sensor which is small and looks to
be a very affordable option. A non-disclosure agreement is currently in place
regarding the sensor and the company producing it. As a consequence, the
derived theory will therefore be presented in very general terms to avoid any
possibility of infringement.

In any optical flow implementation, we presume to know the aperture an-
gle of the camera(θpx, θpy) [rad] and the number of pixels (Nx, Ny) [pixels] of
the image which is tracked in time. In addition, the accumulated pixel count
(∆nx,∆ny) [pixels/s] is measured at small time steps ∆t [s] as a measure
of image translation in time (see Figure 6.9). We also assume knowledge of

the rotation matrix estimate R̂ and elevation ẑ [m] from the state estimator.

Finally, the rotational vector of the body frame ω̂B =
[
ωx ωy ωz

]T
, is

known directly from the gyroscope measurements.
For future reference, we consider three different coordinate systems in

developing the theory, the first being the inertial system O(x̂I , ŷI , ẑI), the
second being the body system O(x̂B, ŷB, ẑB) and finally the system of the

93

Chapter 6. Inner state estimation

Figure 6.9 Left : Coordinate systems and relationships between angles
used to define the measurement equations for the flow and TOF sensors.
Right : Translated images over a time step of ∆t [s].

photographed image O(x̂P , ŷP , ẑP), where

x̂P =
x̂B − (x̂B · ẑI)ẑI
||x̂B − (x̂B · ẑI)ẑI ||2

, ẑP ||ẑI , ŷP = ẑP × x̂P . (6.51)

The laser ranging is accomplished by means of the time-of-flight sensor,
the vl53l0x [STMicroelectronics, 2014]. The vertical-cavity surface-emitting
laser is the smallest on the global market at the time of writing, with a cost
of $2.3 per unit. The sensor provides centimetre precision measurements at
a range of h < 1.2 − 2 [m] depending on the sample rate and mode of op-
eration and the properties of the reflective surface. The angle of aperture of
the collector is θpz = 25◦ and the distribution of the estimation error was ex-
perimentally shown to be well approximated by a normal distribution with a
standard deviation which is a known function of the ranging distance [STMi-
croelectronics, 2014].

Hardware design

In order to run the vl53l0x sensor with the Crazyflie, a small printed circuit
board (PCB) was created (see Figure 6.10). Designed so as not to interfere
with the SPI communication of the DW1000 chip, the expansion board en-
ables the parallel operation of UWB and laser ranging. A driver was written
to enable the long ranging mode of the laser ranging sensor at a rate of 100
Hz with outlier rejection. As faulty measurements in the laser ranging typi-
cally result in h > 8 [m], only measurements 0 < h < 2 [m] were considered
feasible.

94

6.5 Optical flow and laser positioning

In similar fashion, a PCB was developed to mount both the flow sensor
and the vl053x simultaneously (see Figure 6.10). Due to conflicts in commu-
nication, this more extensive board cannot presently be run together with
the UWB, but changes to the SPI communication could facilitate parallel use
with the the UWB, laser and flow sensors. A driver was written to (i) sample
the accumulated pixel counts at 100 [Hz], (ii) rotate the accumulated pixel
counts into the body frame, (iii) run a fast anti-aliasing filter on the measure-
ments and (iv) perform outlier rejection. Bad measurements typically result
in exact zeros or very large pixel counts, and similarly to the laser rang-
ing, feasible measurements were considered to fulfill 0 < (∆nx,∆ny) < 100
[pixels].

Figure 6.10 Left : PCB for laser ranging in the negative ẑB-direction
using the vl053x sensor (black, center) with a 30 [mm] arrow. Right : PCB
for laser ranging (black, top) and optical flow (covered red, center) with a
30 [mm] arrow.

Laser ranging measurement equations

To estimate the elevation, z, from the laser ranging measurement we first
let α = arccos[(RzI) · zI] (see Figure 6.9). If the laser sensor field of view
θpz → 0, the resulting measurement becomes

z = hzB · zI = h(RzI) · zI ⇔ h =
z

(RzI) · zI
=

z

cos(α)
. (6.52)

However, if the field-of-view is significantly larger than zero, such as θpz = 25◦

given in the specifications of the vl53l0x sensor, it is clear that h = z if
α < θpz/2. When the ẑB vector is no longer contained in the emitted laser
cone, the measured distance h will correspond to the line on the measurement

95

Chapter 6. Inner state estimation

cone closest to the axis ẑB,

hrow(x,0) = h =


z if |α| < θpz/2

z

cos(|α| − θpz/2)
if |α| ≥ θpz/2

. (6.53)

Determining the measurement Jacobian is trivial if disregarding changes in
R. For example, in a Tait-Bryan representation, (RzI) · zI = cos(φ) cos(θ),
showing that we can only correct the covariance with respect to pitch and
roll, while the yaw remains unobservable. As rotations corresponding to pitch
and roll are well determined from gyroscope and accelerometer information,
the changes in R are omitted in the measurement Jacobian.

Optical flow measurement equations

In deriving the measurement equations of the flow sensor, we let (θx, θy)
denote the angular offset about the x̂B- and ŷB-axis respectively, where then

θx =
θpx
Ny

ny, θy =
θpy
Nx

nx (6.54)

As a first approximation, we let ω̂B = 0 and R̂ = I, implying that the ground
velocity can be written in terms of the accumulated pixel count as

ẋ = hθ̇y ' h
∆θy
∆t

= h
θpy

∆tNx
∆nx. (6.55)

However, if we may presume to have some previous estimate of the system
state and ωB 6= 0, it is clear that the rotations around the x̂B- and ŷB-axis
will contribute to the optical flow. To minimise this effect during aggressive
flight, we simply add a term compensating for the body rate

ẋ = h
θpy

∆tNx
∆px − hωB,y. (6.56)

Finally, if in addition we let R 6= I, it is clear that the image taken may
be subject to not only translation, but also scaling, which, combined with a
rotation about ẑB will contribute to the accumulated pixel count. Due to the
symmetry of the image, this effect dependends greatly on the rotation about
the ẑB-axis, and is therefore only relevant when ωB,z � 0. In this case, the
true speed can be written

ẋ = h
θpy

∆tNx
∆px − hωB,y − Px. (6.57)

where Px denotes the contribution to the pixel count caused by the rotation
about the ẑB-axis and asymmetries in the image due to R̂ 6= I. An expression

96

6.5 Optical flow and laser positioning

for Px can be derived considering the scaled image, S, in the x̂P ŷP -plane
and its reflection in the x̂P - and ŷP -axis, Sp, from which it is easily verified
that the surface (Sp ∩ S) ∪ S contributes to the pixel count, and that this
contribution depends on the rotation ωBẑB (see Figure 6.9). For simplicity,
Px is be assumed to be small, but if we consider flight with large values of
ωz, the term will have to be defined properly.

Letting R 6= I, ωB 6= 0 and considering small rotations ωz � 1 in the
optical flow estimation, the non-linear measurement equation at the rows of
indices m and m+ 1 may be written

hrow(x,0) = ∆nx =
Ny∆t

θpy

(ẋ(RzI) · zI
z

+ ωy

)
hrow+1(x,0) = ∆ny =

Nx∆t

θpx

(ẏ(RzI) · zI
z

− ωx
) (6.58)

where the corresponding measurement Jacobian for ∆nx is

Hrow(x) =
∂∆nx
∂x

=
Ny∆t

θpy

[
((RzI) · zI)

(1

z
ˆ̇x− ẋ

z2
ẑ
)

+ ω̂y

]
(6.59)

where ω̂y denotes the position of the state ωy in the state vector x. A similar
expression for the measurement Jacobian row corresponding to the pixel
count ∆ny. As in the laser ranging, the term (RzI) · zI gives no information
on the rotation about the z-axis and can be disregarded to simplify the
measurement Jacobian formulation.

Adaptive filtering for removal of positional drift

An inherent problem for optical flow estimation comes from the estimation
of unobservable states, which will not converge to any meaningful solution
as shown in Section 6.2. In the case of optical flow, this applies to the
positional states where the internal global estimation of translation (x, y) will
diverge from the true global position (xt, yt) given time such that (∆x,∆y) =
(x − xt, y − yt) 6= 0. However, if this drift is small enough such that during
a battery lifetime of T [s], there clearly exists a circular bound

sup
t∈[0,T]

||(∆x(t),∆y(t))||2 < C (6.60)

for some constant C. As such, at the end of every flight, we may control
the quadcopter to a point (xr, yr) and be certain that it resides within a
circle with radius C around the intended point. If we then introduce some
known feature on the floor, the raw image taken by the optical flow sensor
may be analysed to find the feature, determine (∆x,∆y) and synchronise
the EKF estimator such that (x, y) , (xr, yr) + (∆x,∆y). Note that this

97

Chapter 6. Inner state estimation

allows for complete independence from any external electrical system. The
UWB anchors or MOCAP cameras could for instance be replaced by a small
printable note of paper, placed at a known position on the ground.

For the purpose of synchronising the position, we consider a target feature
consisting of concentric circles, which has been used succesfully in vision-
based autonomous landing [Verbandt et al., 2014]. The target feature is de-
fined by a set of M circles with radii R = {r1 < · · · < rM} [m] and the image
taken by the flow sensor is defined as I. A pixel in this image is denoted
Ii,j , i, j ∈ [1, N]2, assuming a square image with N = Nx = Ny. Similarly,
we assume that the camera angle of aperture is the same in the x and y
directions, with θpx = θpx. The idea is then to define a kernel, K ∈ NNk×Nk ,
which represents the concentric circle feature in question, scaled to fit the
taken image, such that resolution of the kernel decreases with the altitude.
This can be accomplished by adjusting the kernel size with

Nk =
⌈ N
θpx

arcsin
(rM
z

)⌉
, (6.61)

assuming the the angle of aperture is small and that any image is taken from
a stable hovering state. Using the gaussian kernel, F , defined in (6.22) we
may form a lowpass filtered two-dimensional cross correlation

F ∗ K ∗ I =

∞∑
a=−∞

∞∑
b=−∞

(F ∗ K)a,bIi−a,j−b (6.62)

where, in the case of the concentric circles,

(̂i, ĵ) = arg max
(i,j)∈[1,N]2

(F ∗ K ∗ I)i,j (6.63)

yields a good estimate of the centre of the concentric circles in the taken
image. Computation of the shift from (∆x,∆y) from the pixels (̂i, ĵ) is then
trivial when knowing the estimated elevation.

Measurement noise models

In the case of the laser ranging, it was experimentally verified that the mea-
surement noise, vh(t) ∼ N (0, σ2

h), was zero-mean and normally distributed.
The variance of the noise depends on luminosity conditions (specifically in
the infrared spectrum), the reflective properties of the surface and the rang-
ing distance [STMicroelectronics, 2014]. In contrast, measurement noise of
the optical flow measurements, v∆x(t) ∼ N (0, σ2

∆x) and v∆y(t) ∼ N (0, σ2
∆y)

are more difficult to measure and model. Some information can be inferred
from the flow sensor, which provides a greyscale factor Qg ∈ [0, Qmaxg] and
an image quality factor Qi ∈ [0, Qmaxi], where a low greyscale factor and

98

6.5 Optical flow and laser positioning

Figure 6.11 Top: Concentric circle target and filter kernels K at various
elevations, h. Bottom left LP-filtered cross covariance of a taken image and a
filter kernel, F∗K∗I. Bottom right Taken image with estimated centre of the
concentric circle feature from an elevation of h = 1.0 with a corresponding
positional shift as computed in the UAV firmware yielding an error of single
pixels, corresponding to an accuracy of ±4 [cm].

high image quality indicate a lower standard deviation of the measurement
noise. In addition, the flow sensor provides information on the shutter value
Qs ∈ [0, Qmaxs] indicating the luminosity for the environment, which is of
relevance to the laser ranging measurement.

