
An Extensibility Approach for Spatio-temporal Stream

Processing using Microsoft StreamInsight

Jeremiah Miller
1
, Miles Raymond

1
, Josh Archer

1
, Seid Adem

1
, Leo Hansel

1
, Sushma

Konda
1
, Malik Luti

1
, Yao Zhao

1
, Ankur Teredesai

1
, Mohamed Ali

2

1 Institute Of Technology, University of Washington, Tacoma, WA, USA
{ jeremmi, reukiodo, archerjb, seidom, lhansel, skonda, mluti,

yaozerus, ankurt} @u.washington.edu

2 Microsoft StreamInsight, Microsoft Corporation, Redmond, WA, USA
{mali}@microsoft.com

Abstract. Integrating spatial operators in commercial data streaming engines

has gained tremendous interest in recent years. Whether to support such opera-

tors natively or to enable the operator through an extensibility framework is a

challenging and interesting debate. In this paper we leverage the Microsoft

StreamInsightTM extensibility framework to support spatial operators enabling

developers to integrate their domain expertise within the query execution pipe-

line.

 We first justify our choice of adopting an extensibility approach over a native

support approach. Then, we present an example set of spatiotemporal opera-

tions, e.g., KNN search, and range search; implemented as user defined opera-

tors using the extensibility framework within Microsoft StreamInsight. More in-

terestingly, the demo showcases the how embedded devices and smartphones

are shaping the future of streaming spatiotemporal applications. The demo sce-

nario specifically features a smartphone based input adapter that provides a con-

tinuous stream of moving object locations as well a continuous stream of mov-

ing queries. To demonstrate the scalability of the implemented extensibility

framework, the demo includes a simulator that generates a larger set of station-

ary/moving queries and streams of stationary/moving objects.

Keywords: Microsoft StreamInsight, extensibility, spatiotemporal data stream-

ing, geostreaming.

1 Introduction

It has been a debate in the database community whether to support spatial opera-

tors natively or to provide an extensibility framework capable of integrating user de-

fined operators across multiple domains within the query execution pipeline. This

same debate has naturally evolved to include the data streams domain as more and

more business scenarios demand spatiotemporal stream processing. In this demo, we

explore the utility of the second approach (extensibility) to design a set of spatiotem-

poral streaming operators.

mailto:LNCS@Springer.com

2 Jeremiah Miller, Miles Raymond, Josh Archer, Seid Adem, Leo Hansel, Sushma

Konda, Malik Luti, Yao Zhao, Ankur Teredesai, Mohamed Ali

1.1 Motivation

Spatial queries are becoming increasingly popular and are a necessary building

block for a number of location-enabled applications (e.g. find coffee shops near me as

I travel down the freeway, or alert the police cars nearest to a fleeing suspect.) Our

approach utilizes a commercial data stream management system (DSMS), Microsoft

StreamInsight, to handle streams of spatiotemporal location data. We leverage the

extensibility features to update and query our spatial indexes. StreamInsight natively

handles the details of the streaming data, so that we can focus our development efforts

on the business logic implementation of real-time spatial queries.

1.2 The Case for Extensibility in a DSMS

Microsoft StreamInsight (StreamInsight, for brevity) is a commercial DSMS that

adopts the semantics of the Complex Event Detection and Response (CEDR) project

[1-2]. The underlying basis for processing long-running continuous queries in Stream-

Insight is a well-defined temporal stream model and operator algebra. It correlates

stream data from multiple sources and executes standing queries on a low-latency

query processor to extract meaningful patterns and trends [3-4].

Several business domains have explored the value that could be gained by using

DSMSs to process real-time workloads. In previous work, StreamInsight has been

used as a platform for web click analysis and online behavioral targeting [5], compu-

tational finance [6], and spatiotemporal query processing [7-9]. Because of the wide

applicability of data streaming in many domains, and because of the domain expertise

involved in each domain, the extensibility model provides a way to make DSMS ca-

pabilities more readily accessible to developers within their domain of expertise. For

this demo, we leverage StreamInsight’s extensibility model in the spatiotemporal

domain. We discuss StreamInsight’s extensibility model [10] in Section 2.3.

1.3 Applying StreamInsight to the Spatial domain

Ali et al present two approaches (the extensibility approach and the native support

approach) to enable spatiotemporal query processing in DSMSs and, more specifical-

ly, in StreamInsight [7]. Some have also investigated the extensibility approach [8-9]

to extend StreamInsight with the capabilities of the SQL Server Spatial Library [11].

