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ABSTRACT
Microsoft SQL Server spatial libraries contain several
components that handle geometrical and geographical data types.
With advances in geo-sensing technologies, there has been an 
increasing demand for geospatial streaming applications. 
Microsoft SQL Server StreamInsight (StreamInsight, for brevity) 
is a platform for developing and deploying streaming applications
that run continuous queries over high-rate streaming events. With 
its extensibility infrastructure, StreamInsight enables developers 
to integrate their domain expertise within the query pipeline in the 
form of user defined modules.
This demo utilizes the extensibility infrastructure in Microsoft 
StreamInsight to leverage its continuous query processing
capabilities in two directions. The first direction integrates SQL 
spatial libraries into the continuous query pipeline of 
StreamInsight. StreamInsight provides a well-defined temporal 
model over incoming events while SQL spatial libraries cover the 
spatial properties of events to deliver a solution for spatiotemporal 
stream query processing. The second direction extends the system 
with an analytical refinement and prediction layer. This layer 
analyzes historical data that has been accumulated and 
summarized over the years to refine, smooth and adjust the 
current query output as well as predict the output in the near 
future. The demo scenario is based on transportation data in Los 
Angeles County.

1. INTRODUCTION
Real-time stream data acquisition through sensors and probes has 

been widely used in numerous applications such as network 
monitoring, telecommunications data management, security, 
manufacturing, and sensor networks. Besides the temporal nature 
of stream data, various sources provide stream data that has
geographical locations and/or spatial extents such as point 
coordinates, lines, or polygons. In addition to stream data 
generated by stationary sensors, spatiotemporal stream data is also 
generated by moving objects thanks to advances in GPS and 
wireless communication technologies. Hence, the geo-streaming

term refers to the ongoing effort in academia and industry to 
process and analyze stream data with geographic and spatial 
information.  
On one hand, Microsoft SQL Server StreamInsight 
(StreamInsight, for brevity) [1, 2, 3, 4] is a platform for stream 
query processing. StreamInsight monitors stream data to extract 
meaningful patterns and trends. StreamInsight analyzes and 
correlates data from multiple sources incrementally to yield low 
latency response times. The key features of StreamInsight include: 
a declarative query language that adheres to relational algebra, the 
ability to provide consistency and correctness guarantees on the 
output, run-time query composability, query fusing, and operator 
sharing. Moreover, StreamInsight is an extensible system that 
seamlessly integrates user defined modules in the execution query 
pipeline.

On the other hand, SQL Server Spatial libraries [6] (SQL Spatial, 
for brevity) provide an easy to use, robust and high performance 
environment for persisting and analyzing spatial data. SQL Spatial
provides data type support for point, line and polygon objects. It 
also provides various methods to handle spatial data types as well 
as spatial index support. SQL Spatial Adheres to the Open 
Geospatial Consortium Simple Features for SQL standard [7].
This paper presents the GeoInsight system, an ongoing effort to 
extend Microsoft SQL Server StreamInsight with spatial support 
to provide a platform for geo-streaming applications. 

1.1 Challenges in Geospatial Stream Query 
Processing
There have been several libraries that provide methods to perform 
spatial operations on spatial data types. These libraries provided 
flexibility to a wide range of applications in the context of 
traditional spatial databases. Intersection, containment, nearest 
neighbor and shortest route queries are example queries that 
invoke methods in these libraries. However, these libraries have 
not been designed with the continuous stream processing 
paradigm in mind. The non-incremental nature of the 
implemented algorithms prevents stream query processors from 
delivering real time results. The first challenge that faces geo-
streaming is to port geospatial libraries to the streaming domain 
with the incremental single-pass processing model in mind.
The second challenge that faces streaming application is the 
ability to make a decision based on the continuous query result. 
The real time nature of the continuous query output has a two-
sided effect. The first side provides the instantaneous response to 
an incoming event. For example, an accident on one of the roads 
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is given an immediate attention by the system to reroute traffic 
accordingly. On the other side, continuous query results are 
susceptible to noise in the incoming stream values. Using the 
same example, the accident is “usually” expected to be cleared in 
T time units and the traffic is expected to revert to its daily or 
weekly pattern. Over-reacting to a single incoming event may lead 
to sub-optimal results. In general, the ability to make decisions 
based on stream query processing necessitates the need for a 
system that weighs the decision according to real time behavior as 
well as historical data patterns.