Using the data from the flow sensor, we model the laser ranging measure-
ment error as

hrow(0,v) =
(

1 + αh
1 +Qs + h−Qi

Qmaxs + hmax +Qmaxi

)
vh(t) = Vrow

k vh(t) (6.64)

where Vrow
k is the diagonal element of the measurement noise Jacobian for

the corresponding row, as the equation is linear in vh(t). Based on the sensor
data sheet and manual tuning σh = 0.003 [m] and αh ≈ 3 [STMicroelec-
tronics, 2014], such that the maximum uncertainty at poor lighting, bad
reflectance and high altitude becomes 10σh. The mth diagonal element of
the measurement noise covariance matrix, R, is then σ2

h

99

Chapter 6. Inner state estimation

In the optical flow we contend with only using the image factor[
hrow(0,v)

hrow+1(0,v)

]
=
(

1 + α∆n
Qg
Qmaxg

)[v∆x(t)
v∆y(t)

]
(6.65)

where the diagonal element of the measurement noise Jacobian is easily
identifiable, the noise characteristics were experimentally determined to be
σ2

∆x = σ2
∆y ≈ 0.3 [pixels/s] and α∆n ≈ 5/3.

Real-time study

In order to demonstrate the implementation, the Crazyflie was flown over
the course of 50 [s] with PD control, optical flow, laser ranging and IMU
fusion in the scalar update EKF. The beginning of the flight was controlled
manually in order to show performance when flying carelessly and it’s effects
on the estimator covariance. The UAV was then set to fly autonomously with
constant speed in the negative xB-direction during 6 [s] (blue) and then set
to hover autonomously for 20 [s] (green) before landing (see Figure 6.12).

Figure 6.12 Top: Positional response during the experiment. Center :
Travelled trajectory in the xy-plane. Bottom The estimator attitude vari-
ance during the experiment.

100

6.5 Optical flow and laser positioning

The scalar update EKF with is clearly capable of sustaining flight only
using optical flow and laser measurements and the IMU sensor. Indeed, the
altitude estimation is en par with z-estimation in the UWB LPS while in
a stable hovering state. Both yield constant offsets in the decimetre range
due to the noise caused by the motors, but the standard deviation of the
elevation estimate estimate is typically

√
V[ẑ] ≈ 5.2 [cm] in the UWB case

and
√

V[ẑ] ≈ 1.6 [cm] while hovering using the laser and optical flow sensor.
The biggest difference is in the positional xy-estimates, which are typically

more accurate than then z-estimate in the UWB estimation. However, in the
optical flow, the estimates exhibit a linear drifting behaviour on account of
being unobservable in the measurement equations. As a consequence, the
estimates will not converge to a meaningful solution, and drift in a linear
fashion if attempting to stand perfectly still. This behaviour is expected
from the discussion on observability, and shows that the measurements enter
the EKF as intended (see Section 6.2). The drift effect could possibly be
remedied by increasing the rate of the filter or by including additional flow
sensors [Santamaria-Navarro et al., 2015]. However, a bigger concern is the
rotation about the z-axis (yaw) becoming very uncertain in comparison to
the rotation about the x- and y-axis (see Figure 6.12). This uncertainty grows
significantly when the translational speeds, and implicitly angular speeds, are
constant. In this state, the yaw becomes locally unobservable in the estimator.

The rotation matrix and specifically the yaw, ψ, is of vital importance
in mapping the global position. For example, a constant offset of 10◦ during
a 10 [m] flight in the xy-plane results in positional errors up to 1.6[m]. On
the firmware side, improvements of the z-axis rotation estimate can be made
by including states for bias estimation in the accelerometer and gyroscope
measurements [Sola, 2012] [Santamaria-Navarro et al., 2015] which should be
investigated in future revision of the EKF. However, in general, applications
with autonomous flight and flow sensing require means resetting estimates
based on additional sensory information, in order to remove the drift in the
positional states. With the current implementation, a practical solution is
to place a small target on the ground and use the adaptive kernel filtering
to estimate it’s position relative the target. This target could be made of
concentric circles to be more easily identifiable, allowing the resetting of
translational x and y estimate. Alternatively, it could be made L-shaped, in
which case the true yaw could be inferred by using a rotated kernel in the
cross correlation.

While much of necessary algorithms have been implemented and verified
in the practical implementation, the concept of drift removal by adaptive
filtering needs to be investigated further, as it has the potential of enabling
flight in an unbounded volume without external motion capture systems and
with greater precision than the UWB estimates in the TWR-ranging mode.

101

7
Conclusions and summary

Over the course of this thesis, great progress has been made on developing
a UAV platform for advanced research at LTH while simultaneously con-
tributing useful code to Bitcraze AB. The main developments will here be
summarised, indicating contributions to existing theory and work with a sin-
gle dagger†, and brand new developments with a double dagger‡. Note that
this thesis only deals with the theory and in particular the inner control
system, referring the interested reader to [Greiff, 2017] for (i) the complete
report with a discussion on outer L1 theory, time varying LQR and non-
linear MPC and to (ii) the current working implementation in the Robot
Operating System (ROS). Furthermore, see [Greiff, 2016] for (iii) the motion
capture with Kinect cameras as a implemented in a standalone ROS stack
and (iv) [Hoenig et al., 2015] for the current working ROS driver, complete
with contributions to facilitate communication of trajectories in specialised
packets. The items (i)-(iv) were all developed from scratch or contributed to
throughout the thesis, but are omitted due to a lack of space.

In the second chapter, the rotor dynamics were explored in the unconven-
tional cross-configuration employed by Bitcraze†. In addition, the rigid-body
dynamics were derived using the Euler-Lagrange equations with a ZYX Tait-
Bryan parametrisation of rotation†. This approach was shown to suffer on
account of the Gimbal lock phenomenon, and a remedy for the issue was
presented guaranteeing well conditioned dynamics and controllability with a
high probability in the complete attitude space‡. As an alternative, the equa-
tions of motion were derived using Newton-Euler equations with a quaternion
representation of the rotation. The resulting model was shown to be less com-
putationally complex than the Tait-Bryan alternative, omitting the need for
evaluating trigonometric terms at the cost of diminished controllability†. The
quaternion system was presented in its state-space form†, in an analytically
derived linearised system‡and in a discrete time form taking the constant
gravitational term into account†.

In the third chapter, algorithms were developed for motion planning by
first deriving a heuristic solver for the travelling salesman problem to find

102

Chapter 7. Conclusions and summary

a close-to-optimal path through a set of points ordered by subsets with
varying priority‡. Next, the notion of differential flatness was derived and
implemented for the quaternion representation of rotation†. A method of
low-pass smoothing was implemented for creating the necessary flat outputs
from a sequence of points in flat output space‡, and a method of quadratic-
programming was explored to create minimum snap polynomial splines com-
pliant with system dynamics†. In addition, methods of inflation and projec-
tion were developed to find the shortest linear distance around certain classes
of obstacles‡and inequality constraints were explored to contain the splines
generated by the quadratic program into safe a priori known sets‡. Functional
implementations of the flatness and sequence generator were done in C and
made part of the Crazyflie firmware‡.

In the fourth chapter, a method of controlling the rotor loops inde-
pendently of each other was explored with proportional-integral-derivative
(PID) and model reference adaptive MRAC controllers, which both proved
effective†. In addition, two means of parameter estimation were explored
within the recursive least squares framework, providing a simple robust and
computationally efficient method of determining the time varying param-
eters in the transfer function from voltage to rotor speed from estimating
parameters in the transfer function from voltage to current‡.

In the fifth chapter, the inner control system of the Crazyflie was de-
veloped to enable autonomous, high performance flight without relying on
any external computer. This included investigating non-linear saturations
to guarantee controllability even during complex manoeuvres‡, the compar-
ison of LQR and PID based approaches for attitude control†, as well as the
derivation of a 2-dof PID controller for tracking control‡. A novel method
of integrating states in the LQR scheme was developed to handle changes
in mass‡, implementing conditional anti-windup. Finally, a promising geo-
metrical SE(3) controller previously derived by [Lee et al., 2010] was imple-
mented and verified in a Simulink environment†before being implemented in
the Crazyflie firmware and demonstrated in several real-time experiments‡.

In the sixth and final chapter, Madgwick’s AHRS filter was presented for
IMU based state estimation and implemented with bias compensation in the
Crazyflie firmware†. In addition, the scalar update EKF was presented†, eval-
uated in simulation and implemented in the firmware. Theory was developed
to enable MOCAP estimation in the scalar update EKF, with systems in-
cluding both depth sensing and non-depth sensing cameras‡. The pre-existing
open-source code was augmented to support multi-path compensation in the
UWB LPS case by using the CIR‡. Finally, theory necessary to run the UAV
autonomously using optical flow‡and laser ranging‡was presented. The equa-
tions were implemented in the firmware, including a method of resetting the
unobservable states with known features‡. The codes were developed to fuse
all of the above methods for state estimation in the UAV firmware‡.

103

Bibliography

Åström, K. J. and R. M. Murray (2010). Feedback systems: an introduction
for scientists and engineers. (visited on 18-12-2016). Princeton university
press.

Akgul, F. O. (2010). Modeling the Behavior of Multipath Components Perti-
nent to Indoor Geolocation. (visited on 18-10-2016). Worcester Polytech-
nic Institute.

Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp (2002). “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking”.
Signal Processing, IEEE Transactions on 50:2. (visited on 02-06-2016),
pp. 174–188.

ASUS (2016). Kinect Xtion PRO. (visited on 17-06-2016). url: https://
www.asus.com/3D-Sensor/Xtion_PRO/specifications/.

Augugliaro, F., E. Zarfati, A. Mirjan, and R. D’Andrea (2015). “Knot-tying
with Flying Machines for Aerial Construction”. In: 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). (visited
on 23-07-2016). IEEE, Piscataway, NJ, pp. 5917–5922.

Baez, J. C. (2005). “On quaternions and octonions: their geometry, arith-
metic, and symmetry by john h. conway and derek a. smith”. Bull. Amer.
Math. Soc 42. (visited on 23-10-2016), pp. 229–243.

Balas, E. and P. Toth (1983). Branch and bound methods for the traveling
salesman problem. Tech. rep. (visited on 02-10-2016). Management Sci-
ence Research Report No. MSRR 488.

Bangura, M., M. Melega, R. Naldi, and R. Mahony (2016). “Aerodynamics
of rotor blades for quadrotors”. arXiv preprint arXiv:1601.00733. (visited
on 15-07-2016).

Barron, J. L., D. J. Fleet, and S. S. Beauchemin (1994). “Performance of
optical flow techniques”. International journal of computer vision 12:1.
(visited on 14-12-2016), pp. 43–77.

104

https://www.asus.com/3D-Sensor/Xtion_PRO/specifications/
https://www.asus.com/3D-Sensor/Xtion_PRO/specifications/

Bibliography

Bitcraze. Bitcraze uwb lps. (visited on 16-08-2016). url: https://wiki.
bitcraze.io/doc:lps:index.

Blender Online Community (2016). Blender - a 3D modelling and rendering
package. Blender Foundation. Blender Institute, Amsterdam. url: http:
//www.blender.org.

Bullo, F. and A. D. Lewis (2004). Geometric control of mechanical systems:
modeling, analysis, and design for simple mechanical control systems.
Vol. 49. Springer Science & Business Media.

Castillo, P., R. Lozano, and A. Dzul (2004). “Stabilization of a mini-rotorcraft
having four rotors.” In: IROS. (visited on 23-10-2016), pp. 2693–2698.

Castillo, P., R. Lozano, and A. Dzul (2005). “Stabilization of a mini rotorcraft
with four rotors”. IEEE control systems magazine 25:6. (visited on 08-
07-2016), pp. 45–55.

Chan, T. S. (2007). “Time-division multiple access”. Handbook of Computer
Networks: LANs, MANs, WANs, the Internet, and Global, Cellular, and
Wireless Networks, Volume 2, pp. 769–778.

Chen, T. and B. A. Francis (2012). Optimal sampled-data control systems.
(visited on 06-17-2016). Springer Science & Business Media.

Chovancová, A., T. Fico, L. Chovanec, and P. Hubinsk (2014). “Mathemati-
cal modelling and parameter identification of quadrotor (a survey)”. Pro-
cedia Engineering 96. (visited on 08-07-2016), pp. 172–181.

Decawave (2014a). Application note: aps006. (visited on 22-10-2016). url:
http : / / thetoolchain . com / mirror / dw1000 / aps006 _ channel _

effects_on_range_accuracy.pdf.

Decawave (2014b). Application note: aps011. (visited on 22-10-2016). url:
http : / / www . decawave . com / sites / default / files / resources /

aps011_sources_of_error_in_twr.pdf.