However, the SQL Server Spatial Library is tuned for non-streaming data and, hence,

performance at real time remains an issue. Using the extensibility framework pro-

posed by Ali et al [10], incremental streaming-oriented versions of spatial operators

can be developed and integrated with the query execution pipeline. In particular, we

utilize user defined operators (UDOs) in our demo.

This demo implements a set of K- nearest neighbor (KNN) search and range search

operators. These operators receive a stream of location updates. Note that there are

various flavors of the KNN search and range search problems. Typically, a fixed

KNN search or range search can be posed against a stream of continuously moving

objects (i.e. querying device is not moving, the query answers are derived from a

stream of moving entities). Alternatively, the KNN search or the range search center

can be moving while the objects are stationary – e.g. show me locations of coffee

 3

shops as I drive along on a freeway. More interestingly, both the objects and the

search center can be moving; e.g. a user and the friends nearest to them at any given

time in a public location such as a shopping mall. We support all these flavors in the

demo.

2 StreamInsight Overview

This section summarizes the major features of StreamInsight and gives an overview

of its developer’s interface with an emphasis on the extensibility framework.

2.1 Capabilities of StreamInsight

Speculation and consistency levels: StreamInsight handles imperfections in data

delivery and provides consistency guarantees on the resultant output. Such consisten-

cy guarantees place correctness measures on the output that has been generated so far,

given that late and out-of-order stream events are still in transit.

Windowing Semantics: Windowing is achieved by dividing the time-axis into a

set of possibly overlapping intervals, called windows. An event belongs to a window

if and only if the event’s lifetime overlaps with the window’s interval (time span).

The desired operation (e.g., sum or count) is applied over every window as time

moves forward. The output of a window is the computation result of the operator over

all events in that window, and has a lifetime that is equal to the window duration.

Scalability: Scalability is achieved by both stream partitioning and query partition-

ing. Stream partitioning clones a query into multiple queries (of the same operator

tree) such that each query operates on a portion of the stream. Query partitioning di-

vides a query into many sub queries, each deployed on an instance of StreamInsight.

Debugging: StreamInsight provides a graphical tool (the Event Flow Debugger)

for the inspection of event flow in a query as a means of debugging and performing

root cause analysis of problems. The Event Flow Debugger reports the per-query

memory and CPU usage, latency, throughput, and other runtime statistics as well.

2.2 Developing a Streaming Solution with StreamInsight

To develop a streaming application using StreamInsight, a set of modules have to

be written to interact with the system. These modules are classified as:

Input/output Adapters: Input data streams are fed to the streaming engine

through the appropriate input adapters. Input adapters have the ability to interact with

the stream source and to push the stream events to the streaming engine. The engine

processes the queries issued by the user and streams the resultant output to the con-

sumer through output adapters. For the demo, we wrote two input adapters – one that

generates test data and one for real data streamed from smartphone apps. We also

created an output adapter that provides the output data as a service consumed by our

display applications on a PC or smartphone.

Declarative Queries in LINQ: Language Integrated Query (LINQ) [12] is the ap-

proach taken by StreamInsight to express continuous queries. The LINQ that invokes

our spatial query, for example, might look like this:

4 Jeremiah Miller, Miles Raymond, Josh Archer, Seid Adem, Leo Hansel, Sushma

Konda, Malik Luti, Yao Zhao, Ankur Teredesai, Mohamed Ali

var outputStream = inputStream.Scan(

 new RTreeUDO(queryType, xRange, yRange));

This scans the input stream with our R-tree UDO, and provides us with the output

stream. The code inside our UDO will accept a set of input event to produce a set of

output events. We define the payload of our input and output events to include geo-

graphic location, phone ID, and IP address.

User Defined Operators (UDOs): The extensibility framework enables domain

experts to extend the system’s functionality beyond relational algebra. Domain ex-

perts package their logic as libraries of UDOs that are invoked by the continuous

query.

Fig. 1. Query output visualization of KNN search and range search query using the dashboard.

StreamInsight’s extensibility framework addresses two types of UDO developers.

The first type is software developers who are not trained to think under the data

streaming paradigm with its temporal attributes: for them there is the non-incremental

model which provides a relational view of the world. The second type is developers of

streaming applications where temporal attributes are first class citizens in their busi-

ness logic. These developers seek maximum achievable performance through incre-

mental query processing and may require full control over the temporal attributes of

events as well. For them there is the incremental model, which provides the deltas or

changes in the input to the UDO since the UDO’s last invocation.

