OPTIC FLOW

Problem:

A camera at point C moves at velocity \(\mathbf{v} \) and angular velocity \(\omega \).
What is the "optic flow" caused by the terrain at point P, angle \(\gamma \)?

Solution:

First consider a simpler problem:

C is fixed, P is moving at \(\mathbf{v} \).

Define \(\mathbf{\Omega} = -\omega \mathbf{k} \) as the optic flow "vector": want \(-\omega \mathbf{k} \) for point P at \(\gamma \).

Note that \(\mathbf{v} \times \mathbf{r} = \mathbf{l} \mathbf{r} = \frac{\mathbf{r}}{1} \Rightarrow -\omega = \frac{\mathbf{v} \times \mathbf{r}}{r} \).

Now, suppose that the camera is moving at \(-\mathbf{v} \) and P is fixed. This is indistinguishable from "simpler" case.

\[-\omega = -\frac{\mathbf{v} \times \mathbf{r}}{r} \]

Next, suppose the camera has \(\mathbf{v} = 0 \) but \(\omega \neq 0 \Rightarrow -\omega = -\omega \)

(note: effect of \(\omega \) does not depend on \(r \))

Sum these two effects to get \(-\omega = -\omega - \frac{\mathbf{v} \times \mathbf{r}}{r} \).

Component form: given \(\mathbf{v}' = v_x \mathbf{i} + v_z \mathbf{k} = [v_x, v_z] \), and \(\mathbf{\gamma}' = [-\cos \gamma, \sin \gamma] \)

Then \(v_y = \mathbf{v} \cdot \mathbf{\gamma}' = -v_x \cos \gamma + v_z \sin \gamma \Rightarrow -\omega = -\omega + \frac{v_x}{r} \cos \gamma - \frac{v_z}{r} \sin \gamma \)

Remark: in full 3D case, is 2D vector field on sphere \(\mathbf{\Omega} = -\omega \mathbf{r} + \frac{1}{r} (I - \mathbf{r} \mathbf{r}^T) \mathbf{v} \).