Decawave (2014c). Application note: aps013. (visited on 22-10-2016). url:
http://thetoolchain.com/mirror/dw1000/aps013_dw1000_and_two_

way_ranging.pdf.

Decawave (2014d). Dwm1000 datasheet. (visited on 22-10-2016). url: http:
//www.decawave.com/sites/default/files/resources/dwm1000-

datasheet-v1.3.pdf.

Douc, R. and O. Cappé (2005). “Comparison of resampling schemes for par-
ticle filtering”. In: Image and Signal Processing and Analysis, 2005. ISPA
2005. Proceedings of the 4th International Symposium on. (visited on 08-
07-2016). IEEE, pp. 64–69.

Emami, S. (2013). UWB Communication Systems: Conventional and 60 GHz.
Springer.

105

https://wiki.bitcraze.io/doc:lps:index
https://wiki.bitcraze.io/doc:lps:index
http://www.blender.org
http://www.blender.org
http://thetoolchain.com/mirror/dw1000/aps006_channel_effects_on_range_accuracy.pdf
http://thetoolchain.com/mirror/dw1000/aps006_channel_effects_on_range_accuracy.pdf
http://www.decawave.com/sites/default/files/resources/aps011_sources_of_error_in_twr.pdf
http://www.decawave.com/sites/default/files/resources/aps011_sources_of_error_in_twr.pdf
http://thetoolchain.com/mirror/dw1000/aps013_dw1000_and_two_way_ranging.pdf
http://thetoolchain.com/mirror/dw1000/aps013_dw1000_and_two_way_ranging.pdf
http://www.decawave.com/sites/default/files/resources/dwm1000-datasheet-v1.3.pdf
http://www.decawave.com/sites/default/files/resources/dwm1000-datasheet-v1.3.pdf
http://www.decawave.com/sites/default/files/resources/dwm1000-datasheet-v1.3.pdf

Bibliography

Fairchild Semiconductor Corporation (2000). QRD1113/1114, Reflective Ob-
ject Sensor. (visited on 05-12-2016). url: http://solarbotics.net/
library/datasheets/QRD1114.pdf.

Fliess, M, J Levine, P Martin, and P Rouchon (1992). “On differentially flat
nonlinear systems”. In: IFAC SYMPOSIA SERIES. (visited on 17-09-
2016), pp. 159–163.

Fliess, M., J. Lévine, P. Martin, and P. Rouchon (1999). “A Lie-Bäcklund
approach to equivalence and flatness of nonlinear systems”. IEEE Trans-
actions on automatic control 44:5. (visited on 17-09-2016), pp. 922–937.

Fresk, E. and G. Nikolakopoulos (2013). “Full quaternion based attitude
control for a quadrotor”. In: 2013 European Control Conference (ECC),
July. (visited on 23-10-2016), pp. 17–19.

Gentile, C., N. Alsindi, R. Raulefs, and C. Teolis (2013). “Ranging and lo-
calization in harsh multipath environments”. In: Geolocation Techniques.
(visited on 23-10-2016). Springer, pp. 17–57.

Glad, T. and L. Ljung (2000). Control theory. (visited on 01-06-2016). CRC
press.

Goemans, M. X. and D. J. Bertsimas (1991). “Probabilistic analysis of the
held and karp lower bound for the euclidean traveling salesman problem”.
Mathematics of operations research 16:1. (visited on 02-10-2016), pp. 72–
89.

Greiff, M. (2016). Kinect vision project. (visited on 12-06-2016). url: https:
//github.com/mgreiff/kinect_vision.

Greiff, M. (2017). The crazyflie project. (visited on 06-06-2016). url: https:
//github.com/mgreiff/crazyflie_project.

Group, I. W. et al. (2004). “IEEE standard for local and metropolitan area
networks. part 16: air interface for fixed broadband wireless access sys-
tems”. IEEE Std 802. (visited on 23-10-2016), pp. 16–2004.

Hoenig, W., C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian (2015).
“Mixed reality for robotics”. In: IEEE/RSJ Intl Conf. Intelligent Robots
and Systems. (visited on 23-10-2016). Hamburg, Germany, pp. 5382 –
5387.

Hol, J. D., T. B. Schon, and F. Gustafsson (2006). “On resampling algorithms
for particle filters”. In: Nonlinear Statistical Signal Processing Workshop,
2006 IEEE. (visited on 08-07-2016). IEEE, pp. 79–82.

Horn, B. K. and B. G. Schunck (1981). “Determining optical flow”. Artificial
intelligence 17:1-3. (visited on 01-12-2016), pp. 185–203.

Huxel, P. J. and R. H. Bishop (2009). “Navigation algorithms and observabil-
ity analysis for formation flying missions”. Journal of guidance, control,
and dynamics 32:4. (visited on 28-09-2016), pp. 1218–1231.

106

http://solarbotics.net/library/datasheets/QRD1114.pdf
http://solarbotics.net/library/datasheets/QRD1114.pdf
https://github.com/mgreiff/kinect_vision
https://github.com/mgreiff/kinect_vision
https://github.com/mgreiff/crazyflie_project
https://github.com/mgreiff/crazyflie_project

Bibliography

InvenSense (2014). Mpu-9250 product specification. (visited on 05-12-2016).
url: https://cdn.sparkfun.com/assets/learn_tutorials/5/5/0/
MPU9250REV1.0.pdf.

Iwasaki, T. and S. Hara (2005). “Generalized KYP lemma: unified frequency
domain inequalities with design applications”. IEEE Transactions on Au-
tomatic Control 50:1. (visited on 21-12-2016), pp. 41–59.

Jedwab, J., D. J. Katz, and K.-U. Schmidt (2013). “Advances in the merit
factor problem for binary sequences”. Journal of Combinatorial Theory,
Series A 120:4. (visited on 25-09-2016), pp. 882–906.

Jiang, Y. and V. C. Leung (2007). “An asymmetric double sided two-way
ranging for crystal offset”. In: 2007 International Symposium on Signals,
Systems and Electronics. (visited on 23-10-2016). IEEE, pp. 525–528.

Jolly, K., R. S. Kumar, and R Vijayakumar (2009). “A Bezier curve based
path planning in a multi-agent robot soccer system without violating the
acceleration limits”. Robotics and Autonomous Systems 57:1. (visited on
19-12-2016), pp. 23–33.

Kaune, R. (2012). “Accuracy studies for TDOA and TOA localization”. In:
Information Fusion (FUSION), 2012 15th International Conference on.
(visited on 22-10-2016). IEEE, pp. 408–415.

Kim, H. (2009). “Performance analysis of the sds-twr-ma algorithm”. In:
Proceedings of the 2009 International Conference on Wireless Communi-
cations and Mobile Computing: Connecting the World Wirelessly. (visited
on 25-09-2016). ACM, pp. 399–403.

Kuang, Y., K. Åström, and F. Tufvesson (2013). “Single antenna anchor-
free uwb positioning based on multipath propagation”. In: 2013 IEEE
International Conference on Communications (ICC). (visited on 16-10-
2016). IEEE, pp. 5814–5818.

Landry, B. et al. (2015). Planning and control for quadrotor flight through
cluttered environments. (visited on 13-06-2016). PhD thesis. Mas-
sachusetts Institute of Technology.

Ledergerber, A., M. Hamer, and R. D’Andrea (2015). “A robot self-
localization system using one-way ultra-wideband communication”. In:
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. (visited on 08-07-2016). IEEE, pp. 3131–3137.

Lee, T., M. Leoky, and N. H. McClamroch (2010). “Geometric tracking con-
trol of a quadrotor UAV on SE (3)”. In: 49th IEEE conference on decision
and control (CDC). (visited on 07-11-2016). IEEE, pp. 5420–5425.

Lepetit, V. and P. Fua (2005). Monocular model-based 3D tracking of rigid
objects. (visited on 23-10-2016). Now Publishers Inc.

Luukkonen, T. (2011). “Modelling and control of quadcopter”. Independent
research project in applied mathematics, Espoo. (visited on 16-6-2016).

107

https://cdn.sparkfun.com/assets/learn_tutorials/5/5/0/MPU9250REV1.0.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/5/5/0/MPU9250REV1.0.pdf

Bibliography

Madgwick, S. O., A. J. Harrison, and R. Vaidyanathan (2011). “Estimation
of imu and marg orientation using a gradient descent algorithm”. In:
2011 IEEE International Conference on Rehabilitation Robotics. (visited
on 06-10-2016). IEEE, pp. 1–7.

Mellinger, D. and V. Kumar (2011). “Minimum snap trajectory genera-
tion and control for quadrotors”. In: Robotics and Automation (ICRA),
2011 IEEE International Conference on. (visited on 07-29-2016). IEEE,
pp. 2520–2525.

Moscato, P. and M. G. Norman (1992). “A memetic approach for the trav-
eling salesman problem implementation of a computational ecology for
combinatorial optimization on message-passing systems”. Parallel com-
puting and transputer applications 1. (visited on 02-10-2016), pp. 177–
186.

Mueller, M. W. (2016). Increased autonomy for quadrocopter systems: tra-
jectory generation, fail-safe strategies, and state-estimation. (visited on
16-06-2016). PhD thesis. ETH Zurich. doi: 10.3929/ethz-a-010655275.

Mueller, M. W., M. Hamer, and R. D’Andrea (2015). “Fusing ultra-wideband
range measurements with accelerometers and rate gyroscopes for quadro-
copter state estimation”. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). (visited on 16-06-2016), pp. 1730–
1736. doi: 10.1109/ICRA.2015.7139421.

Mueller, M. W., M. Hehn, and R. D’Andrea (2016). “Covariance correction
step for kalman filtering with an attitude”. Journal of Guidance, Control,
and Dynamics. (visited on 12-01-2017), pp. 1–7.

Murray, R. M., M. Rathinam, and W. Sluis (1995). “Differential flatness of
mechanical control systems: a catalog of prototype systems”. In: ASME
International Mechanical Engineering Congress and Exposition. (visited
on 01-11-2016). Citeseer.

Noraini, M. R. and J. Geraghty (2011). “Genetic algorithm performance with
different selection strategies in solving TSP”. International Conference
of Computational Intelligence and Intelligent Systems. (visited on 02-10-
2016).

Padberg, M. and G. Rinaldi (1987). “Optimization of a 532-city symmet-
ric traveling salesman problem by branch and cut”. Operations Research
Letters 6:1. (visited on 02-10-2016), pp. 1–7.

Pahlavan, K., X. Li, and J.-P. Makela (2002). “Indoor geolocation science
and technology”. IEEE Communications Magazine 40:2. (visited on 18-
10-2016), pp. 112–118.

Palais, B. and R. Palais (2007). “Euler’s fixed point theorem: the axis of a
rotation”. Journal of Fixed Point Theory and Applications 2:2. (visited
on 08-07-2016), pp. 215–220.

108

http://dx.doi.org/10.3929/ethz-a-010655275
http://dx.doi.org/10.1109/ICRA.2015.7139421

Bibliography

Powers, C., D. Mellinger, A. Kushleyev, B. Kothmann, and V. Kumar (2013).
“Influence of aerodynamics and proximity effects in quadrotor flight”. In:
Experimental Robotics. (visited on 13-11-2016). Springer, pp. 289–302.

Raffo, G. V., M. G. Ortega, and F. R. Rubio (2010). “An integral predic-
tive/nonlinear H-infinity control structure for a quadrotor helicopter”.
Automatica 46:1. (visited on 08-07-2016), pp. 29–39.

Reist, P. and R. Tedrake (2010). “Simulation-based LQR-trees with input
and state constraints”. In: Robotics and Automation (ICRA), 2010 IEEE
International Conference on. (visited on 17-06-2016). IEEE, pp. 5504–
5510.

Richter, C., A. Bry, and N. Roy (2013). “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments”. In: Proceedings
of the International Symposium on Robotics Research (ISRR). (visited on
06-17-2016).

Santamaria-Navarro, A., J. Sola, and J. Andrade-Cetto (2015). “High-
frequency mav state estimation using low-cost inertial and optical flow
measurement units”. In: Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on. (visited on 14-12-2016). IEEE,
pp. 1864–1871.

