
Geospatial Stream Query Processing
using Microsoft SQL Server StreamInsight

Seyed Jalal
Kazemitabar1

Ugur
Demiryurek1

Mohamed Ali2 Afsin Akdogan1 Cyrus Shahabi1

1InfoLab, Computer Science Department
University of Southern California, Los Angeles, CA 90089

{kazemita,demiryur,aakdogan,shahabi}@usc.edu

2Microsoft SQL Server, Microsoft Corporation
One Microsoft Way, Redmond WA 98052

mali@microsoft.com

ABSTRACT
Microsoft SQL Server spatial libraries contain several
components that handle geometrical and geographical data types.
With advances in geo-sensing technologies, there has been an
increasing demand for geospatial streaming applications.
Microsoft SQL Server StreamInsight (StreamInsight, for brevity)
is a platform for developing and deploying streaming applications
that run continuous queries over high-rate streaming events. With
its extensibility infrastructure, StreamInsight enables developers
to integrate their domain expertise within the query pipeline in the
form of user defined modules.
This demo utilizes the extensibility infrastructure in Microsoft
StreamInsight to leverage its continuous query processing
capabilities in two directions. The first direction integrates SQL
spatial libraries into the continuous query pipeline of
StreamInsight. StreamInsight provides a well-defined temporal
model over incoming events while SQL spatial libraries cover the
spatial properties of events to deliver a solution for spatiotemporal
stream query processing. The second direction extends the system
with an analytical refinement and prediction layer. This layer
analyzes historical data that has been accumulated and
summarized over the years to refine, smooth and adjust the
current query output as well as predict the output in the near
future. The demo scenario is based on transportation data in Los
Angeles County.

1. INTRODUCTION
Real-time stream data acquisition through sensors and probes has

been widely used in numerous applications such as network
monitoring, telecommunications data management, security,
manufacturing, and sensor networks. Besides the temporal nature
of stream data, various sources provide stream data that has
geographical locations and/or spatial extents such as point
coordinates, lines, or polygons. In addition to stream data
generated by stationary sensors, spatiotemporal stream data is also
generated by moving objects thanks to advances in GPS and
wireless communication technologies. Hence, the geo-streaming

term refers to the ongoing effort in academia and industry to
process and analyze stream data with geographic and spatial
information.
On one hand, Microsoft SQL Server StreamInsight
(StreamInsight, for brevity) [1, 2, 3, 4] is a platform for stream
query processing. StreamInsight monitors stream data to extract
meaningful patterns and trends. StreamInsight analyzes and
correlates data from multiple sources incrementally to yield low
latency response times. The key features of StreamInsight include:
a declarative query language that adheres to relational algebra, the
ability to provide consistency and correctness guarantees on the
output, run-time query composability, query fusing, and operator
sharing. Moreover, StreamInsight is an extensible system that
seamlessly integrates user defined modules in the execution query
pipeline.

On the other hand, SQL Server Spatial libraries [6] (SQL Spatial,
for brevity) provide an easy to use, robust and high performance
environment for persisting and analyzing spatial data. SQL Spatial
provides data type support for point, line and polygon objects. It
also provides various methods to handle spatial data types as well
as spatial index support. SQL Spatial Adheres to the Open
Geospatial Consortium Simple Features for SQL standard [7].
This paper presents the GeoInsight system, an ongoing effort to
extend Microsoft SQL Server StreamInsight with spatial support
to provide a platform for geo-streaming applications.

1.1 Challenges in Geospatial Stream Query
Processing
There have been several libraries that provide methods to perform
spatial operations on spatial data types. These libraries provided
flexibility to a wide range of applications in the context of
traditional spatial databases. Intersection, containment, nearest
neighbor and shortest route queries are example queries that
invoke methods in these libraries. However, these libraries have
not been designed with the continuous stream processing
paradigm in mind. The non-incremental nature of the
implemented algorithms prevents stream query processors from
delivering real time results. The first challenge that faces geo-
streaming is to port geospatial libraries to the streaming domain
with the incremental single-pass processing model in mind.
The second challenge that faces streaming application is the
ability to make a decision based on the continuous query result.
The real time nature of the continuous query output has a two-
sided effect. The first side provides the instantaneous response to
an incoming event. For example, an accident on one of the roads

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Articles from this volume were presented at The 36th International
Conference on Very Large Data Bases, September 13-17, 2010,
Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
© 2010 VLDB Endowment 21508097/10/09... $10.00

1537

is given an immediate attention by the system to reroute traffic
accordingly. On the other side, continuous query results are
susceptible to noise in the incoming stream values. Using the
same example, the accident is “usually” expected to be cleared in
T time units and the traffic is expected to revert to its daily or
weekly pattern. Over-reacting to a single incoming event may lead
to sub-optimal results. In general, the ability to make decisions
based on stream query processing necessitates the need for a
system that weighs the decision according to real time behavior as
well as historical data patterns.

