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Abstract similar behavior over a period of time. Various techniques
have been developed to detect phenomena|3], estimate their
A phenomenon appears in a sensor network when aboundaries [15], and utilize them in sophisticated dat&ana
group of sensors persist to generate similar behavior over aysis [12].
period of time. PhenomenaBases (or databases of phenom- A sensor-networlPhenomenaBagd] is a database of
ena) are equipped witRhenomena Detection and Tracking phenomena that develop in a sensor field. In particular,
(PDT) techniques that continuously run in the background a PhenomenaBase has two basic functionalities: First, it
of a sensor database system to detect new phenomena anekecute?henomena Detection and Tracki(@DT) tech-
to track already existing phenomena. The process of phe-niques (e.g., [3]) continuously at the background of a sen-
nomena detection and tracking is initiated by a multi-way sor database system to detect new phenomena and to track
join operator that comes at the core BDT techniques to  the propagation of already-detected phenomena. Second, it
report similar sensor readings. With the increase in the uses the knowledge about detected phenomena to optimize
sensor network size, the join operator (and, consequently,subsequent user queries.
query processing in the PhenomenaBase) face several scal- At the core ofPDTtechniques is anuter multi-wayjoin
ability challenges. In this paper, we present a join op- operator that detects similarities among streams of sensor
erator for PhenomenaBases (tB&Joinoperator) that is data over a sliding window of size. Notice that the join
specially-designed for dynamically-configured largeleca operation is a “multi-way” join because it detects similari
sensor networks with distributed processing capabilities ties among multiple sensors. Also, the join operation is an
Experimental studies illustrate the scalability of the pro “outer” join because phenomena are usually localized. Out
posed join operator in PhenomenaBases with respect to theof the large number of sensors in the space, only subsets
number of detected phenomena and the output delay. of sensors generate the same values. Other sensors do not
participate in the join output and are replaced by NULLs.
In general, a multi-way join over data streams can be per-
1 Introduction form_ed using t_rees of _n(_)n-blocking binaryjoin_s (_esg/.r,n-
metric hash join20], xjoin [18], or hash merge joirj14]).
, i Binary join trees perform the multi-way join in multiple
With the evolution of large-scale sensor-network tech- o5 e tree levels) and may incur several delays.,Also
nologles_,, emerging senspr-networ_k applications caII_ for the output rate of binary-join trees is sensitive to the fmin
new online query processing te_chnlques. _Su<_:h teChanue%Ier. For this reason, binary-join tress are usually equppe
go b_eyond the traditional sampling, transm|SS|on,_and pro-\vith a dynamic scheme for tree reorganization (e.g., [5]).
cessing of sensor data to the more complex paradigm of an-r;, o ercome the shortcomings of binary-join trees, [19] in-
alyzing, understanding, a_nd acting upon various forms of troduces theMJoin operator, asingle-stepmulti-way join
phenomena that develop in a sensor field. A phenomenory, o o0, that is symmetric with respect to all input streams
can be a pollut_lon cloud in the air, an oil spill at the ocean Hence MJoin produces early output, maximizes the output
surface, or a f|rg alar_m Ina bU|Id|_ng. In general, a ph(_e- rate, and avoids reorganization of the query plan at execu-
nomenon (as defined in [3]) is a region of sensors generating; - time. Therefore, an outéJoin operator has been se-

*This work was supported in part by the National Science Fatiod lected '_n the preylous deS|gn BDT technlques [3]
under Grants 11S-0093116 and 11S-0209120. MJoinhas satisfactory performance for moderate system




loads. However, with the increase in the network size, the Query Result Query
sensor sampling rates, and the number of propagating phe- ¥

nomenaPDT techniques start losing many phenomena up- o Query
dates. A phenomena update is reported if a phenomenon ~ Admission
appears, disappears, or changes its location. The number ~ Sensor Network R

of detected phenomena updates per second reflects how fast EXGC”"O'S‘ """ : Query Plan -
the system is in tracking phenomena as they move in space.
To face periods of heavy system loads, we identify three
basic challenges that face the current design of Phenom-
enaBases witMJoin. These challenges can be summarized
as follows:
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1. Thescalability challenge, where sensor networks are

typically deployed in large scale with thousands of sen- Nile Engine
sors.
2. Thedynamic-configuratiorthallenge, where sensors Figure 1. The architecture of Nile.