Sato, K. (2014). “Algebraic controllability of nonlinear mechanical control
systems”. SICE Journal of Control, Measurement, and System Integration
7:4. (visited on 28-09-2016), pp. 191–198.

Sengijpta, S. K. (1995). “Fundamentals of statistical signal processing: es-
timation theory”. Technometrics 37:4. (visited on 04-11-2016), pp. 465–
466.

Sola, J. (2012). “Quaternion kinematics for the error-state KF”. Laboratoire
d’Analyse et d’Architecture des Systemes-Centre national de la recherche
scientifique (LAAS-CNRS), Toulouse, France, Tech. Rep. (visited on 27-
09-2016).

Srinivasa, S. and M. Haenggi (2009). “Path loss exponent estimation in large
wireless networks”. In: Information Theory and Applications Workshop,
2009. IEEE, pp. 124–129.

STMicroelectronics (2014). Datasheet - production data. (visited on 25-11-
2016). url: http://www.st.com/content/ccc/resource/technical/
document/datasheet/en.DM00279086.pdf.

Tedrake, R. (2009). “LQR-Trees: Feedback motion planning on sparse ran-
domized trees”. In: Robotics: Science and Systems. (visited on 23-08-
2016). Seattle, WA.

Terejanu, G. A. (2008). “Extended kalman filter tutorial”. Online].
Disponible: http://users. ices. utexas. edu/˜ terejanu/files/tutorialEKF.
pdf. (visited on 09-07-2016).

109

http://www.st.com/content/ccc/resource/technical/document/datasheet/en.DM00279086.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/en.DM00279086.pdf

Bibliography

Trefethen, L. N. and D. Bau III (1997). Numerical linear algebra. Vol. 50.
(visited on 20-11-2016). Siam.

Tse, D. and P. Viswanath (2005). Fundamentals of wireless communication.
(visited on 23-10-2016). Cambridge university press.

Tully Foote Eitan Marder-Eppstein, W. M. (2016). Quaternion class refer-
ence. (visited on 23-10-2016). url: http://docs.ros.org/jade/api/
tf/html/c++/classtf_1_1Quaternion.html.

Unser, M. (2000). “Sampling-50 years after shannon”. Proceedings of the
IEEE 88:4, pp. 569–587.

Verbandt, M., B. Theys, and J. De Schutter (2014). “Robust marker-tracking
system for vision-based autonomous landing of vtol uavs”. In: Proceedings
of the International Micro Air Vehicle Conference and Competition 2014.
Delft University of Technology, pp. 84–91.

Vilfan, B. (1973). “Another proof of the two-dimensional Cayley–Hamilton
theorem”. IEEE Trans. Comput 22:12. (visited on 07-10-2016), p. 1140.

Walree, P. van (2011). “Channel sounding for acoustic communications: tech-
niques and shallow-water examples”. Norwegian Defence Research Estab-
lishment (FFI), Tech. Rep. FFI-rapport 7. (visited on 20-10-2016).

Wan, E. A. and R. Van Der Merwe (2000). “The unscented Kalman filter
for nonlinear estimation”. In: Adaptive Systems for Signal Processing,
Communications, and Control Symposium 2000. AS-SPCC. The IEEE
2000. (visited on 08-07-2016). Ieee, pp. 153–158.

Yin, F., C. Fritsche, F. Gustafsson, and A. M. Zoubir (2013). “Toa-based
robust wireless geolocation and cramér-rao lower bound analysis in harsh
los/nlos environments”. IEEE transactions on signal processing 61:9,
pp. 2243–2255.

Young, H. D., R. A. Freedman, and L. Ford (2007). University Physics Vol
2 (Chapters 21-37). Vol. 2. (visited on 17-06-2016). Pearson education.

Zhang, W. and R. E. Korf (1996). “A study of complexity transitions on
the asymmetric traveling salesman problem”. Artificial Intelligence 81:1.
(visited on 02-10-2016), pp. 223–239.

110

http://docs.ros.org/jade/api/tf/html/c++/classtf_1_1Quaternion.html
http://docs.ros.org/jade/api/tf/html/c++/classtf_1_1Quaternion.html

A
Modelling appendix

A.1 Identification of mappings

In previous work done at Bitcraze, an expansion board was created for
measuring the quadcopter rotor speeds using the reflective object sensor
QRD1114 [Fairchild Semiconductor Corporation, 2000], allowing the mea-
surement of rotor speeds mid-flight. With this tool, the mappings from rotor
speeds Ωi [rad/s] to thrust T [N], and PWM duty cycle, d ∈ [0, 1] were
determined.

The UAV was placed upside down on a scale, and the duty cycle was
increased linearly across all motors, logging the rotor speeds and thrusts
as read from the scale. A quadratic relationship is expected between rotor
speeds, consequently, the regression model

T (x) = β2x
2 + β1x+ β0 + ε. (A.1)

was applied to the data, with βi denoting parameters and ε denoting the
error terms.

As d = 0 ⇒ Ω = 0 ⇒ T = 0, we enforce β0 = 0. Furthermore, the
approximation β1 = 0 is commonly used in UAV modelling of the rotor
speed to thrust ratio, validated by the fact that any contribution from the
β1, β0 parameters is very small judging by the small change in the mean
squared error, especially close to the operating point where Ωi is of the order
103 [rad/s] (see Table A.1 and Figure A.1).

The full polynomial fit yields a marginally smaller mean squared error
(MSE) when compared to the fitting with β1 = β0 = 0. However, both are
deemed good and the latter is used, as a purely quadratic relationship is
assumed in the simplified quadcopter model. With β1 = β0 = 0 we find that
k = β2/4 ≈ 2.2 · 10−8 by equation (2.9) under the assumption that ki = k∀i.
When flying the quad-rotor with the small expansion board attached and a
close to full battery, it is clear that a hovering state is maintained at a rotor
speed of Ωh ≈ 1.8 · 104 [RPM] ≈ 1.88 · 103[rad/s]. Knowing that the quad-
copter weighs m = 0.027 [kg] and the expansion board weighs approximately

111

Appendix A. Modelling appendix

Table A.1 The identified mapping from rotor speed [rad/s] and PWM
duty cycle d ∈ [0, 1] to thrust [kg ·m/s2] when including and excluding the
linear and constant relationships.

Mapping β0 β1 β2 MSE(T − T̂ (·))
T (Ω) 1.51 · 10−3 −1.97 · 10−7 9.78 · 10−8 1.2861 · 10−5

T (Ω) 0 0 8.87 · 10−8 5.46 · 10−5

T (d) 0 0.35 0.26 1.36 · 10−5

Figure A.1 Left: The rotor speed to thrust correspondence fitted with
the quadratic polynomialsβ2 6= 0 (blue) and β0, β1, β2 6= 0 (red). Right: The
rotor PWM to thrust space fitted with a quadratic polynomial with β0 = 0.

mb ≈ 0.005 [kg], the thrust generated by one rotor in a hovering state should
correspond to

Th = 4kΩ2
h ⇒ k ≈ (m+mb)g

4Ω2
h

=
0.032 · 9.81

4 · 18802
= 2.22 · 10−8 [kg ·m/rad2]

(A.2)
which is close to the previously estimated rotor speed to thrust ratio. Thereby
giving additional support for the determined rotor speed to thrust ratio of
k ≈ 2.2 · 10−8 [kg ·m/rad2].

We may also perform an experiment to determine the b parameter, per-
taining to how the torque about the ẑB-axis is governed (2.9). Consider an
experimental setup where the UAV is suspended in mid-air by two strings
parallel to the z-axis, such that it is free to rotate around the z-axis but all
other modes of rotation or movement is prohibited. A string is then attached
to any motor axis, held orthogonal to the vector between the centre of mass

112

A.2 Continuous time DC motor parameters

and the motor axis in the xy-plane, uxy. The force in the string generated
by the rotation of the quadcopter then satisfies

|τψ| = |fs × vxy| = |fs| · l. (A.3)

If we further assume that bi = b∀i and that at the time of measuring Ω̇i ≡ 0,
then (2.9) yields

τψ =

4∑
i=1

τMi
= b(−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4)⇒ |b| = |fs| · l

| − Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4|
(A.4)

Knowing that l = 0.046 [m] makes the identification of b simple if measuring
the force in the string, |fs|, at known rotor speeds Ωi. By this method, the
parameter was estimated to be b ≈ 10−9, on a magnitude similar to k.

A.2 Continuous time DC motor parameters

Consider a continuous time system defined by (2.41) and (2.42), excluding
the redundant angular positional state, θ(t). The continuous time system is
then

x =

[
Ω(t)
i(t)

]
, u(t) = U(t), ẋ(t) =

[
−b/J± Kt/J

±

−Ke/L −R/L

]
x(t) +

[
0

1/L

]
u(t)

(A.5)
Its discrete time equivalent, by any method of discretisation preserving the
order of the characteristic polynomial, is then on the form{

xk = x(hk)

uk = u(hk)
, A =

[
a11 a12

a21 a22

]
, B =

[
b11

b21

]
(A.6)

such that xk+1 = Axk + Buk. The two transfer functions from the applied
voltage to rotor speeds and current may be written[

HU→Ω(z)
HU→i(z) =

]
=(Iz −A)−1B =

=
1

(z − a11)(z − a22)− a12a21

[
(z − a22)b11 + a12b21

a21b11 + (z − a11)b21

]
(A.7)

=
1

a2z2 + a1z + a0

[
zbΩ1 + bΩ0
zbi1 + bi0

]
.

Both pulse transfer functions from an input signal u to y both satisfy

Hu→y(z) =
B(y)(z)

A(z)
, deg(B(y)(z)) = 1, deg(A(z)) = 2 (A.8)

113

Appendix A. Modelling appendix

Now, if A(z) is monic, we may find three coefficients for each of the two
transfer functions in (A.7), allowing the identification of all parameters in
the discrete time system (A.6) through diophantine equation

a11 = −a1 − a22

a12 = −a0 + (a1 + a22)a22

a21

a21 =
bi0 − (a1 + a22)b21

b11

a22 =
a0b11b21 + bΩ0 b

i
0 − bΩ0 a1b21

bΩ0 b21 − bi0b11

,

{
b11 = bΩ1
b21 = bi1

. (A.9)

Let

A(z) = z2 + a1z + a0, B(y)(z) = b
(y)
1 z + b

(y)
0 (A.10)

and consider the linear regression model

yk = ϕTk θ + ek (A.11)

where the ek is uncorrelated white gaussian noise and

ϕTk =
[
−yk−1 −yk−2 uk−1 uk−2

]
, θ =

[
a1 a0 b

(y)
1 b

(y)
0

]
(A.12)

with a system of N measurement points, the best parameter vector estimate
in a least squares sense may be written

θ̂ = (ΦTΦ)−1ΦTY (A.13)

where

ΦT =
[
ϕ3 · · · ϕN

]
, Y T =

[
y3 · · · yN

]
(A.14)

With this method for identifying the discrete time transfer functions of the
system, the continuous time parameters may be found through an inverse
discretisation. However, due to the continuous time model having six param-
eters and only five non-zero entries, some assumption regarding the mechan-
ical equation parameters is necessary. To demonstrate the implementation,
we assume that Ke = Kt use the zero-order-hold discretisation and simulate
a rotor model L = 6.0, R = 5.0, Ke = 4.0, Kt = 4.0, J = 2.0, b = 3.0 with a
persistently exciting sinusoid input signal corrupted by white gaussian noise.
From the resulting time series {Ωk}, {ik}, {Uk}, the correct continuous time
parameters were identified using the above method with an estimator error
of ||θ− θ̂||2 = 1.51 ·10−11. Having verified the functionality of the LS scheme,
the algorithm was run on experimental rotor data, yielding the estimated
rotor model parameters in Table A.2

114

A.3 Coriolis matrix definition

Figure A.2 Open loop simulated rotor states and control signals, and
simulation of the identified system from using the same initial conditions.

Table A.2 Continuous time rotor model parameters.