1.2 Contributions
We present a real-world data-driven framework, called
GeoInsight, built on StreamInsight. The proposed framework
extends StreamInsight in two directions. First, we integrate
Microsoft SQL Server Spatial Libraries into Microsoft
StreamInsight to support the online processing of geo-stream data.
Special attention is given to incrementally evaluate spatial
operations. Second, we implement an online analytical refinement
and prediction layer that enables querying of historical (archived)
stream data. The former extension allows users to issue various
real-time spatiotemporal queries about continuous events with
user-defined temporal and spatial window. The latter extension
enables the analysis of historical data (together with the real-time
data) to refine the answer of real-time queries and predict the
answer in the near future.
This paper demonstrates the basic features of the GeoInsight
system in the context of traffic management in Los Angeles
County. GeoInsight uses spatiotemporal real transportation data
set obtained from RIITS (Regional Integration of Intelligent
Transportation Systems) [5]. The RIITS dataset is collected by
various organizations located in Los Angeles County including
Caltrans D7, MTA-Metro, LADOT, and CHP. This dataset
includes inventory and real-time traffic data for freeways. It
includes arterial traffic sensor data and closed circuit television
(CCTV) snapshots. Traffic sensor data is acquired from a
collection of 6300 sensors located on the highways and main
streets at the boundaries of Los Angeles County. Each sensor
acquires readings at the rate of one reading per minute.

The remainder of this paper is organized as follows: Section 2
overviews the architecture of the GeoInsight system. Section 3
describes the demo scenario. The paper is concluded in Section 4.

2. ARCHITECTURE
With GeoInsight, we implemented and integrated three main
components, namely StreamInsight, Spatial Cartridge, and Online
Analytical Refinement and Prediction (OARP) module. Figure 1
shows the architecture of GeoInsight. Below, we explain these
components in detail.

2.1 StreamInsight
GeoInsight employs StreamInsight to enable complex event
processing. The run-time component of this platform includes
Input Adapter, Streaming Engine, and Output Adapter. The Input
Adapter provides interfaces to event sources (e.g., devices or
sensors) and directs source data into Streaming Engine. The
Streaming Engine runs pre-defined queries on input events.

Figure 1 GeoInsight Architecture

Special optimization techniques such as query fusing, operator
sharing, and query and stream partitioning are employed in the
Streaming Engine [2]. The Output Adapter connects streaming
engine to events sinks such as user interfaces, monitoring devices
and databases.

2.1.1 Input Adapter
With our system, we implemented an input adapter that
continuously listens on a TCP port for the streaming data. Once a
packet of data is retrieved, the corresponding events are created
and enqueued to the streaming engine. After inserting each event
to the streaming engine, the input adapter verifies that the engine
has not rejected any event. Finally, the input adapter declares the
completeness of the existing events in the stream by inserting a
current time interest (CTI) event type.

2.1.2 Streaming Engine
The streaming engine continuously executes the queries on the
events received from the input adapter and subsequently forwards
the results to the output adapter.
The query language supported by streaming engine is Language
Integrated Query (LINQ) which supports various conventional
SQL operators such as “group by” and “top-k”. In order to make
LINQ more expressive, the extensibility infrastructure of
StreamInsight provides user-defined aggregate (UDA), user-
defined operator (UDO), and user-defined function (UDF)
facilities. While UDA enables to aggregate events over a user
specified window by producing a single value, UDO is used to
generate new events based on the existing events in that window.
UDF allows users to use any complex expression in the streaming
engine. With our implementation, we use UDOs and UDAs to
seamlessly integrate our Spatial Cartridge and OARP modules
into query pipeline of StreamInsight.

2.1.3 Output Adapter
The output adapter repeatedly dequeues the processed events form
streaming engine and transfers them to defined user interfaces.
With our implementation, we buffer the output events in XML
format which enables flexible usage in variety of user interfaces.

