the control task

- q_d (desired state)
- e_q (error)
- u (system input)
- y (system output)
- q (system state)
- \hat{q} (estimated state)
- \hat{q} (estimated state)

controller

system dynamics

sensors

- x, y, z position, x, y, z velocity, roll, pitch, yaw angles, roll, pitch, yaw rates
- thruster force, roll torque, pitch torque
- roll, pitch, yaw rates (gyro), x-optic flow, y-optic flow (optic flow camera), z-distance measurement (time of flight)

- estimator must reconstruct state vector from limited sensor information (number of sensors is typically $<$ number of states)
- separation principle states that controller and estimator can be designed independently
sensors

Gyroscope: Bosch BMI088

principle: sense coriolis forces using a vibrating proof mass

\[\omega_m = \omega + n_g \]

Optic flow sensor: Pixart PMW3901

principle: measure speed of motion of visual scenery directly below to estimate lateral velocity

\[\Omega_m = \omega_y' - \frac{\dot{x}'}{r} + n_o \]

(Time-of-flight laser rangefinder: ST VL53L1)

principle: measure time taken for laser light to reflect

model for sensor: \[r_m = r + n_t + \text{noise} \]
Measurement noise

idealization: Gaussian noise added to true signal

real signals may look different!

Crazyflie measured optic flow (and predicted based on Kaman filter) during a forward maneuver
Example: estimate velocity of a dynamical system
(In me586_example_kalman_estimator.ipynb)

Velocity measurement is \(v_m = v + n \) (true value + noise)
State estimation for control

Problem Setup
- Given a dynamical system with noise and uncertainty, estimate the state

\[\dot{x} = Ax + Bu + Gd \]
\[y = Cx + n \]

- \(\hat{x} \) is called the estimate of \(x \)

Remarks
- Several sources of uncertainty: noise, disturbances, process, initial condition
- Uncertainties are unknown, except through their effect on measured output
- First question: when is this even possible?
Observability

Defn A dynamical system of the form

(General, nonlinear case)

\[\dot{x} = f(x, u) \]
\[y = h(x, u) \]

is **observable** if for any \(T > 0 \) it is possible to determine the state of the system \(x(T) \) through measurements of \(y(t) \) and \(u(t) \) on the interval \([0, T]\)

Remarks

- Observability must respect *causality*: only get to look at past measurements.
- We have ignored noise, disturbances for now \(\Rightarrow \) estimate exact state.
- Intuitive way to check observability:

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx \\
\dot{y} &= C\dot{x} = CAx + CBu \\
\ddot{y} &= CA^2x + CABu + CBu \\
&\vdots
\end{align*}
\]

Thm A linear system is observable if and only if the observability matrix \(W_o \) is full rank

\[
[y, \dot{y}, \ddot{y}, \ldots]^T = W_o x \Rightarrow x = (W_o^T W_o)^{-1} W_o^T [y, \dot{y}, \ldots]^T
\]
State estimation: observer

Given that a system is observable, how do we actually estimate the state?

- Key insight: if current estimate is correct, follow the dynamics of the system

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &=Cx
\end{align*}
\]

\[
\hat{x} = A\hat{x} + Bu + L(y - C\hat{x})
\]

- Modify the dynamics to correct for error based on a linear feedback term
- \(L\) is the observer gain matrix; determines how to adjust the state due to error
- Look at the error dynamics for \(\tilde{x} = x - \hat{x}\) to determine how to choose \(L\):

\[
\tilde{x} = \dot{x} - \dot{\hat{x}} = Ax + Bu - (A\hat{x} + Bu + LC(x - \hat{x})) = (A - LC)\tilde{x}
\]

Thm If the pair \((A, C)\) is observable (associated \(W_o\) is full rank), then we can place the eigenvalues of \(A-LC\) arbitrarily through appropriate choice of \(L\).
How to choose gain L?

- “Kalman Filter” formulation: given system
 \[
 \dot{q} = Aq + Bu + Gd \\
 y = Cq + n
 \]

 where d is process noise (“disturbance”), n is sensor noise.

 d and n are zero-mean white Gaussian noise (eg for scalar d, \(p(d) = \frac{1}{\sqrt{2\pi\sigma_d^2}} e^{-\frac{1}{2} \left(\frac{d}{\sigma_d} \right)^2} \))

 and \(E\{dd^T\} = Q_N = Q_N^T \geq 0 \quad E\{nn^T\} = R_N = R_N^T > 0 \)

- if noise is “stationary” (not changing with time) then the Kalman gain L minimizes expected squared error of the state estimate

 \[
 \hat{q} = A\hat{q} + Bu + L(y - C\hat{q})
 \]