Parameter R J+ J− b Kt Ke L
Value 2.3 0.031 0.13 0.10 580 0.0011 0.12

A.3 Coriolis matrix definition

Let cij denote the element at row i and column j of the matrix C(η, η̇),
where ca = cos(a), sa = sin(a) and Iii denotes the ith diagonal element of
the diagonal moment of inertia tensor. Then

c11 =0

c12 =(I22 − I33)(θ̇cφsφ + ψ̇cθ(s
2
φ − c2φ))− I11ψ̇cθ

c13 =(I33 − I22)ψ̇cφsφc
2
θ

c21 =(I33 − I22)(θ̇cφsφ + ψ̇cθ(s
2
φ − c2φ)) + I11ψ̇cθ

c22 =(I33 − I22)φ̇cφsφ

c23 =(−I11ψ̇ + I22ψ̇s
2
φ + I33ψ̇c

2
φ)sθcθ

c31 =(I22 − I33)ψ̇c2θsφcφ − I11θ̇cθ

c32 =(I33 − I22)(θ̇cφsφsθ + φ̇cθ(s
2
φ − c2φ)) + (I11 − I22s

2
φ − I33c

2
φ)ψ̇sθcθ

c33 =(I22 − I33)φ̇cφsφc
2
θ + (I11 − I22s

2
φ − I33c

2
φ)θ̇cθsθ

115

Appendix A. Modelling appendix

as computed using Matlab’s symbolical toolbox, confirming the derivation
in [Luukkonen, 2011] with some notable differences. For instance, the expo-
nent s2

φ in the expression of c12 which we perceive to be an error in previous
publications.

A.4 Gimbal lock avoidance with Tait-Bryan angles

Here we will here we will propose a method for getting around the issue of the
gimbal lock while still maintaining the Tait-Bryan angle coordinate system
in the quad-copter equations. For this discussion, we notate the l∞-norm of
an n-dimensional array and it’s supremum with

||x[0,T]||∞ = sup
t∈[0,T]

(||x(t)||∞) = sup
t∈[0,T]

(max{|x1(t)|, ..., |xn(t)|}). (A.15)

We consider the UAV system defined by equation (2.22), with a state vector

xT (t) =
[
pT (t) ṗT (t) ηT (t) η̇T (t)

]
, x(0) ∈ 0 (A.16)

with the maps fp : (ṗ,η,TB) → p̈ and fη : (η, η̇, τB) → η̈ and then note
that a dynamical singularity occurs if at any point in time

||x[0,T]||∞ →∞. (A.17)

Operating in infinite time, t ∈ [0,∞), we may find singularities satisfy-
ing (A.17) which need not depend on poorly conditioned dynamics. For in-
stance, if the thrust is set constant with angular states η = η̇ = 0 with
G 6= 1

mTB , there will exist stable equilibrium point ṗ 6= 0 where the speeds
remain constant indefinitely, implying that ||p||∞ →∞ as t→∞. However,
by restricting the system to finite time, where clearly

||p[0,T]||∞ ≤ ||ṗ[0,T]||∞tf ≤ ||p̈[0,T]||∞t2f/2 (A.18)

with identical results in the η-terms. From this, it is evident that

max{||{p̈[0,T]||∞, ||η̈[0,T]}||∞} <∞⇒ ||x[0,T]||∞ <∞ (A.19)

and we set out to check if this condition can possibly be violated for any
combination of states in the state space and finite time. As the mappings
define two systems (one linear and one non-linear) coupled in their non-
linear input, the approach here will be to examine if any singularities exist
by (A.19) in fp and fη respectively.

First, we note that the mapping fp(ṗ,η,TB) = Hp(ṗ) + Gp(η,TB) in
the system (2.22) will not pose any difficulties, as Hp(ṗ) is linear with respect
to ṗ with eigenvalues λi = {− 1

mD11,− 1
mD22,− 1

mD33} in the left half plane

116

A.4 Gimbal lock avoidance with Tait-Bryan angles

as Dii > 0∀iConsequently, it is bounded-input-bounded-output stable if the
non-linear system input Gp(η,TB) is bounded, as

||Gp(η,TB)[0,T]||∞ ≤ sup
t∈[0,T]

(||G +
1

m
TB ||∞) (A.20)

≤ sup
t∈[0,T]

(||G||∞ +
1

m
||TRẑ||∞) (A.21)

≤ sup
t∈[0,T]

(g +
1

m
|T |), (A.22)

by the triangle inequality, we see that |T | < ∞ ⇒ ||Gp(p,TB)[0,T]||∞ < ∞
regardless of η.

The second and more troublesome mapping, fη, can by equation (2.22) be
written as the sum of the non-linear system Hη(·) and the non-linear input
Gη(·) with

Hη(η, η̇) = −J−1(η)C(η, η̇)η̇ and Gη(η, τB) = J−1(η)τB. (A.23)

Under the restriction that IB is approximately a diagonal matrix with Iii > 0,
it can be shown by the definition of (2.6) that

det(J(η)) = det(WT (η)IBW(η)) = I11 · I22 · I33 · cos2(θ) (A.24)

is zero valued when θ = (1/2 + n) · π ∀n ∈ Z, regardless of φ, ψ. Here a
Gimbal lock occurs as described in equation (2.23). Consequently, the map
fη becomes singular and the dynamics explode as both the maps Gη(·) and
Hη(·) contain the inverse J−1(η). If we wish to use the Euler-Lagrange model
for simulation and control close to, or even beyond this point, we must alter
the equation in some way.

To this end, we first introduce the matrix condition number in the l2-
norm of the Jacobian matrix J, here written in terms of the matrix singular
values σ(J), or the matrix eigenvalues λ(J) as

κJ(η) =
max(σ(J(η))

min(σ(J(η))
=

max(|λ(J(η)|)
min(|λ(J(η)|)

(A.25)

where the last equality holds since the eigenvalues are positive by (A.24) and
the matrix J is real-valued. In the angular dynamics, for a fixed point in ηη̇-
space we will effectively be solving a linear system which is conditioned by
J. If we are close to a singularity where the dynamics explode, the condition
number will approach infinity as det(J) → 0 ⇒ min(λ(J(η)) → 0. However,
by introducing an upper bound on the condition number we can guarantee
that the system is well conditioned regardless of θ(t).

117

Appendix A. Modelling appendix

We first make the assumption that in any sensible flight, the system is
highly volatile around the singularity as it can’t retain in a position θ =
(1/2 + n) · π for too long without crashing due to gravitational acceleration.
Consequently, the time spent close to a singularity in the η-space can be
assumed to be very short in any meaningful flight. We also assume that the
dynamics of a physical quadcopter is unlikely to change much in a small
neighbourhood around the singularity. We can then motivate modifying the
governing torque equations to keep the angular accelerations in safe regions
if a feasibility condition

| cos(θ)| > ε (A.26)

is violated, for some small numerical limit ε. If an infeasible value of θ is
detected, Jacobian J−1(η) is kept constant at the most recent feasible J
matrix, denoted J−1

f . The modified system dynamics become

η̈ =

{
J−1(η)(τB −C(η, η̇)η̇), if | cos(θ)| > ε

J−1
f (τB −C(η, η̇)η̇), if | cos(θ)| ≤ ε

(A.27)

which is relatively simple to implement, both in continuous and discrete time.
This effectively puts a sought after upper bound on the condition number

κJ(η) ≤ max(σ(J(η))

min(σ(J(η))

∣∣∣
θ=π/2±ε

, (A.28)

and then implicitly a lower positive bound on 0 < d < det(J) for a constant
d which can be computed analytically. Then

||J−1(η)||∞ =
∣∣∣∣∣∣adj(J(η))

det(J(η))

∣∣∣∣∣∣
∞
≤ 3(I22 + I33)I11 + 4I22I33

det(J(η))
,
n

d
(A.29)

is bounded in the infinity norm, as n, d > 0 with n bounded from above by
the inertial terms. Using this modified system, we may show that for fη the
non-linear system input satisfies

||G(p,TB)[0,T]||∞ = sup
t∈[0,T]

(||J−1(η)τB ||∞) (A.30)

≤ sup
t∈[0,T]

(n
d

+ ||τB ||∞
)

(A.31)

showing that ||τB ||∞ <∞⇒ ||G(p,TB)[0,T]||∞ <∞ when using the modi-
fied torque equations (2.24).

We have then shown that the system with modified torque equations
in (2.24) will not suffer dynamical singularities induced by the Gimbal lock
in finite time if the input signals are also finite.

118

A.5 Quaternion rotations and relation to Tait-Bryan angles

A.5 Quaternion rotations and relation to Tait-Bryan angles

Consider the rotation of a vector xA around the unit length vector v. Let xA
be the sum of two vectors, one parallel to v and the other orthogonal to v,

such that x
(A)
‖ = vvTxA and x

(A)
⊥ = xA − vvTxA where then

x
(A)
‖ + x

(A)
⊥ = vvTxA + xA − vvTxA = xA. (A.32)

The rotation of the vector xA by an angle θ around v to the new vector

xB will not affect the parallel component, for which x
(A)
‖ = x

(B)
‖ . However,

the perpendicular component will be rotated in the plane spanned by the

basis vectors e1 = x
(A)
⊥ and e2 = v × x

(A)
⊥ = v × xA, resulting in the vector

rotation formula

xB = x
(B)
‖ + x

(B)
⊥ = x

(A)
‖ + cos(θ)x

(A)
⊥ + sin(θ)(v × xA). (A.33)

By definition (A.34), the quaternion may be written

q =

[
cos(θ/2)

v sin(θ/2)

]
=


cos(θ/2)
vx sin(θ/2)
vy sin(θ/2)
vz sin(θ/2)

 =


qw
qx
qy
qz

 =

[
qw
qv

]
∈ R4×1 (A.34)

In which case we may show that an operation[
0

xB

]
= q⊗

[
0

xA

]
⊗ q∗ (A.35)

is equivalent to rotating a vector xA to xB according to the vector rotation
formula. Let

q⊗
[

0
xA

]
⊗ q∗ =

([qw
0

]
+

[
0
qv

])
⊗
[

0
xA

]
⊗
([qw

0

]
+

[
0
−qv

])
(A.36)

Using the definitions of [·]L and [·]R, we find that the imaginary part of the
above expression may be written

=
(
q⊗

[
0

xA

]
⊗ q∗

)
=q2

wxA + qw([qv]× − [−qv]×)xA + (qvq
T
v − [qv]×[−qv]×)xA

=q2
wxA + 2qw[qv]×xA + (qvq

T
v + [qv]

2
×)xA (A.37)

119

Appendix A. Modelling appendix

Interpreting the quaternion as a rotation of θ about a unit vector v,

=
(
q⊗

[
0

xA

]
⊗ q∗

)
= q2

wxA + qw([qv]× − [−qv]×)xA + (qvq
T
v − [qv]×[−qv]×)xA

=xA cos2(θ/2) + 2(v × xA) cos(θ/2) sin(θ/2) + (vvT + [v]2×)xA sin2(θ/2)

=xA cos2(θ/2) + (v × xA)2 cos(θ/2) sin(θ/2) + (vvT + vvT − I)xA sin2(θ/2)

=xA(cos2(θ/2)− sin2(θ/2)) + (v × xA) sin(θ) + vvTxA2 sin2(θ/2)

=xA cos(θ) + (v × xA) sin(θ) + vvTxA(1− cos(θ)

=(xA − vvTx) cos(θ) + (v × xA) sin(θ) + vvTxA (A.38)

Recalling the vector rotation formula, it is clear that

=
([

0
xB

])
= (xA−vvTx) cos(θ)+(v×xA) sin(θ)+vvTxA = =

(
q⊗
[

0
xA

]
⊗q∗

)
(A.39)

showing that we may perform a three-dimensional rotation of the vector xA
using two quaternion products, ⊗, without ever evaluating the trigonometric
functions.