2.2 Online Analytical Refinement and
Prediction Layer
In general, the focus of stream data processing systems is to
consume the incoming events immediately by providing
instantaneous responses. However, decision making solely based
on these instant responses is not ideal as the output may possibly
be based on noisy or missing inputs. Therefore, it is essential to
analyze (and refine) the real-time results together with the

1538

historical data patterns accumulated over the years. In addition to
analysis and refinement, the historical data can be utilized to
predict the future outputs.
The main challenge with the online refinement and prediction of
streaming data is real-time access to large archived datasets. Due
to high retrieval costs, conventional DBMS solutions cannot be
used to accomplish the real-time access. Therefore, we address
this challenge by considering a sketch based online analytical
refinement and prediction module. Clearly, a sketching technique
which can keep an abstract version of the dataset in memory,
while keeping the maximum data precision is the ultimate add-on
that can keep up with the real-time needs of the underlying stream
management system.
We have adopted Principal Component Analysis (PCA) [4] to
implement our main-memory sketches. Towards that end, we store
a sketch of archived historical data (i.e., small number of principal
components and a transformed dataset) in the main memory. The
main idea behind this method is to represent a multivariate dataset
using the smallest possible number of new variables (coordinates)
that are selected based on the statistical characteristics of that
specific dataset. The method returns a sorted list of new
coordinates with their corresponding importance in representing
data. Compressing the data by dropping the last coordinate has a
negligible effect on data accuracy.
We have observed that the more correlated is the streaming data,
the less number of components are needed to create accurate and
concise sketches. For example, applying PCA to our huge traffic
dataset resulted in sketches that save 98% of the initial data size
while keeping the error rate as low as 10-4 miles per hour.
Considering that geo-streaming data is usually correlated (in both
space and time) our proposed PCA based sketches will yield a
high compression rate with such datasets.
With our implementation, we use PCA based sketches in UDAs to
enable streaming engine in answering all hybrid queries that
define spatio-temporal windows over historic1 and online
streaming data simultaneously. Given efficient access to historical
data through UDAs, one can accomplish the following refinement
and prediction functions:

Refinement functions:

 Substituting missing streaming data with corresponding
historical values for better visualization and decision
making

 Smoothing noisy input data according to previously
observed patterns

 Detection of anomalies characterized by sensor readings
that are highly deviated from historical mean values

Prediction functions:

 Predicting near future trends based on previously
observed patterns

 Responding to anomalies and deliberately attempting to
change future conditions

1 With our system, 'historic' no more means 'archived' as archived

brings to mind a less frequently used medium with less retrieval
speed.

2.3 Spatial Cartridge
As mentioned, geo-streaming applications often need to join
stream data with materialized relational tables that store spatial
information about static objects, e.g., bus stops, gas stations, etc.
These applications reference off-the-shelf spatial modules (e.g.,
Microsoft Sql Server Spatial Library) to perform a specific form
of spatial joins. To realize such functionality we implemented a
Spatial Cartridge that allows users to register desired spatial
relations and packages together with continuous streams of data.
Specifically, with the Spatial Cartridge, we have developed
integrated set of functions and procedures that enable retrieval
and processing of spatial data easier and more efficiently.
Spatial cartridge extends the capabilities of StreamInsight (i) by
determining the way StreamInsight retrieves and interprets the
underlying spatial information (e.g., road networks), and (ii) by
customizing the spatial operators and idexes for efficient access to
large spatial data. This way users can easily implement the
functions or interfaces that have the specialized behavior required
in the geostreaming applications.

3. DEMO SCENARIO
In this section, we present various types of queries that are posed
against our traffic sensor data. As we mentioned, we receive
events from 6300 sensors located in Los Angeles County road
network. In our demo, the user queries real-time spatiotemporal
statistics about traffic conditions of freeways in Los Angeles
transportation network. The query result is updated continuously
as new data is streamed into the system’s input buffers. The query
is issued and the query result is retrieved and visualized using an
interactive web based map interface that is built on top of
Microsoft Bing Maps.
Figure 2 shows an example query flow deployed over GeoInsight.
The first query (Q1) filters out noisy data (e.g. sensors providing
zero speed events) from the sensor readings. The output stream
produced by this query contains the current speed, location, and
other relevant information (e.g., last-update time). The output of
Q1 is fanned out to two streams. The first stream is directly
forwarded to the map interface (i.e., monitoring interface) where
sensors are color-coded based on their speed reading values (e.g.,
red if speed is less than 10 km/h). Users can also see detailed
information (e.g., street name, last-update time) by scrolling the
mouse over the sensor icons (see Figure 3). The second stream is
passed through a spatial filter (Query Q2).