can be added and removed from the sensor field dy-
namically based on the network conditions, the sen-

N S . 4. We provide an experimental study that is based on
sors’ life time, and the availability of additional sen- b b y

a real implementation o6NJoininside Nile-PDT to

Sors. prove its efficiency in terms of the number of detected
3. The distributed-executiorchallenge, where the join phenomena updates and the output delay.

operation is performed in a distributed fashion to elim-  1he remainder of this paper is organized as follows: Sec-

inate the bottlenecks of a centralized system. tion 2 gives an outline dBNJoinand investigates the under-

lying sensor platform. Section 3 presents the variablg-ari
notion of SNJoin Section 4 empowerSNJoinwith dis-
tributed processing capabilities. Section 5 describesahe
evance feedback mechanism3NlJoin Section 6 provides
an experimental study of the performance of various join
techniques. Section 7 overviews related join techniquds an
compares them t8NJoin Finally, Section 8 concludes the

In this paper, we introduce th&NJoin (or Sensor-
Network Join operator as the successor Mfloin inside
PhenomenaBasesSNJoinhandles the distributed execu-
tion of continuous multi-way window joimueries over
dynamically-configured large-scalgensor networks. In
contrast toMJoin, SNJoinis not an outer multi-way join.
SNJoinintroduces a new concept, the concepvafiable-
arity join. Variable-arity join produces variable-size join PaPer
output in response to the variable number of sensors con-
tributing to a phenomenon. Moreover, the performance of 2. Outline of the SNJoin Algorithm
SNJoinimproves over time through eelevance feedback
(RFB) mechanism RFB monitors the contribution of each The concept of PhenomenaBases has been adopted by
sensor to the output. TheRFBissues a feedback note to the Nile data stream management system [11]. Figure 1
the join operator to indicate the relevance of each sensor tallustrates the architecture ®ile. The basic components
the output. This feedback note tunes query processing to-of Nile are the query admission controller, the query plan
wards sensors that maximize the join output rate. With the generator, and the query executer. These basic components
notions of variable-arity join anBFB, SNJoinscales with decide whether to accept or reject a query based on sys-
respect to the number of sensors in space and adapts to thiem resources, generate a query plan, and deploy the query

dynamic configuration of the network. plan over the sensor network for execution, respectively. T
The contributions of this paper can be summarized asempoweile with the capabilities of PhenomenaBases, we
follows: add two new components to the system: (1) Nile-PDT

) ) ) o (or Nile Phenomena Detection and Tracking) module [2]
1. We introduce the notion of variable-arity join and 4t continuously detects phenomena at the background of
adopt it in the context cBNJoin the Nile engine. (2) A phenomenon-aware optimizer that
2. We promote the distributed processing capabilities of 2CC€Pts phenomenon-aware feedback fivite-PDT and,
SNJoinby performing the join at the sensor level. hence, optimizes user queries based on its knowledge about
the sensor field.
3. We extendSNJoinwith the ability to accept and pro- As illustrated in Figure 2, the sensor platformiife is
cess relevance feedback. an ad-hoc network with resource-constrained sensor nodes.



Sink node Client Step4.The sink node measures the weight of each cluster in

the output and returns a relevance feedback note to the clus-
ter head that initiated the probing sequence. Based on the
feedback, the cluster head adjusts future probing seqaence
to include clusters with similar values with high probatyili
(Section 5).
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3 \Variable-arity Join

In this section, we introduce the concept of variable-arity
join and compare it to the outer multi-way join that is im-
plemented in previous versionsfle-PDT(2]. In sliding-
Figure 2. The sensor platform. window multi-way join, upon the arrival of a new tuple, say
t, from streamS, ¢ probes other streams looking for match-
ing tuples.f joins with tuples that have the same value from