With this operation, the quaternion rotation from xA to xB may be
expressed in relation to the Tait-Bryan angle rotation and the rotation matrix
respectively. All methods form an SO(3) rotation, related by

xB = RxA = R{φ, θ, ψ}xA = =
(
q⊗

[
0

xA

]
⊗ q∗

)
(A.40)

Recalling first the rotation matrix in the ZYX Tait-Bryan convention, we let
si = sin(i) and ci = cos(i), forming

R{φ, θ, ψ} =

 cφcψ sψcφ −sθ
cψsθsφ − sψcφ sψsθsφ + cφcψ cθsφ
cψsθcφ + sφsψ sψsθcφ − cψsφ cφcθ

 (A.41)

By letting xA assume the basis vectors x̂, ŷ, ẑ in turn, we may then computing
the resulting quaternion rotation express the rotation as

R{q} =

q2
w + q2

x − q2
y − q2

z 2(qxqy − qwqz) 2(qxqz + qwqy)
2(qxqy + qwqz) q2

w − q2
x + q2

y − q2
z 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) q2
w − q2

x − q2
y + q2

z

 ,
(A.42)

In doing so, the relationship q→ (φ, θ, ψ) is given by

φ = arctan2[2(qwqx + qyqz), 1− 2(q2
x + q2

y)] (A.43)

θ = arcsin[2(qwqy − qxqz)] (A.44)

ψ = arctan2[2(qwqz + qxqy), 1− 2(q2
y + q2

z)] (A.45)

120

A.6 Quaternion rate of change

where arctan2[· , ·] denotes the four quadrant inverse tangent function [Fresk
and Nikolakopoulos, 2013]. Similarly, the reverse mapping (φ, θ, ψ) → q be-
comes

q =


cφ/2cθ/2cψ/2 + sφ/2sθ/2sψ/2
sφ/2cθ/2cψ/2 − cφ/2sθ/2sψ/2
cφ/2sθ/2cψ/2 + sφ/2cθ/2sψ/2
cφ/2cθ/2sψ/2 − sφ/2sθ/2cψ/2

 (A.46)

where it should be noted that ||q|| = 1 at all times.

A.6 Quaternion rate of change

Let the angular rate vector of the quadcopter in the global frame be written

ωG =
[
ωx ωy ωz

]T
(A.47)

such that

ẋ = ωG × x (A.48)

for some vector x ∈ R3 defined in the global reference frame. Consider then
a quaternion, q, which rotates a vector xA to a vector xB within this frame
of reference by[

0
xB

]
= q⊗

[
0

xA

]
⊗ q∗ ⇔ q⊗∗

[
0

xB

]
⊗ q =

[
0

xA

]
(A.49)

Taking the time derivative of the vector xA and using the chain rule results
in [

0
ẋB

]
= q̇⊗

[
0

xA

]
⊗ q∗ + q⊗

[
0

xA

]
⊗ q̇∗ (A.50)

by the definition of the quaternion. Inserting the expression in equa-
tion (A.49),[

0
ẋB

]
= q̇⊗ q∗ ⊗

[
0

xB

]
⊗ q⊗ q∗︸ ︷︷ ︸

=1

+ q⊗ q∗︸ ︷︷ ︸
=1

⊗
[

0
xB

]
⊗ q⊗ q̇∗ (A.51)

By the condition ||q|| = 1 and the definition of the quaternion product, we
may show{

<{q̇⊗ q∗} = <{q⊗ q̇∗} = 0

={q̇⊗ q∗} = −={q⊗ q̇∗} = −q̇wqv + qwq̇v − q̇v × qv , u
(A.52)

121

Appendix A. Modelling appendix

Expression (A.49) may then be further simplified using the definitions [·]L
and [·]R, as[

0
ẋB

]
=

[
0
u

]
⊗
[

0
xB

]
+

[
0

xB

]
⊗
[

0
−u

]
⇔ ẋB = 2(u×xB) = ωG×xB ⇔ 2u = ωG

(A.53)
by equation (A.48). Susbstituting u, we find the relationship

q̇⊗ q∗ =

[
<{q̇⊗ q∗}
={q̇⊗ q∗}

]
=

[
0
u

]
=

[
0

ωG/2

]
⇔ q̇ =

1

2

[
0
ωG

]
⊗ q. (A.54)

However, we are interested in quaternion time derivative with respect to the
angular rates in the body coordinate system. As the quaternion throughout
this document describes a rotation from the body frame to the the inertial
or global frames, [

0
ωG

]
= q⊗

[
0
ωB

]
⊗ q∗ (A.55)

Consequently, the angular rate vector in the body frame of reference may be
written

q̇ =
1

2

[
0
ωG

]
⊗ q =

1

2
q⊗

[
0
ωB

]
⊗ q∗ ⊗ q =

1

2
q⊗

[
0
ωB

]
. (A.56)

A.7 Quaternion state-space representation

To facilitate a discussion on numerical integration and model based control,
we define the system using quaternion rotation with the Newton-Euler equa-
tions on a state space form. The states and control signals are then

x(t) =


p(t)
ṗ(t)
qw(t)
qv(t)
ωB(t)

 ∈ R13×1, and u(t) =

[
T (t)
τ (t)

]
∈ R4×1 (A.57)

respectively. The full non-linear system (2.39) can be written

ẋ(t) =A(q,ω)x(t) + B(q)u(t) + G

y(t) =Cx(t)
(A.58)

with

Ac =


0 I 0 0 0
0 − 1

mRT
BG{q}DB 0 0 0

0 0 0 0 − 1
2qTv

0 0 0 0 1
2 (qwI + [qv]×)

0 0 0 0 −I−1
B [ω]×IB

 , Bc =


03×1 0

1
mRT

BG{q}ẑG 0
0 01×3

03×1 0
03×1 I−1

B

 ,
(A.59)

122

A.8 Linearised systems

and

G =
[
01×5 −g 01×7

]T
(A.60)

where all sub-matrices are 3× 3 unless explicitly stated otherwise, with the
inertial matrix, IB, and drag matrix DB defined with respect to the body
frame. The measurement matrix C is chosen to reflect the available sensory
and was discussed in Chapter 6,.

A.8 Linearised systems

The Tait-Bryan angle model (2.22) with the states and control signals

x(t) =
[
p ṗ η η̇

]T ∈ R12×1, u(t) =
[
T τφ τθ τψ

]T ∈ R4×1

(A.61)
was shown to be well conditioned close to the stable hovering point η = η̇ = 0
and T = mg. At this point, the linearised system matrices reduce to

Ã∆x =


0 I 0 0

0 − 1
mD 1

m T̂ 0
0 0 0 I
0 0 0 0

 , B̃∆u


05×1 05×3

1
m 01×3

03×1 03×3

03×1 I−1
B

 (A.62)

where

T̂ =

 0 mg 0
−mg 0 0

0 0 0

 ∈ R3×3 (A.63)

In contrast, to enable model based control and state estimation in the
entire η-space, we should use the singularity free quaternion representation
as derived by the Newton-Euler equations. Here instead, the state vector and
control signals are defined as

x(t) =
[
p ṗ q ωB

]T ∈ R13×1, u(t) =
[
T τx τy τz

]T ∈ R4×1

(A.64)
where the thrust remains the same, but the torques are now defined with
respect to the basis of the body coordinate system. The linearised system
matrices can then be written

Ã∆x =


0 I 0 0
0 − 1

mRBG{q}DB A23 0
0 0 A33 A34

0 0 0 A44

 , B̃∆u =


03×1 0

1
mRT

BG{q}ẑG 0
04×1 0
03×1 I−1

B

 ,
(A.65)

123

Appendix A. Modelling appendix

where

A23 =
2

m

[
(qw + [qv]×TB) qTv TBI + qvT

T
B −TBq

T
v − qw[TB]×

]
∈ R3×4

A33 =
1

2

[
0 −ωTB
ωB [ωB]×

]
∈ R4×4

A34 =
1

2

[
−qTv
[qv]×

]
∈ R4×3

A44 = I−1
B ([IBωB]× − [ωB]×IB) ∈ R3×3.

A.9 Closed form system integration with constant terms

Consider a general system

ẋ(t) = Ax(t) + Bu(t) + G (A.66)

y(t) = Cx(t) (A.67)

such that
A ∈ RM×M , B ∈ RM×N , G ∈ RM×1 (A.68)

which then encompasses all the considered systems, both quaternion and
Tait-Bryan, including their respective linearizations (where then G ≡ 0).
Then, using the matrix exponential e−At as an integrating factor,

e−Atẋ(t)− e−AtAx(t) =
d

dt
(e−AtAx(t)) = e−At(Bu(t) + G) (A.69)

and by the fundamental theorem of calculus

e−AtAx(t) = e−AtAx(t0) +

∫ t

t0

e−Aτ (Bu(τ) + G)dτ (A.70)

Here we use zero order hold approximation, assuming that u(t) = u(tk) ∀t ∈
[tk, tk + ∆t]. Furthermore, we consider x(tk) to be known and use the
parametrisation s = τ − tk, the equation (A.69) may then be re-written
as

x(tk+1) = eA∆tx(tk)+

∫ h

0

eAsdsBu(tk)+

∫ h

0

eAsdsG = Φx(tk)+Γu(tk)+Ψ

(A.71)

By rewriting ûT (tk) =
[
uT (tk) 1

]T
and B̂ =

[
B G

]
∈ RM×N+1, the

resulting system qualifies for the standard exponential matrix solution by
Theorem 3.1.1 in [Chen and Francis, 2012]. We let

M =

[
A B̂
0 0

]
=

A B G
0 0 0
0 0 0

 ∈ R(M+N+1)×(M+N+1) (A.72)

124

A.10 Cross product identities

where then

eM∆t =

∞∑
k=0

1

k!
(M∆t)k ≈ I+M∆t+O(||(M∆t)||22) =

Φ Γ Ψ
0 I 0
0 0 I

 . (A.73)

The discrete time system may then be written

x(hk + h) = Φx(hk) + Γu(hk) + Ψ (A.74)

y(hk) = Cx(hk). (A.75)

A.10 Cross product identities

In this section, we list derive an identity necessary for develop the attitude
regulation in the geometric tracking control system. Consider three vectors

u,v,w ∈ R3 with the notation u =
[
u1 u2 u3

]T
and an invertible matrix

A ∈ R3×3. Having previously defined the cross product

u× v = [u]×v =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

v (A.76)

we now show that the identity

[Av]× = det(A)A−T [v]×A−1. (A.77)

holds at all times. Developing both sides yields,

[Av]× =det(A)A−T [v]×A−1 (A.78)

AT [Av]×A =det(A)[v]× (A.79)

uTAT [Av]×A =det(A)uT [v]× (A.80)

uTAT [Av]×Aw =det(A)uT [v]×w (A.81)

(Au) · (Av ×Aw) =det(A)u · (v ×w) (A.82)

(A.83)

By the properties of the scalar triple product, the equations may be written

det(Au,Av,Aw) = det(A)det(u,v,w) (A.84)

det(A)det(u,v,w) = det(A)det(u,v,w) (A.85)

(A.86)

showing that the identity (A.77) holds for all invertible matrices A ∈ R3×3. In
the special case of the rotational operator, R ∈ SO(3), satisfying det(R) = 1
and RTR = I, the identity reduces to

[Rv]× = R[v]×RT . (A.87)

125

Appendix A. Modelling appendix

A.11 Time derivative of the rotation matrix

Consider a rotation matrix parametrisation RBG ∈ SO(3), rotating a body
frame B to an inertial frame I by the definitions in Section 2.1. Writing
this rotation in terms of small angle increments ∆φ,∆θ,∆ψ about the ZYX
angles respectively, we can make good use of the extrinsic Tait Bryan ZYX
angles. By (2.3) in Section 2.1

RBG(∆φ,∆θ,∆ψ) = RT
GB(∆φ,∆θ,∆ψ) =

 1 −∆ψ ∆θ
∆ψ 1 −∆φ
−∆θ ∆φ 1

 . (A.88)

The small change from the body to inertial frame caused by the angles is
then

∆RBG = RBG(∆φ,∆θ,∆ψ)RBG −RBG = [RBG(∆φ,∆θ,∆ψ)− I]RBG
(A.89)

and the change of this rotation with respect to time is

∆RBG
∆t

=
1

∆t

 0 −∆ψ ∆θ
∆ψ 0 −∆φ
−∆θ ∆φ 0

RBG . (A.90)

using (A.88). Clearly, as the angles are extrinsic and defined with respect to
the inertial frame, we let

ωG =

[
∆φ

∆t

∆θ

∆t

∆ψ

∆t

]T
(A.91)

simplifying (A.90), the fact that ωB = RGBωG and the identity (A.77),

∆RBG
∆t

= ωG ×RGB ⇔


ṘBG = [ωG]×RBG

ṘBG = RBG [ωB]×

ṘGB = −RGB[ωG]×

ṘGB = −[ωB]×RGB

. (A.92)

126

B
Controller appendix

B.1 Set-point weighed PID

The simple and useful model independent proportional-integral-derivative
(PID) controller is here derived in discrete time, partly as a reference for the
other controllers and also due to it requiring little computational power in
comparison to the other considered controllers. The controller implements
set-point weighing, conditional anti windup and a low-pass filter on the
derivative term, putting an upper bound on the derivative gain. In this the-
sis, any reference to PID-type controllers will always use this form, where
for instance the PD controller simply omits the I term in the control law,
effectively letting Ti →∞.