Remarks

- L is also the solution to an algebraic Riccati equation
 - use `ct.lqe(A, B, G, QN, RN)` or MATLAB `lqe(A, B, Q, R)`

- Can choose other L’s, but Kalman L minimizes error size
• Kalman Filter combines information from dynamics prediction with information sensor measurements using a “bayesian update”
 • multiply the probability density function (PDF) of the state estimate by the PDF of the new measurement

1D case

Bayesian inference:
new PDF = prior PDF * measurement PDF

\[\mu' = \mu_0 + \frac{\sigma_0^2 (\mu_1 - \mu_0)}{\sigma_0^2 + \sigma_1^2} \]

\[\sigma'^2 = \sigma_0^2 \frac{\sigma_0^4}{\sigma_0^2 + \sigma_1^2} \]

(KF does this for \(n \) dimensions)
• matrices Q_N and R_N are usually diagonal, meaning noise is not correlated
• sensor noise matrix R_N can come from datasheet or can be estimated:
 \[R_N = \begin{bmatrix} \sigma_{n1}^2 & 0 & \cdots \\ 0 & \sigma_{n2}^2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \]
 \[\sigma_n = \sqrt{\frac{1}{N-1} \sum_i (y_i - y_{i,m})^2} \]
 y_i is ground truth measurement
 $y_{i,m}$ is sensor’s measurement
 σ_n = \text{numpy.linalg.std}(y_{m-y}) if y’s are arrays of data

• disturbance noise Q_N is harder to measure. Perspective: is tuning knob
 • large disturbance Q_N ⇒ trust sensors more than prediction ⇒ large L
 • small disturbance Q_N ⇒ trust prediction more than sensors ⇒ small L

• linear KF requires very little computation, just a few matrix multiply operations
 • rose to prominence on the Moon Lander in the 1960’s (!)

• important variants:
 • sensors that do not update at equal intervals: use “information form” that separates prediction from correction step, using different L for each sensor
 • for nonlinear system, use extended KF (“EKF”) (see Murray, Optimization-Based Control) or unscented KF (“UKF”) (more computation needed)
 • crazyflie uses an extended KF to enable more aggressive maneuvers (Greif2017 on course website)
Example: me586_example_kalman_estimator.ipynb

A) Kalman Filter to estimate velocity from this dynamical system:

Velocity measurement is $v_m = v + n$ (true value + noise)

- $\text{drag} = -bv$

B) Vary tuning knob Q_N (magnitude of disturbance noise)

C) helicopter-based optic flow (must linearize at desired height $z=z_d$)

$\dot{v}_m = -\Omega_m z + n$

- not directly measuring v
- Effect of not being at linearized altitude
compared to a low-pass filter, the Kalman Filter:

- can estimate “hidden” but observable states, not just directly-measured states
- can perform sensor fusion between different sensors at different update rates
- can accommodate effect of known inputs
- reduces estimate lag time, if the quantity you are interested in behaves as a dynamical system
- minimizes expected squared estimate error
- but needs a model of dynamics

well-suited to a dynamical system such as an aircraft with a good model (e.g., rigid body equations) and states that are not directly measured by sensors (e.g., orientation)
The separation principle

Feedback the estimated state: \(u = -K\hat{x} + \kappa_r r \)

- **Analysis:** Again, let \(\tilde{x} = x - \hat{x} \) denote the error in the state estimate. The dynamics of the controlled system under this feedback are:

\[
\dot{x} = Ax + Bu = Ax - BK\hat{x} - Bk_r r = Ax - BK(x - \tilde{x}) + Bk_r r
\]

\[
= (A - BK)x + BK\tilde{x} + Bk_r r
\]

- Introduce a new *augmented* state: \(q = [x \quad \tilde{x}]^T \). The dynamics of the system defined by this state is:

\[
\begin{bmatrix}
\dot{x} \\
\dot{\tilde{x}}
\end{bmatrix} =
\begin{bmatrix}
(A - BK) & BK \\
0 & (A - LC)
\end{bmatrix}
\begin{bmatrix}
x \\
\tilde{x}
\end{bmatrix} +
\begin{bmatrix}
Bk_r \\
0
\end{bmatrix} r \equiv Mq + B_M r
\]

The characteristic polynomial of \(M \) is:

\[
\lambda_M(s) = \det(sI - A + BK) \det(sI - A + LC)
\]

- If the system is *observable* and *reachable*, then the poles of \((A - BK)\) and \((A - LC)\) can be set *arbitrarily* and *independently*.

- If \(K \) is an LQR controller and \(L \) is a Kalman Filter, then is a “Linear Quadratic Gaussian” (LQG) controller.