Each sensor generates a stream of readings. Stream tuplé$her streams provided that matching tuples are within
are timestamped at the source nodes before they are trandime-window from¢. Deriving an outer join variant of an
mitted over the network to a sink node. However, tuples already existingnner join technique is straightforward. If
may arrive late or out-of-order due to network conditions. ~the probing tuple is missing in one of the streams, simply
Several techniques can be used to configure the net@Ppend NULL in Ileu_ of the missing s_tream a_nd pr(_)c_eed to
work topology dynamically, e.g., [4, 6, 23]. These tech- the next stream. This approach applies to binary-join trees

niques involve message exchange among sensors to acquif@'d toMJoin. In a tree of binary joins, we propagate par-
knowledge about their locations and energy levels. Based!!a! j0in results up the tree even if no matching values are

on the acquired knowledge, sensors are grouped into clusfound at some tree levels. MJoin, the join probing se-

ters. Within each cluster, a specific node, usually one with quence spans all stream_s. The join probing sequence does
a high-energy level, is designated to serve asdheter not terminate if no matching values are found in any of the

head(the CH!s in the figure). Cluster heads communicate S{réams. _ _ _ .
with each other to achieve a distributed execution of variou 10 & performance point of view, deploying outer joins
queries over the sensor network. A cluster head receive?Ver large-scale sensor networks is prohibitive. To detect
partial results from sensors in its cluster or from otheselu  SUPSELS Of joining sensors using outer join, every sensor in
ter heads. Then, the cluster head performs additional query€ Nétwork has to be probed. Given the fact that phenom-
processing and forwards the result to another cluster heactn@ are usually localized, we may end up probing thousands
or to the sink node, possibly through a multi-hop route. The of sensors to detect tens of sensors w!th S|m|Iar_ behavior.
sink node is a node with high processing capabilities. The 10 reduce the number of probes involved in an outer
sink node analyzes the query result, assesses its relevancd8Ulti-way join, we propose the concept of variable-arity

to the query, and returns feedback to cluster heads seekind?in @S given by Definition 1, below. Notice that variable-
further optimizations. arity join is different from outer join both at the concep-

tual and the implementation levels. At the conceptual level
variable-arity join omits streams that do not participate i
the join to produce a variable-size tuple. The variable-siz
Step1l.Each sensor forwards its readings to its cluster head.tUPle contains (1) the join valug (2) the source stream and
the timestamp of the tupleS| 7], and (3) a variable-size
Step2. At each cluster head, a variable-arity join is per- list of streams that produce matching tuples along with the
formed among the readings of its cluster members to genertimestamps of the matching tuplesS([, 7,1, [So,, 70,1,
ate join tuples of variable size (Section 3). The size of the - - -). On the other hand, outer join produces a fixed-size tu-
join output depends on the number of joining sensors. Also, ple with NULL values in lieu of missing streams (even if we
SNJoinhandles late and out-of-order tuples in this step. ~ have many of these NULL values). At the implementation
level, variable-arity join touches only streams that garti
Step3. A distributed processing phase is initiated by cluster pate in the join. Streams with no matching tuples place zero
heads (Section 4). Each cluster head decides on a probingost. However, outer join probes every stream to check the
sequence to probe other cluster heads looking for matchingexistence of the join value (even if we have many of these
tuples among members in their clusters. At the end of the streams).SNJoinavoids unnecessary long chains of prob-
probing sequence, the join result is shipped to the sink.node ing sequences. Other techniques, i.e., binary join trees or

The basic steps of theNJoinalgorithm can be summa-
rized as follows:



Tuple vja{ue list PROCEDURE Insert-Probe o
INPUT: (1) a new input tuple#([S, 7]) and (2) an SNJoin hash
table
Partition OUTPUT: (1) an updated SNJoin hash table (2) the join output
Value occurrence pI’OdUCEd by tuDle
} list /I TVL: Tuple Value List, VOL: Value Occurrence List,
-=- /l and CSL: Clean Sweep List

1. TVLEntry=TVL[ H (£)].Search()

2. VOLEntry=TVLEntry.vol-ptr.Inserf, 7)
3. CSL.Append(VOLEnNtry)
4

. temp=TVLEntry.vol-ptr.first;
while(temgNULL and7 — temp.7 < w) begin

H(t:)

S if § # temp.S includetemyp.r in the join output of
Clean-sweep List_.- tempztemp.next

end
Figure 3. The SNJoin hash table.
5. TraverseCSL to delete expired tuples

MJoin, probe large numbers of sensors that may produce Figure 4. The SNJoin algorithm.
no output. The remainder of this section elaborates on the
idea of variable-arity join in detail and discusses how it is

implemented. single entry is created per value even #ppears mul-
tiple times, whether in a single stream or in multiple