We first define an arbitrary SISO system in the Laplace domain, with a
control signal L

{
u(t)

}
s

= U(s), a set-point reference L
{
r(t)

}
s

= R(s) and

a measurement L
{
y(t)

}
s

= Y (s). The controller can then be written as a
map of the measurement error to the control signal as

U(s) = K
[
(βR(s)− Y (s)) +

1

sTi
(R(s)− Y (s)) +

sTd
1 + sTd/N

(γR(s)− Y (s))
]

(B.1)
with controller parameters K,Ti, Td, N, β, γ. Discretising the controller with
forward differences for the I-part and backward differences for the D-part
yields

Pk = K(βrk − yk)

Ik = Ik−1 + Kh
Ti

(rk − yk)

Dk = Td

Td+NhDk−1 − KTdN
Td+Nh

[
γ(rk − rk−1)− (yk − yk−1)

]
uk = Pk + Ik +Dk

(B.2)

where set-point weighing is introduced by γ, β and the filter coefficient N
defines the maximum derivative gain. Here, the conditional anti windup is

127

Appendix B. Controller appendix

also included, saturating the control signal to a bound [umin, umax] ∈ R, such
that

uk =


umax if uk > umax

uk if uk ∈ [umin, umax]

umin if uk < umin

(B.3)

the integral part is updated only when u ∈ [umin, umax].

B.2 MRAC with MIT synthesis

The model reference adaptive controller (MRAC) used in the rotor and in-
ner loops is here derived using the MIT -rule [Åström and Murray, 2010].
The main purpose of the controller is to get some unknown system, Gp(s),
which could be linear or non-linear, to behave as a well known reference
model Gm(s). Here we consider SISO continuous time systems defined by a
differential operator p and the corresponding model error

e(t) = y(t)− ym(t) = Gp(p)u(t)−Gm(p)uc(t). (B.4)

the objective is to drive the model error to zero by means of an adaptive
control law

u(t) = θuuc(t)− θyy(t) = θT
[
uc(t)
y(t)

]
(B.5)

where the adaptive gain matrix θ ∈ R2×1. For this purpose, we define a cost
function

J(θ) =
1

2
e2(θ) ≥ 0 ∀θ (B.6)

and try to find conditions on the sensitivity derivatives so that the adaptive
gains change to minimise the cost function according to the MIT rule,

∂θi
∂t

= −Γi
∂J(θ)

∂θi
= −Γie(θ)

∂e(θ)

∂θi
. (B.7)

Using (B.4) and (B.5) we find that

e(t) =
(Gp(p)θu

1 +Gp(p)θy
−Gm(p)

)
uc(t) , (θuGcl(p)−Gm(p))uc(t) (B.8)

and differentiating this expression with respect to the adaptive gains yields
∂e

∂θu
=

Gp(p)

1 +Gp(p)θy
uc(t) = Gcluc(t)

∂e

∂θy
= − Gp(p)θu

(1 +Gp(p)θy)2
uc(t) = − Gp(p)

1 +Gp(p)θy
uc(t) = −Gcl(p)y(t)

(B.9)

128

B.2 MRAC with MIT synthesis

then in the MRAC synthesis some approximation needs to be made in order
to find the transfer function Gcl. In some cases it is feasible to assume Gcl ≈
Gm, but here, in our the cases we consider, the numerator of the processBp(p)
is constant. Denoting the reference models monic numerator polynomial by
Am(p) with a degree N , and the polynomial A′m(p) = Am(p) − pN , a more
valid approximation is then to let

Gcl =
Bp(p)

Ap(p) + θyBp(p)
≈ A′m(p)

Am(p)
(B.10)

Thus resulting in the parameter update laws
∂θu
∂t

= −Γue(t)
∂e

∂θu
= −Γue(t)

A′m(p)
Am(p)uc(t)

∂θy
∂t

= −Γye(t)
∂e

∂θy
= Γye(t)

A′m(p)
Am(p)y(t)

(B.11)

The design specifications in this MRAC derivation are the adaptive gains
Γu,Γy and the reference model Gm(s) which needs to be chosen with care
in order for the assumption Gp(p) ≈ Gm(p) to hold. It should be noted
that this derivation is in continuous time, and that some discretisation of
the process and model will have to be done in a real time implementation.
In our implementation, discretisation of the transfer functions is done by
ZOH, and the integration of θ̇u, θ̇y is discretised using forward differences
(see Figure B.1).

Figure B.1 Simulink implementation of the continuous-time MRAC.

129

Appendix B. Controller appendix

B.3 Linear quadratic reaulators

For the sake of generality, we consider a non-linear MIMO system

ẋ = f(x,u) (B.12)

which can be efficiently linearised around a given state x0, u0. This system
is then sampled and will be referred to in its discrete time form

x̃k+1 = A0x̃k + B0ũk. (B.13)

By the standard discrete-time approach presented in [Reist and Tedrake,
2010], we set out to minimise the cost function

J(x0,u0) =

∞∑
n=0

[
x̃TnQx̃n + ũTnRũn

]
. (B.14)

assuming Q = QT ≥ 0,R = RT > 0. The solution to the optimisation
problem can found through dynamical programming, where we define S0 =
ST0 as the positive definite solution to the associated Riccati equation,

AT
0 S0A0 − S0 −AT

0 S0B0(BT
0 S0B0 + R)−1BT

0 S0A0 + Q = 0. (B.15)

The optimal control law for (B.14) is then formed by

ũ∗k = −(R + BT
0 S0B0)−1BT

0 SA0x̃k , −K0x̃k. (B.16)

Here a few things should be noted. First, if the point (x0,u0) is fixed for
all times, the linearised matrices will be constant for all times and we only
need to compute the LQR-gain K0 once. This is the standard time invariant
formulation, and the gain matrix can easily be computed by solving the
Riccati equation using Matlab’s dlqr offline. The second thing to note is
that the linearised dynamics are unaffected by the positional states of the
quadcopter. As such, we could here simply linearise the system around a
stable hovering point (x0,u0) and form a controller which can be run with
computational ease regardless of the goal state positions and velocities. It
comes with the drawback of having to operate with angular dynamics close to
the goal state at all times, thus putting great restrictions on how aggressively
we may fly.

To support more aggressive flights, a recursive, discrete-time varying, fi-
nite horizon, iterative LQR scheme is also presented as originally derived
in [Reist and Tedrake, 2010]. Here we set up a cost function similar to the
time invariant case (B.14) under the same assumptions, but with a finite
horizon and a punishing cost on the terminal state QN = FT > 0, such that

J(x̃k) = x̃TNQN x̃N +

k+N−1∑
n=0

[
x̃TnQx̃n + ũTnRũn

]
(B.17)

130

B.3 Linear quadratic reaulators

where we know and evaluate state trajectory (xn,un) for N equidistant times
n ∈ [k, k+N − 1] to predict the time-varying governing dynamics (An,Bn).
The optimal cost-to-go at a time k,

J(xk,uk) = x̃Tk Skx̃k (B.18)

is then minimised by applying the update

Sk = AT
k Sk+1Ak−AT

k Sk+1Bk(BT
k Sk+1Bk + R)−1BT

k Sk+1Ak + Q. (B.19)

with the boundary condition SN = QN . The optimal control policy at time
k becomes

ũ∗k = −(R + BT
k Sk+1Bk)−1BT

k Sk+1Akx̃k , −Kkx̃k. (B.20)

131

C
State estimation appendix

C.1 Cramer-Rao lower bound in TOA

Consider the TOA case, where a communication time delay, t̂i, is measured
between a robot located at a point p ∈ R3 and an anchor located pi ∈ R3 a
described in Section 6.4 and Appendix C.2. If the implemented SDS-TWR
protocol removes clock offsets and drifts in the robot relative the anchor, the
distance between the robot and the anchor may be written

d̂i = ct̂i = c
(||p− pi||2

c
+ wi

)
= di + ni (C.1)

denoting di = ||p − pi||2, where ni ∼ N(0, dσ2
i) and dσi =

√
V[di + ni] =√

V[cti + cwi] = |c|
√
V[wi] = c · tσi. With a total of N anchors, we define

d̂ ,
[
d̂1 · · · d̂N

]T
=
[
d1 · · · dN

]T
+
[
n1 · · · nN

]T
= d + n ∈ RN×1.

(C.2)
Now, by the previous assumption of the measurement noise being gaussian
and independent across the anchors, the conditional distribution of N dis-
tance measurements given a position p may be written

P (d̂|p) =

N∏
i=1

1√
2π(dσi)

exp
(
− 1

2(dσ2
i)

(d̂i − di)2
)

(C.3)

as shown in [Gentile et al., 2013]. We are now ready to express the Cramer-
Rao lower bound (CRLB), a lower bound on the variance of any unbiased
estimate E[p̂] = p̂, given by

E[(p̂− p)(p̂− p)T] ≥ I−1(p)., (C.4)

with I(p) being the Fisher Information Matrix (FIM) on the positional mea-
surements [Yin et al., 2013]. The FIM is given by

I(p) = E
[(
∇p ln

(
f(d̂|p)

))2]
(C.5)

132

C.2 Robust protocols considering clock drift

where f(d̂|p) denotes the conditional probability density function of the dis-

tribution P (d̂|p) defined in (C.3). With our assumptions of the estimator
being unbiased and the noise being gaussian and identically independently
distributed, the chain rule yields

I(p) =
∂d

∂p
E
[(
∇p ln

(
f(p̂|p)

))(
∇p ln

(
f(p̂|p)

))T]∂dT

∂p
=
∂d

∂p
R−2 ∂dT

∂p
(C.6)

where, R ∈ RN×N is a diagonal matrix with tσi on the diagonal. Differenti-
ating the measurement equation (C.2) and removal of clock drift,

∂d

∂p
=

∂d1

∂x · · · ∂dN
∂x

∂d1

∂y · · · ∂dN
∂y

∂d1

∂z · · · ∂dN
∂z

 =

x−x1

d1
· · · x−xN

dN
y−y1

d1
· · · y−yN

dN
z−z1
d1

· · · z−zN
dN

 (C.7)

with di = ||p − pi||2, from which the inverse FIM is easily computed.
This result is validated by alternate derivations yielding similar results as
in R2 [Kaune, 2012].

C.2 Robust protocols considering clock drift

Many ranging protocols of varying complexity have been considered for time
of flight based UWB localisation in previous research [Kim, 2009] [Jiang
and Leung, 2007]. In the time of flight case supported in the DW1000
chip, the time stamps when packets are transmitted, TTx, and received,
TRx, are logged through a process of sending packets between the anchor
and the robot, whose clocks need not be synchronised (see Figure C.1).
Communication is done by sending a polling packet (blue) containing data
with an anchor identifier, {i}, an answer packet (red) and a final packet
(green) containing the anchor identifier as well as a set of timestamps
{i, TTx1 , TRx1 , TTx2 , TRx2 , TTx3 , TRx3 } which is retrieved in the robot (see Fig-
ure C.1). With this information available, we will proceed to discuss some
common approaches of estimating the TOA and implicitly TDOA time of
flight, t̂i, between the robot and the anchor i.

The approaches will be compared in terms of robustness to (i) constant
clock offsets Θi(T

Tx
1) = Θi,0 6= 0 and (ii) clock drift Θ′i(t) 6= 0 on the ranging

time interval. The concept of variable relative time may seem dubious, as
the time surely moves just as fast in the two systems, but it occurs naturally
due to the offsets in the oscillator crystals relative their nominal value. For
this discussion, we denote the nominal clock frequency of the DW1000 chip
as fc [Hz], where the frequency of the clock in the anchor i is given by
fA,i = (1 + eA,i(t))fc and similarly, the frequency of the clock in the robot is

133

Appendix C. State estimation appendix

given by fR = (1+eR(t))fc. Locally, on t ∈ [TTx1 , TRx3], we assume eR(t) ≡ eR
and eA,i(t) ≡ eA,i are constant, resulting in the clock offset

Θi(t) = (eA,i − eR)t+ Θi,0 ∀t ∈ [TTx1 , TRx3]. (C.8)

This approximation is not essential, but greatly simplifies the estimator error
analysis.