1.2 Contributions
We present a real-world data-driven framework, called 
GeoInsight, built on StreamInsight. The proposed framework 
extends StreamInsight in two directions. First, we integrate 
Microsoft SQL Server Spatial Libraries into Microsoft 
StreamInsight to support the online processing of geo-stream data. 
Special attention is given to incrementally evaluate spatial 
operations. Second, we implement an online analytical refinement 
and prediction layer that enables querying of historical (archived) 
stream data.  The former extension allows users to issue various 
real-time spatiotemporal queries about continuous events with 
user-defined temporal and spatial window. The latter extension 
enables the analysis of historical data (together with the real-time 
data) to refine the answer of real-time queries and predict the 
answer in the near future.
This paper demonstrates the basic features of the GeoInsight
system in the context of traffic management in Los Angeles 
County. GeoInsight uses spatiotemporal real transportation data 
set obtained from RIITS (Regional Integration of Intelligent 
Transportation Systems) [5]. The RIITS dataset is collected by 
various organizations located in Los Angeles County including 
Caltrans D7, MTA-Metro, LADOT, and CHP. This dataset 
includes inventory and real-time traffic data for freeways. It 
includes arterial traffic sensor data and closed circuit television 
(CCTV) snapshots. Traffic sensor data is acquired from a 
collection of 6300 sensors located on the highways and main 
streets at the boundaries of Los Angeles County. Each sensor 
acquires readings at the rate of one reading per minute. 

The remainder of this paper is organized as follows: Section 2 
overviews the architecture of the GeoInsight system. Section 3 
describes the demo scenario. The paper is concluded in Section 4.

2. ARCHITECTURE
With GeoInsight, we implemented and integrated three main 
components, namely StreamInsight, Spatial Cartridge, and Online 
Analytical Refinement and Prediction (OARP) module. Figure 1 
shows the architecture of GeoInsight. Below, we explain these 
components in detail.

2.1 StreamInsight  
GeoInsight employs StreamInsight to enable complex event 
processing. The run-time component of this platform includes 
Input Adapter, Streaming Engine, and Output Adapter. The Input 
Adapter provides interfaces to event sources (e.g., devices or 
sensors) and directs source data into Streaming Engine. The 
Streaming Engine runs pre-defined queries on input events.

Figure 1 GeoInsight Architecture

Special optimization techniques such as query fusing, operator 
sharing, and query and stream partitioning are employed in the 
Streaming Engine [2]. The Output Adapter connects streaming
engine to events sinks such as user interfaces, monitoring devices 
and databases.

2.1.1 Input Adapter
With our system, we implemented an input adapter that 
continuously listens on a TCP port for the streaming data. Once a 
packet of data is retrieved, the corresponding events are created 
and enqueued to the streaming engine. After inserting each event 
to the streaming engine, the input adapter verifies that the engine 
has not rejected any event. Finally, the input adapter declares the 
completeness of the existing events in the stream by inserting a 
current time interest (CTI) event type. 

2.1.2 Streaming Engine
The streaming engine continuously executes the queries on the 
events received from the input adapter and subsequently forwards
the results to the output adapter.
The query language supported by streaming engine is Language 
Integrated Query (LINQ) which supports various conventional 
SQL operators such as “group by” and “top-k”. In order to make 
LINQ more expressive, the extensibility infrastructure of 
StreamInsight provides user-defined aggregate (UDA), user-
defined operator (UDO), and user-defined function (UDF)
facilities. While UDA enables to aggregate events over a user 
specified window by producing a single value, UDO is used to 
generate new events based on the existing events in that window. 
UDF allows users to use any complex expression in the streaming
engine. With our implementation, we use UDOs and UDAs to 
seamlessly integrate our Spatial Cartridge and OARP modules 
into query pipeline of StreamInsight. 