Definition 1 Givenm input streamssSs, So, - - -, Sm, €ach streams.

streamsS; generates tuples of the for(w;, [S;, 7;]) (where

t; is the tuple value generated by stre&mat timer;). For 2. VOL — ptr: a pointer to thé&/alue-Occurrence Ligor

a newly arriving tuple(z, [5‘, 7]), a variable-arity join over VOL). VOL stores every occurrence of the valuéAn

windoww produces an outpud={(t, (S, 7], [Soys Toy s entry inVOL contains the following:

[Sos: Tosls - -+), WhereS,, is one of the joining streams, . -~

0; € 1--m, such thati=t,, and |+ — 7, | < w, So, # S, (a) S: an identifier of the stream that produced the

So, # S0, Vi £ 7 }. valuet.

(b) 7: the timestamp at whichis produced.

3.1 Data Structures _ _ _
VOLis reverse-ordered based on timestamp (i)e.A

Hash-based join techniques maintain a hash table per ~ NéWwly-incoming tuple is appended at the heat Ol

stream. A new input tuple is inserted, based on a hash
function, into its own stream’s hash table and probes otheris chained chronologically, i.e., based on timestamp, in a

streams’ hash tables looking for matches. With the increaseglobalCIean-Sweep Ligor CSL). CSLspans all partitions
in the number of streams, managing a Iarge_ n_umber_of hasf’bf the hash table to link all tuples from all streams (with
tables becomes costly. To avoid a lengthy join probing se- the oldest at the head of the list). The purpos€8Lis to

guence SNJoinproposes a single global hash table where expire tuples once they get outside the sliding windew
all incoming tuples are hashed and are inserted regardless

of their streaming sources. Grouping tuples of the same . .
value from various streams in the same partition of a hash3'2 SNJoin Algorithm
table prepares candidates for the join output in advance. ] ] o o
Figure 3 illustrates the hash table ®NJoin The hash _The SNJoinalgorithm is given in Figure 4. In Step 1,
table is divided into partitions based on a suitable hasb-fun  With the arrival of a new tupléfrom streams at timestamp
tion H. The hash function is applied over the value of the 7 the hash functiorf/ is applied over to determine the
join attribute (in case the tuple has multiple attributds). ~ Partition where the tuple should go. Then, the partition’s
each partition, all tuple values that appear in the currenttuple value list (TVL)s searched to return a handle to the

windoww are chained in &uple-value lis{TVL), one entry  tUPIE'S entry inTVL If the tuple is not found, a new entry
per value. An entry iTVLis of the form: in TVL is created. In Step 2, the stream that generated the

tuple (5) and the tuple’s timestamg) are inserted at the
1. ¢: the tuple value of the join attribute. Notice that a head of thevalue occurrence list (VOLthat is associated

Finally, every single occurrence of a tuplg[§, 7])



with TVLEntryto denote a new occurrenceifStep 3 ap-  3.2.2 Support for Multiple Window Sizes
pends the tuple’s occurrence to ttlean-sweep list (CSL)
that maintains all tuples based on their arrival order ftarla
clean-up purposes. In Step 4, we traverseviélee occur-
rence list (VOL{) until we reach its end (terapNULL) or
until we reach a tuple that is far in the past by more than
the window size { — temp.7 > w). As we traversé&/OL,

we form the join output from the value occurrences in other
streams (i.e.5 # temp.S). The join output is formed in
two steps: First, we separate the valued/@L based on

Up to this point, we assume that the join operation is per-
formed over a sliding window such thatw is fixed for

all sensors. However, many applications require a differen
window size for each group of sensors or a different win-
dow size for each individual sensor (i.ey; is the sliding
window over streans;). In SNJoin it is straightforward to
support multiple window sizes. We change Step 4 of Fig-
ure 4 as follows to support multiple window sizes:

their source stream intb sublists, i.e., a sublist per stream. temp=TVLEntry.vol-ptr.first; _

Second, we compute the cartesian produdtfl sublists: Wh"e(tem?; ?Sf’;‘éutLL a“dST *dtfmilf < %) begin
. . . ~ i emp.S and7 — temp.7 < Wiemp.