3 Demo Scenario

The demo scenario features a dashboard (Figure 1) that simultaneously visual-

izes a set of stationary objects (e.g., landmarks, coffee shops, shopping malls) and a

set of moving objects (e.g., streamed from handheld devices and smartphones) using

Bing Maps [13]. The dashboard is also used to compose and issue continuous queries

against these objects. There are two versions of the dashboard: a PC-based dashboard

and a smartphone-based dashboard. Note that a query that is issued using the

smartphone based dashboard is assumed to have a continuously moving query center

 5

(as described in Section 1). The queries are processed using a data streaming engine

and the query results are visualized using either version of the dashboard.

The demo utilizes Microsoft StreamInsight as the underlying data streaming

engine. To interface with StreamInsight, a set of input/output adapters, a set of LINQ

queries and a set of user defined operators (UDOs) are developed. We provide two

types of input adapters. The first type of input adapters streams, at real time, GPS

locations from handheld devices (e.g. smartphones) to the data streaming engine. The

second type of input adapters simulates a larger set of moving objects/queries for the

sake of demonstrating scalability. The simulator moves the device locations by ran-

dom displacement vectors to simulate the variability we expect in real data. Moreo-

ver, it can replay historical logs of moving objects and feed them to the streaming

engine to process queries over historical data. On the output side, the output adapter

visualizes the query results using Bing Maps over the PC-based dashboard or sends

the result back to be visualized at the dashboard of the moving object (say, a

smartphone) that issued the query.

We implement R-tree and M-tree spatial index structures to track the objects as

they roam the space. Our UDOs incrementally update and query these indexes at real

time. In this demo, we present UDOs for KNN search and range search operations

such that the various flavors of stationary/moving queries issued against station-

ary/moving objects are supported. Finally, LINQ queries are automatically composed

and instantiated through the dashboard. These queries invoke the UDOs along with a

set of relational operators (filters and projections) to declaratively define the requested

output.

4 References

1. Roger S. Barga, Jonathan Goldstein, Mohamed Ali, and Mingsheng Hong. Consistent Streaming
Through Time: A Vision for Event Stream Processing. In Proceedings of CIDR, 412-422, 2007.

2. Jonathan Goldstein, Mingsheng Hong, Mohamed Ali, and Roger Barga. Consistency Sensitive
Streaming Operators in CEDR. Tech. Report, MSR-TR-2007-158, Microsoft Research, 2007.

3. B. Chandramouli, J. Goldstein, and D. Maier. On-the-fly Progress Detection in Iterative Stream
Queries. In VLDB, 2009.

4. B. Chandramouli, J. Goldstein, and D. Maier. High-Performance Dynamic Pattern Matching
over Disordered Streams. In VLDB, 2010.

5. Mohamed Ali et al. Microsoft CEP Server and Online Behavioral Targeting. VLDB 2009.
6. Badrish Chandramouli, Mohamed Ali, Jonathan Goldstein, B. Sezgin, B. Sethu. Data Stream

Management Systems for Computational Finance. IEEE Computer 43(12): 45-52 (2010).
7. Mohamed Ali, Badrish Chandramouli, Balan Sethu Raman, Ed Katibah. Spatio-Temporal

Stream Processing in Microsoft StreamInsight. IEEE Data Eng. Bull. 33(2): 69-74 (2010).
8. Jalal Kazemitabar, Ugur Demiryurek, Mohamed Ali, Afsin Akdogan, Cyrus Shahabi, Geospatial

Stream Query Processing using Microsoft SQL Server StreamInsight, In VLDB, 2010.
9. Mohamed H. Ali, Badrish Chandramouli, Balan Sethu Raman, Ed Katibah: Real-time spatio-

temporal analytics using Microsoft StreamInsight. In ACM GIS 2010.
10. Mohamed Ali, Badrish Chandramouli, Jonathan Goldstein, Roman Schindlauer. The Extensibil-

ity Framework in Microsoft StreamInsight, In ICDE, 2011.
11. SQL Server Spatial Library, http://www.microsoft.com/sqlserver/2008/en/us/spatial-data.aspx,

last accessed in March 2011.
12. Paolo Pialorsi, Marco Russo. Programming Microsoft LINQ, Microsoft Press, May 2008.
13. Bing Maps, http://www.bing.com/maps

http://www.microsoft.com/sqlserver/2008/en/us/spatial-data.aspx