2.1.3 Output Adapter
The output adapter repeatedly dequeues the processed events form 
streaming engine and transfers them to defined user interfaces. 
With our implementation, we buffer the output events in XML 
format which enables flexible usage in variety of user interfaces.

2.2 Online Analytical Refinement and 
Prediction Layer
In general, the focus of stream data processing systems is to 
consume the incoming events immediately by providing 
instantaneous responses. However, decision making solely based 
on these instant responses is not ideal as the output may possibly 
be based on noisy or missing inputs. Therefore, it is essential to 
analyze (and refine) the real-time results together with the 
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historical data patterns accumulated over the years. In addition to 
analysis and refinement, the historical data can be utilized to 
predict the future outputs. 
The main challenge with the online refinement and prediction of 
streaming data is real-time access to large archived datasets. Due 
to high retrieval costs, conventional DBMS solutions cannot be 
used to accomplish the real-time access. Therefore, we address 
this challenge by considering a sketch based online analytical 
refinement and prediction module. Clearly, a sketching technique 
which can keep an abstract version of the dataset in memory, 
while keeping the maximum data precision is the ultimate add-on 
that can keep up with the real-time needs of the underlying stream 
management system.
We have adopted Principal Component Analysis (PCA) [4] to 
implement our main-memory sketches. Towards that end, we store
a sketch of archived historical data (i.e., small number of principal 
components and a transformed dataset) in the main memory. The 
main idea behind this method is to represent a multivariate dataset
using the smallest possible number of new variables (coordinates)
that are selected based on the statistical characteristics of that 
specific dataset. The method returns a sorted list of new 
coordinates with their corresponding importance in representing 
data. Compressing the data by dropping the last coordinate has a 
negligible effect on data accuracy.
We have observed that the more correlated is the streaming data,
the less number of components are needed to create accurate and 
concise sketches. For example, applying PCA to our huge traffic
dataset resulted in sketches that save 98% of the initial data size 
while keeping the error rate as low as 10-4 miles per hour.
Considering that geo-streaming data is usually correlated (in both 
space and time) our proposed PCA based sketches will yield a 
high compression rate with such datasets. 
With our implementation, we use PCA based sketches in UDAs to 
enable streaming engine in answering all hybrid queries that 
define spatio-temporal windows over historic1 and online 
streaming data simultaneously. Given efficient access to historical
data through UDAs, one can accomplish the following refinement 
and prediction functions:

Refinement functions:

 Substituting missing streaming data with corresponding
historical values for better visualization and decision 
making

 Smoothing noisy input data according to previously 
observed patterns

 Detection of anomalies characterized by sensor readings 
that are highly deviated from historical mean values

Prediction functions:

 Predicting near future trends based on previously 
observed patterns

 Responding to anomalies and deliberately attempting to 
change future conditions

                                                                
1 With our system, 'historic' no more means 'archived' as archived 

brings to mind a less frequently used medium with less retrieval 
speed.

2.3 Spatial Cartridge 
As mentioned, geo-streaming applications often need to join 
stream data with materialized relational tables that store spatial 
information about static objects, e.g., bus stops, gas stations, etc. 
These applications reference off-the-shelf spatial modules (e.g., 
Microsoft Sql Server Spatial Library) to perform a specific form 
of spatial joins.  To realize such functionality we implemented a 
Spatial Cartridge that allows users to register desired spatial 
relations and packages together with continuous streams of data.
Specifically, with the Spatial Cartridge, we have developed 
integrated set of functions and procedures that enable retrieval 
and processing of spatial data easier and more efficiently.
Spatial cartridge extends the capabilities of StreamInsight (i) by
determining the way StreamInsight retrieves and interprets the 
underlying spatial information (e.g., road networks), and (ii) by 
customizing the spatial operators and idexes for efficient access to 
large spatial data. This way users can easily implement the 
functions or interfaces that have the specialized behavior required 
in the geostreaming applications. 