thek sublists plus a sublist of one tuple, the probing tuple P DT = Wtemp.S

. . . . ; includetemp. in the join output off
The cartesian product of the sublists is equivalent to time jo temp=temp.next

output becuase the join condition (i.e., equality on the tu- end

ple value) has been already fulfilled pye-groupingtuples

by value in the sam®OL. Finally, in Step 5, we traverse We make two modifications. First, we traverse the value
the clean sweep list (CSltp delete any tuple with a time-  occurrence list ¥ OL) till we reach the maximurw (i.e.,
stamp that is outside the most recent sliding time-window, 7 — temp.7 < wyr4x). Second, for each entry in théOL,
i.e.,Current time — CSL.T > w. Although we choose to  the timestamp of an element of stredinis tested against
perform the clean-sweep step with the arrival of every tuple its own widnow Siz€viemp. s instead ofw, i.e., (i.e.,7 —

the clean-sweep step can be performed periodically or in atemp.r < Wremp.S)-

lazy fashion when there is plenty of system resources.

4 Distributed SNJoin

3.2.1 Late and Out-of-order Arrival

Up to this pointSNJoinaddresses the demands of large-
In this section, we address two issues. First, we addresscale dynamically-configured sensor networks through the
late tuple arrivals, which means a tuple may arrive at the notion of variable-arity join. However, iBNJoinrequires
system’s buffers time units past its timestamp. Second, we all sensors to transmit their readings to a centralized sink
address out-of-order arrivals, which means tuples are notnode, the sink node will be a bottleneck, specially, with the
only late but also their order has been altered. To handleincrease in the network size. Scalable query processing re-
late tuple arrivals, we modify Step 5 in Figure 4. We do quires theen-routeprocessing of sensor readings, i.e., while
not expire tuples on thelean sweep list (CSlynless they  they are being transmitted to the sink node. Examples of
go outside the sliding window by a safety factoe, i.e., such in-network query processing include [7, 16, 22]. Ia thi
Currenttime — CSL.T > w + ¢, wheree represents the  section, we present the distributed variantSMJointhat
maximum delay in the tuple’s arrival [17]. The safety factor shifts the join operation from the sink node to the sensor-
gives late tuples a chance to join with expired tuples. network level.

In addition to handling late tuple arrivalSNJoinis in- As illustrated in Figure 2, we model the sensor network
sensitive to out-of-order arrivals provided that we keep th as an ad-hoc network of sensor nodes grouped into clus-
value occurrence list (VOL3orted by timestamps. We in- ters based on their energy level and their spatial locations
sert a delayed tuple in its proper positiorM@L. Although SNJoindecomposes the entire join operation into multiple
the join output will be delayed by the maximum amount of smaller join operations that are performed separately over
delay in the components of the join output tuple, the output each cluster at the cluster head. Then, each cluster head
remains unchanged. On the other hand, dlean-sweep  chooses aluster-head probing sequende probe other
list (CSL)does not have to be kept sorted by timestamps. cluster heads looking for matches.

However, the expiration of a delayed tuple will be delayed  Figure 5 gives the distribute@NJoinalgorithm. A clus-
becauseCSLis sorted based on the tuple’s arrival time at ter head receives either an input tuple from one of its ctuste
the system. A delayed tuple will not be deleted unless all members or a probing request from another cluster head.
tuples that arrived before it are deleted. As a side effect, Upon receiving a new input tupl&NJoinprobes the clus-
system resources will be slightly affected because delayeder head’s local hash table to retrieve a local join restlt (
tuples occupy the system’s memory for a longer period of (Step 1). The cluster head'{{,,) decides a probing se-
time than they should do. For other techniques that handlequence that spans other cluster heads{{,, CH,,, - - -,
out-of-order tuples, the reader is referred to [17]. CH,,) such thatl<o,<D whereD is the total number of



PROCEDURE Distributed-Insert-Probe

Upon receiving a new input tuple:
INPUT: a new input tuple([.S, 7]).

OUTPUT: the join output produced by tupfeplus a cluster-head probing sequence.

1.
2.
3.

4.

r=insert-probe,[ S, 7])
Choose a cluster-head probing sequer€éd,,, CHog, - -+, CHo )
SeqNo =1

Ship GeqNo,
CHOSeqNo+1

[£,#], [CHo,. CHo,, . CH,p,l, ) To

Upon receiving a probe request: .
INPUT: a probe request PRYeqNo, [t, 7], [CHo,,CHoy, - -+, CHo ], R).
OUTPUT: the join output produced by PR and a an updated PR.