Figure 3. Color-coded sensors in LA freeways
In Q2, the user selects an area on the map (e.g. a segment in a
highway) to collect statistics and analyze the data in the selected
area. As shown in Figure 4, GeoInsight shows a refined current
average speed value for all the sensors in that area. What happens
in the underlying system is that (i) query Q2 is started in the

1539

Figure 2 Stream flow and query sequence in GeoInsight
streaming engine; (ii) the output of Q1 is streamed to Q2 as input;
(iii) Q2 uses a UDA that uses Spatial Library functions to perform
a spatial filter on sensor readings considering the selected
rectangle chosen by the user.
For various technical reasons sensors may not provide correct
values. Fortunately, we can use our OARP module to provide
more realistic average values to the end-user by refining the raw
average value with a historical average (obtained from archived
sensor readings). One possible method is to find a weighted
average based on former historic observations and current data
and report the calculated value as a more reliable average speed
for the selected area. The system gives the user the flexibility to
configure the impact of raw average speed with respect to the
historically observed mean value to formulate the final output.
Continuing with our existing scenario, Q3 calculates the raw
average speed based on sensor readings selected in Q2 and at the
same time Q4 uses PCA as a UDA to aggregate the corresponding
speed readings observed in historic data. Finally, Q5 merges the
(possibly noisy) result obtained from Q3 with that of Q4 based on
user-specified weighting parameters. As shown in Figure 4, the
calculated value in Q5 will be monitored on the client side as a
smoothed average speed for the selected area. The diagram on the
right window shows the calculated average value per minute.

Figure 4. Online refined average speeds for a user-selected area
As we mentioned, GeoInsight enables the prediction of future
trends. We demonstrate this feature on our traffic dataset by
predicting the average speed for the rest of the day for a user-
selected area. Q6 calculates the average refined values for a
defined duration (say k min.). Subsequently, Q7 predicts the
average speed for the rest of the day by finding the date in history
in which the selected sensors had the closest average speed in the
past k minutes.

4. CONCLUSION
In this paper, we introduced the GeoInsight system, which enables
interactive and extensive spatiotemporal querying and refinement
of geo-streaming data. GeoInsight extends Microsoft
StreamInsight by integrating Microsoft SQL Server Spatial
Libraries and an Online Analytical Refinement and Prediction
module. We presented an overview of the system design and
proposed a demo scenario that is based on the traffic data in Los
Angeles County. The demo is based on spatiotemporal continuous
queries that join incoming stream data from traffic sensors
spatially with rectangular region as well temporally with historical
data.
We intend to pursue this work in two directions. First, we plan to
extend the capabilities of GeoInsight to support more complex ad-
hoc analytical queries. Second, we intend to port continuous
spatial queries (e.g., continuous kNN and range query) to
GeoInsight

5. ACKNOWLEDGMENTS
This research has been funded in part by NSF grants CNS-
0831505 (CyberTrust), the NSF Center for Embedded Networked
Sensing (CCR-0120778) and in part from the METRANS
Transportation Center, under grants from USDOT and Caltrans.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

6. REFERENCES
[1] R.S. Barga, J. Goldstein, M. Ali, and M. Hong. Consistent

Streaming Through Time: A Vision for Event Stream
Processing. In CIDR, 2007.

[2] M. Ali et al.: Microsoft CEP Server and Online Behavioral
Targeting. In VLDB 2009.

[3] B. Chandramouli, J. Goldstein, and D. Maier. On-the-fly
Progress Detection in Iterative Stream Queries. In VLDB,
2009.

[4] I. T. Jolliffe: Principal Component Analysis. Springer,
second edition, October 2002.

[5] RIITS: http://www.riits.net. Last accessed in March, 2010
[6] SQL Server Spatial Libraries.

http://www.microsoft.com/sqlserver/2008/en/us/spatial-
data.aspx. Last accessed in March, 2010

[7] Open Geospatial Consortium. http://www.opengeospatial.org.
Last accessed in March, 2010

1540