3. DEMO SCENARIO
In this section, we present various types of queries that are posed 
against our traffic sensor data. As we mentioned, we receive 
events from 6300 sensors located in Los Angeles County road 
network. In our demo, the user queries real-time spatiotemporal 
statistics about traffic conditions of freeways in Los Angeles 
transportation network. The query result is updated continuously 
as new data is streamed into the system’s input buffers. The query 
is issued and the query result is retrieved and visualized using an 
interactive web based map interface that is built on top of 
Microsoft Bing Maps.
Figure 2 shows an example query flow deployed over GeoInsight. 
The first query (Q1) filters out noisy data (e.g. sensors providing 
zero speed events) from the sensor readings. The output stream 
produced by this query contains the current speed, location, and 
other relevant information (e.g., last-update time). The output of 
Q1 is fanned out to two streams. The first stream is directly 
forwarded to the map interface (i.e., monitoring interface) where 
sensors are color-coded based on their speed reading values (e.g., 
red if speed is less than 10 km/h). Users can also see detailed 
information (e.g., street name, last-update time) by scrolling the 
mouse over the sensor icons (see Figure 3). The second stream is
passed through a spatial filter (Query Q2).

Figure 3. Color-coded sensors in LA freeways
In Q2, the user selects an area on the map (e.g. a segment in a 
highway) to collect statistics and analyze the data in the selected 
area. As shown in Figure 4, GeoInsight shows a refined current 
average speed value for all the sensors in that area. What happens
in the underlying system is that (i) query Q2 is started in the
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Figure 2 Stream flow and query sequence in GeoInsight
streaming engine; (ii) the output of Q1 is streamed to Q2 as input; 
(iii) Q2 uses a UDA that uses Spatial Library functions to perform 
a spatial filter on sensor readings considering the selected 
rectangle chosen by the user. 
For various technical reasons sensors may not provide correct 
values. Fortunately, we can use our OARP module to provide 
more realistic average values to the end-user by refining the raw 
average value with a historical average (obtained from archived 
sensor readings). One possible method is to find a weighted 
average based on former historic observations and current data 
and report the calculated value as a more reliable average speed 
for the selected area. The system gives the user the flexibility to 
configure the impact of raw average speed with respect to the 
historically observed mean value to formulate the final output.
Continuing with our existing scenario, Q3 calculates the raw 
average speed based on sensor readings selected in Q2 and at the 
same time Q4 uses PCA as a UDA to aggregate the corresponding 
speed readings observed in historic data. Finally, Q5 merges the 
(possibly noisy) result obtained from Q3 with that of Q4 based on 
user-specified weighting parameters. As shown in Figure 4, the 
calculated value in Q5 will be monitored on the client side as a 
smoothed average speed for the selected area. The diagram on the 
right window shows the calculated average value per minute.

Figure 4. Online refined average speeds for a user-selected area
As we mentioned, GeoInsight enables the prediction of future 
trends. We demonstrate this feature on our traffic dataset by 
predicting the average speed for the rest of the day for a user-
selected area. Q6 calculates the average refined values for a 
defined duration (say k min.). Subsequently, Q7 predicts the 
average speed for the rest of the day by finding the date in history 
in which the selected sensors had the closest average speed in the 
past k minutes.

4. CONCLUSION
In this paper, we introduced the GeoInsight system, which enables 
interactive and extensive spatiotemporal querying and refinement 
of geo-streaming data. GeoInsight extends Microsoft 
StreamInsight by integrating Microsoft SQL Server Spatial 
Libraries and an Online Analytical Refinement and Prediction 
module. We presented an overview of the system design and 
proposed a demo scenario that is based on the traffic data in Los 
Angeles County. The demo is based on spatiotemporal continuous 
queries that join incoming stream data from traffic sensors
spatially with rectangular region as well temporally with historical 
data.
We intend to pursue this work in two directions. First, we plan to 
extend the capabilities of GeoInsight to support more complex ad-
hoc analytical queries. Second, we intend to port continuous
spatial queries (e.g., continuous kNN and range query) to 
GeoInsight 
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