1.

2.

3.

r=probe(, 7)
SeqNo = SeqNo + 1

Ship GegNo, [t,7], [CHyy, CHoyy -+,
CH,

CH,pl R + 1) To
9SeqNo+1

Figure 5. The distributed SNJoin algorithm.

Upon receiving a relevance feedback note:

INPUT: a relevance feedback noté;( [(Csywsy),

(ng ywsz)v

(Cop s ).

OUTPUT: an updated relevance feedback matrix.
fori=1to k

clusters (Step 2). The cluster head sets a sequence ”umb%rrobing sequence (i.eCH
to one GeqNo = 1) because the cluster head is the initia- '
tor of the join operation (Step 3). Finally, the cluster head

~ ~ 2_11?:1 ij
RFBM[H (), s;]=RFBM[ H (f), s,] - =253 + w,,

Figure 6. Processing of relevance feedback.

ally, only a small number of sensors (compared to the thou-
sands of sensors in the network) join with each other. The
problem becomes more challenging irdistributed envi-
ronment where a probe between two cluster heads requires
a significant communication cost. ldeally, the clusterehea
probing sequence spans all cluster heads in the network to
produce as much output results as possible. However, due
to the large size of the network and its associated communi-
cation cost, it is practical to probe only clusters whersiit i
more likely to find matches. The objective of query process-
ing with relevance feedback is to guide the join operation to
process only relevant cluster heads, i.e., clusters thedrge

ate the same values. This selective probing reduces both the
processing cost and the communication cost at the price of
losing some streams that could have participated in the join
if they were included in the probing sequence.

With the arrival of a new tuplé at a cluster head, a join
probing sequence has to be determined. In this case, the
probing sequence will beXH,,, CH,,, ---, CH,,) such
thatk <D, whereD is the number of clusters. Each cluster
head along the probing sequence performs the join opera-
tion over its data, then ships the result to the next cluster
head in the probing sequence until the join result is reckive
at the sink node. Based on the join result, the sink node de-
cides how much each sensor contributes to the output, i.e.,
how much each sensor along the probing sequence is rele-
vant to the output. In the query processing with relevance
feedback paradigm, the sink node forms a feedback array
[wy, we, - -+, wi] (Wherek is the arity of the join result) to
represent the contribution weight of each sensor in the out-
put and sends it back to the cluster head that initiated the
o, )- For simplicity, letw; be the
percentage of the output tuples in which cluster h€dd,
appears. Each cluster head maintaifRetevance Feedback

ships the probing request to the next hop (i.e., Cluster heady;a¢rix (RFBM)to record the relevance of every other clus-
numberSeqNo+1) (Step 4). A probing request consists of o head to its own input tuples. TRFBMis used to guide

a sequence number that indicates the last cluster head th
processed the request, the probing tuplie tuple’s time-

stampr, a sequence of cluster heads, and the partial join pefinition 2 Given a hash functiodf (£) — [k, ha, - --

resultr computed from Step 1.

Upon receiving a probing request, the cluster head Relevance Feedback Matrix (RFBN4 a two dimensional
probes its own hash table (Step 1). Then, the cluster headnatrix (» x D) such thatREBM [H (1), CH;) represents
increases the probing sequence number (Step2). Finaly, th the relevance of cluster headH; to the join probing se-

cluster head accumulates its local resulb the partial re-
sult R computed so far and forwards the probing request to

the

5

next hop.

Query Processing with Relevance
Feedback

ghiture probing sequences. TREBMis defined as follows:

h,] and givenD cluster head€'H,, CH,, ---, CH,,,, a

quence of tuplé.

Using RFBM, the join probing sequence (Step 2 in Fig-
ure 5) for an input tuplé is formed such that the proba-
bility of including a cluster head in the probing sequence
is proportional to its relevance to The relevance probing
sequence is defined as follows:

In this section, we introduce the concept of query pro- Definition 3 GivenD cluster head§'H,,CHs,---,CHp
cessing with relevance feedback. A major challenge in and given an input tuplé theRelevance Probing Sequence
multi-way join queries over sensor networks is that actu- (RPS)of{ is a sequence of cluster head$,,, CH,,, - - -,



CH,, such thatt < D and the probability P{CH; € 1. HMJ-tree where an outer join is performed using a

—_ RFBMI[H(t),CH;] binary tree of binarnhash merge joimperators.
RPS}= SP  RFBMI[H(#),CH;]" y » g9el P

. o 2. MJoin, where an outer join is performed using the
The RFBMentries are initially set to a base value (e.g., single-step symmetrilJoin operator.