One way ranging In order to determine the estimated time of flight, t̂i,
an intuitive approach is to use a simple one-way ranging (OWR). In the robot
time scale, the measurement equation is then

t̂i = t
(1)
i = TRx1 + Θi(t)− TTx1 (C.9)

which only uses a single packet, enabling higher sample rates at the cost
of making the system incredibly sensitive to the unknown clock offsets and
drift. Despite this fact, previous work has been done with successful im-
plementations where the relative clock skew between the anchors has been
modelled as a random walk process and been included in a Kalman filter
formulation [Ledergerber et al., 2015].

Figure C.1 Two way communication with polling (cyan), answer (green)
a second polling packet (blue) and a final data packet (red) sending the
timestamp data to the UAV. The timestamps can be combined in various
ways to determine the time of flight, which in practice is assumed to be
t
(1)
i ≈ t(2)i ≈ t(3)i as t̂i � tA2 ≈ tR1.

Two way ranging A slightly more robust and common approach is to use
the two way ranging scheme (TWR), which completely removes the need for
clock synchronisation between the robot and the anchor by letting

t̂i =
t
(1)
i + t

(2)
i

2
=
TRx2 − TTx1 + (TRx2 + Θi − TTx1 −Θi)

2
=
tA1 − tR1

2
.

(C.10)

134

C.2 Robust protocols considering clock drift

Robust to constant offsets, the method is still sensitive to errors induced by
clock drift, as shown in the estimation error

t̂i − ti = eA,ifi +
1

2
(eA,i − eR)tR1 ≈

1

2
(eA,i − eR)tR1 (C.11)

where we have assumed that ti � tR,1. The analysis shows that the TWR
protocol yields an estimation error which depends on eA,i and eR where
t̂i − ti ∝ tR1 if Θ′i(t) 6= 0 on the ranging time interval. In conclusion, while
sensitive to clock drift, the method can be made more robust by decreasing
tR1 and is a great improvement on the OWR protocol due to the cancellation
of any constant clock offsets.

Symmetric double sided two way ranging A way to combat the is-
sue of drift is to instead use the moving average symmetric double sided
(SDS) TWR protocol [Emami, 2013]., where a total of three packages are
sent between the anchors and the robot, such that

t̂i =
1

2

(t(1)
i + t

(2)
i

2
+
t
(2)
i + t

(3)
i

2

)
=
tA1 − tR1 + tR2 − tA2

4
(C.12)

In some literature, the assumption tA1 + tA2 = tR1 + tR2 is made, allowing
the time-delay to be written

t̂i =
tA1tR2 − tR1tA2

tA1 + tR2 + tR1 + tA2
. (C.13)

Proceeding with the error analysis, see that

t̂i − ti =
1

2
(eA,i + eR)ti +

1

4
(tR1 − tA2)(eA,i − eR) ≈ 1

4
(tR1 − tA2)(eA,i − eR)

(C.14)
if we similarly to the TWR case assume that ti is small. Here we see that
even if Θ′i(t) 6= 0, the estimation error can be made very small by letting
tR1 ≈ tA2. Naturally, the approximation of linear frequency drift is more valid
for smaller times tR1, tA2. In general, we cannot guarantee that tR1 ≈ tA2

as the times depend on the clock, but recalling equation (C.11), we can say
that if

|tR1 − tA2| < |2tR1| (C.15)

the SDS-TWR should be used over the TWR protocol. In practice, this
condition will be met at virtually all times and the protocol, as given by
equation (C.12), is therefore implemented using the time division multiple
access (TDMA).

135

Appendix C. State estimation appendix

C.3 The Extended kalman Filter

There exist many different derivations for the EKF. In this section, we present
a brief but intuitive version, referring to [Terejanu, 2008] for more details.
Consider the discrete time system

xk+1 = f(xk,uk,wk) ∈ RN×1

yk = h(xk,vk) ∈ RM×1
(C.16)

with gaussian noise wk and vk with the covariance properties

E
{[

wk

vk

]}
= 0 E

{[
wk

vk

] [
wk

vk

]T}
=

[
Q 0
0 R

]
(C.17)

for some positive definite Q ∈ RN×N , R ∈ RM×M , thereby assuming un-
correlated state- and measurement noise. In the EKF, just as in the stan-
dard Kalman filter, state vector probability density function, p(xk|Sk) con-
ditioned by the sequence of past measurements and control signals Sk =
{y0, · · · ,yk,u0, · · · ,uk−1}, is propagated through time in two steps. As the
system (C.16) is assumed to be non-linear, the EKF uses a first order mul-

tivariate Taylor-approximation to predict a future state, xfk , which is then
corrected through filtering using a Kalman gain resulting in the sub-optimal
estimate x̂k. For future reference, we define the system Jacobians

Fk =
∂f(x,u,w)

∂x

∣∣∣
x̂k,uk,0

Hk =
∂h(x,v)

∂x

∣∣∣
xf
k ,uk,0

(C.18)

where Fk is well defined and may be expressed analytically at all times in
the quaternion dynamics, and Hk depends on the available measurements.
In addition, if assuming that noise may be non-additive, we let

Wk =
∂f(x,u,w)

∂w

∣∣∣
x̂k,uk,vk

Vk =
∂h(x,v)

∂v

∣∣∣
xf
k ,uk,wk

. (C.19)

Prediction

Let x̂k−1 = E
[
xk−1|Sk−1

]
be the optimal estimate at the time k − 1 with

a corresponding covariance matrix Pk−1. Taylor expanding the non-linear
transition function around this optimal estimate and assuming E

[
vk−1

]
= 0

yields

f(xk−1,uk−1,0) = f(x̂k−1,uk−1,0) + Fk−1ek−1 + Wk−1wk−1 +O(|| · ||22)
(C.20)

where ek−1 = xk−1 − x̂k−1. The expected value of the forecasted state con-
ditioned by Sk−1 is then

xfk = E
[
xk|Sk−1

]
≈ f(x̂k−1,uk−1,0)+E

[
Fk−1ek−1|Sk−1

]
≈ f(x̂k−1,uk−1,0)

(C.21)

136

C.3 The Extended kalman Filter

This allows the error in the state forecast to be expressed as

efk = xk−xfk = f(xk−1,uk−1,0)−f(x̂k−1,uk−1,0) ≈ Fk−1ek−1+Wk−1wk−1,
(C.22)

and the optimal covariance prediction is then

Pf
k = E

[
efk(efk)T

]
≈ Fk−1Pk−1F

T
k−1 + Wk−1QWT

k−1. (C.23)

Correction

In order to correct the prediction, we seek best the unbiased estimate x̂ in a
least-squares sense. This can be done done by assuming that

x̂k = b + Kkyk (C.24)

which, assuming unbiasedness in the estimator, yields

0 =E[xk − x̂k|Sk]

0 =E[(xfk + efk)− (b + Kkyk)|Sk]

0 =E[(xfk + efk)− (b + Kkh(xk,0) + Kkvk)|Sk]

0 =xfk − b−KkE[h(xk,0)|Sk]

b =xfk −KkE[h(xk,0)|Sk] (C.25)

By the assumption of unbiasedness, E[efk |Sk] = 0, implying that

E[h(xk,0)|Sk] ≈ h(xfk) + HkE[efk |Sk] ≈ h(xfk) (C.26)

With this result, equation (C.24) may be simplified using (C.25),

x̂k = b + Kkyk ≈ xfk + Kk(yk − h(xfk ,0)) (C.27)

The estimator error is then

ek = xk − x̂k = (I−KkHk)Fk−1ek−1 + KkVkvk (C.28)

from which we may form the posterior covariance as

Pk = E
[
ek(ek)T

]
= (I−KkHk)Pf

k(I−KkHk)T + KkVkRVT
k KT

k (C.29)

We now set out to minimise the error ek in a squared sense with respect to
the gain matrix Kk,

min
Kk

(||ek||22). (C.30)

137

Appendix C. State estimation appendix

With the assumption of uncorrelated noise, is equivalent to minimising the
trace of the posterior covariance matrix Pk = E[ek(ek)T], and an extremal
point is given at

0 =
∂tr(Pf

k)

∂Kk
⇒ Kk = Pf

k(Hk)T [HkP
f
kH

T
k + VkRVT

k]−1 (C.31)

which is indeed a minimiser as the second partial derivative with respect
to the trace of the forecasted covariance is positive semi-definite. Insertion
of (C.31) in (C.29) yields

Pk = (I−KkHk)Pf
k (C.32)

greatly simplifying the covariance correction at the cost of numerical stability,
as the symmetry of the covariance matrix is less likely to be preserved.

C.4 Multi-camera LS regression

Consider a set of i cameras with by their static positions in the room, ci ∈
R3, and unit vectors ni ∈ R3 such that the quadcopter resides on the lines
li = ci + tni, t ∈ R (see Figure C.2).

Figure C.2 The coordinates considered for the LS regression.

138

C.4 Multi-camera LS regression

The closest distance squared between a point p and a line li may then be
written in terms of the idempotent projector Pi = I − nin

T
i , which can be

shown to satisfy P2
i = Pi. In the two-norm, this distance is

||p− li||22 = ||(p− ci)− ((p− ci)
Tni)ni||22 (C.33)

= ||(p− ci)− nin
T
i (p− ci)||22 (C.34)

= ||Pi(p− ci)||22 (C.35)

= (p− ci)
TPiPi(p− ci)] (C.36)

= (p− ci)
TPi(p− ci) (C.37)

The total cost of an arbitrary point p for a total of N lines can then be
defined as

J(p) =

N∑
i=1

||p− li||22 =

N∑
i=1

(ci − p)T (I− nin
T
i)(ci − p) (C.38)

which, when differentiated with respect to p gives an extremal point at

∂J(p)

∂p
= −2(I− nin

T
i)(ci − p) = 0 (C.39)

which is indeed a minimum, as

∂2J(p)

∂p2
= 2(I− nin

T
i) = 2P (C.40)

is positive semidefinite on account of P being idempotent. With this result,
we simply form the linear system

A =

N∑
i=1

(I− nin
T
i), b = (I− nin

T
i)ci (C.41)

from which the LS estimate of the position can be written

p̂ = arg min
p
||Ap− b̂||2 = A†b̂. (C.42)

139

Document name

Date of issue

Document Number

Author(s) Supervisor

Sponsoring organization

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

	Introduction
	Outline of thesis
	Goals of thesis

	Modelling
	Tait-Bryan rigid-body dynamics
	Quaternion rigid-body dynamics
	Rotor dynamics and coupling
	Implementation considerations
	Open loop response
	Summary

	Motion planning
	Differential flatness
	Generation of flat output trajectories
	Parametrization of flat outputs
	Summary

	Rotor control
	Open loop control
	Closed loop rotor control
	Rotor adaptation and estimation
	Summary

	Rigid-body control
	Saturations and controllability
	Tait-Bryan parametrised control
	Geometric control
	Summary

	Inner state estimation
	Model independent estimation
	Model based state estimation
	MOCAP positioning
	UWB positioning
	Optical flow and laser positioning

	Conclusions and summary
	Bibliography
	Modelling appendix
	Identification of mappings
	Continuous time DC motor parameters
	Coriolis matrix definition
	Gimbal lock avoidance with Tait-Bryan angles
	Quaternion rotations and relation to Tait-Bryan angles
	Quaternion rate of change
	Quaternion state-space representation
	Linearised systems
	Closed form system integration with constant terms
	Cross product identities
	Time derivative of the rotation matrix

	Controller appendix
	Set-point weighed PID
	MRAC with MIT synthesis
	Linear quadratic reaulators

	State estimation appendix
	Cramer-Rao lower bound in TOA
	Robust protocols considering clock drift
	The Extended kalman Filter
	Multi-camera LS regression

	Blank Page
	Blank Page
	Blank Page