50% to denote that each cluster head has an equal probabil- . _ o
ity of being included/excluded from the probing sequence). 3. SNJoinwhere a variable-arity join is performed as de-
Then, the entries of thRFBMchange dynamically with the scribed in this paper.

arrival of relevance feedback notes based on the followingthe third set of experiments (Section 6.3) highlights (un-

equation: . der the simulated setup) the advantages of query processing
RFBMIH({),CH;)=RFBM|[H (%), CHA-# + w; with relevance feedback and compares the performance of
TheRFBMentries are affected by the cluster head weight distributedSNJoinwith a distributed variant of1Join.

in the output {v;) relative to the average weights of all clus- The overall system performance is measured in terms

ter heads in the Outpug(f:l i), The algorithm of pro- of the number ofletected phenomena updates per second
E ) -

cessing relevance feedback notes that are received from th@ther measures of performance include duput delay

sink node is given in Figure 11. Notice that as cluster headstn€ input drop rate and theoutput rate The output delay

contribute to the output, thayraduallyget a higher proba- is the time difference between the arrival of a tuple and the
bility to be included in the probing sequence. Similarly, if tme its effect appears in the output. Due to the system's
cluster heads do not participate in the join output theag- limited CPU time and the continuous arrival of stream data,

ually lose theirgood reputatiorand are excluded from the SOMe input tuples are dropped randomly from the system's
probing sequence. byffers to accommpdate new tuples (i.e., random load shed-
ding). In all experiments, we assume that tuple dropping
. occurs due to limited CPU time and not to limited memory.
6 Experiments We allocate enough memory to accommodate all tuples in
the sliding window. We measure the number of dropped
In this section, we conduct an experimental study to ex- input tuples relative to the total number of input tuples as
plore the performance of the proposgNJoinoperator. We  the input drop rate. The output rate is measured in terms
use two sensor data sets that are extracted froniNttee of the number of output join tuples per second. All the ex-
PDT system [2]. Nile-PDT has two experimental setups. periments in this section are based on a real implementation
The first setup is &eal small-scale sensor board with a grid  of the join operators insidilile [11]. TheNile engine ex-
of 5 x 5 temperature sensors. Due to hardware limitations, ecutes on a machine with Intel Pentium 1V, CPU 2.4GHZ
the number of sensor is limited 25. However, we overload  and 512MB RAM running Windows XP.
the system by increasing the sampling rate of each sensor to
one reading every0 milli-seconds. We run each experi- 6.1 Performance Using Real Data Sets
ment for 10 minutes and we move a heat effect back and
forth over the sensor board to generate phenomena. The The performance i HMJ tree MJoin, andSNJoinun-
second setup simulates a large-scale sensor network (up tder the real sensor-platform setup is given in Figure 7. As
2000 sensors). Each sensor generates a stream of 10,00Mlustrated in Figure 7aSNJoinreduces the output delay by
tuples where the tuple values follow the Zipfian distribu- up to36% over theHMJ treeand by up tal9% overMJoin
tion [24]. For each stream, the Zipfian parameter is an in- (in case o0f20 sensors). The output delay reflects the per-
teger value chosen randomly betweeand5. The inter- tuple processing time (i.e., from the time a tuple arrives at
arrival time between two consecutive tuples coming from the operator buffer till its effect appears in the outputd-N
the same source follows the exponential distribution with tice that operators with lower per-tuple processing tinxe, e
an average of second. In both setups, the join techniques hibit a lower input drop rate (Figure 7b), and consequently
are triggered through a multi-way join query with a sliding produce a higher output rate (Figure 7c). From the overall-
window of size 10 seconds. performance point of viewsNJoindetects up td5% more
Three sets of experiments are performed. The first setphenomena updates th&tMJ treesand up t043% more
of experiments (Section 6.1) investigates the performancephenomena updates thiloin (Figure 7d).
under the real sensor-platform setup. The second set of ex-
periments (Section 6.2) addresses the large-scale sedulat 6.2 Performance Using Synthetic Data

sensor-network setup and examines the dynamic reconfigu- Sets

ration of the network. In Sections 6.1 and 6.2, we compare

the performance of eentralizedmplementation of the fol- Performance gains dNJoinbecome more significant
lowing three techniques: for large-scale sensor networks. In contrast to binary join
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Figure 8. Performance under synthetic large-scaldata sets.

trees andviJoin, SNJoinavoids unnecessary probes to a clusters is decided by the algorithm based on the cluster
huge number of separate tables, and therefore, reduces iteange). We construct a one-level clustering hierarchy eher
per-tuple processing time. The same experiments of Seccluster heads communicate through a multi-hop commu-
tion 6.1 are repeated using the 2000 sensor simulated setumication link. The number of hops between two commu-
Figure 8 illustrates the efficiency &NJoinin terms of the nicating cluster heads is determined by the routing proto-
output delay, the input drop rate, and the output ratéJoin col [21]. Cluster heads receive the sensor readings of their
doubles the output rate oftéiMJ treeand increases the out-  cluster members, perform the join operation, and commu-
put rate by up t&0% overMJoin. MoreoverSNJoindetects nicate with other cluster heads to perform remote probes.
up to 180% more phenomena updates thidMJ treesand Figure 10 gives a comparison between the performance of
up to85% more phenomena updates tHddoin. a distributed variant oMJoin and the performance of two
Figure 9 gives the behavior of the join techniques with distributed variants cBNJoin one with relevance feedback
respect to the dynamic configuration of the network. Ev- and the other without relevance feedback. The distributed
ery minute, a group of sensors (randomly chosen between lvariant ofMJoin is obtained by performing thislJoin op-
and 100 sensors) is either added or removed from the seneration among members of the same cluster at the cluster
sor set. Comparing Figure 8d and Figure 9, notice that thehead. Then, each cluster head probes other clusters in a de-
dynamic behavior of the network reduces the number of de-scending order of the average selectivity of their members.

tected phenomena updates by uB®§s in case of aHMJ From Figure 10, notice th&NJoinincreases the number

treeand by up t60% in case ofMJoin. However, the per-  of detected phenomena changes by upd# overMJoin.

formance ofSNJoinis reduced by only20% (at 2000 sen- Moreover, query processing with relevance feedback en-

sors). hances the performance 8NJoinby up t090% (for 2000
sensors).

6.3 Performance of Distributed SNJoin The relevance feedback allows the join operation to fo-

cus on sensors with similar behavior, and hence, reduces

In this Section, we study the distributed execution of the number of probed streams. Consequently, the per-tuple
SNJoinover clusters ofiniformly-distributedsensors inthe  processing time is reduced. As a negative effect of rele-

space. Clusters of sensors are obtained using a simuldtion ovance feedback, not all cluster heads are probed and, con-

the HEED clustering technique [23] with the cluster range sequently, the output join tuple may miss some streams that
being set to10% of the total sensor space (the number of could otherwise participate in the join. Hence, the arity of
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Figure 11. The effect of relevance feedback.

the output join tuple is reduced. Experimentally, this redu
tion in the arity of the tuple does not excekzl% (at 2000
sensors). Figure 11 illustrates the effect of the relevance
feedback on the performance 8NJoinwith respect to the
reductionin the number of probed streams, the output delay,
the input drop rate, the tuple width, and the communication
cost (measured in terms of the number of bytes transmit- ] o ] )
ted per second). In general, if we compare the full fledged Trees of binary joins are not scalable due to their multi-
SNJoinoperator (i.e.SNJoinwith relevance feedback) toits ~ SteP non-symmetric processing. For the same reason, trees
predecessor insiddile-PDT (i.e., MJoir), we find out that ~ ©f binary joins do not allow the dynamic configuration of
SNJoinreduces the output delay Y% and increases the ~ S€Nsor networks (unless query plan reorganization is per-

number of detected phenomena updatesing. form_ed). On the other hanMJoin and SNJoinare sym-
metric, scalable, and dynamically configurable. Also, the

output delay in binary join trees increases with the in-
crease in the number of tree levels. The single-step pro-
cessing ofMJoin and SNJoinresults in a lower output de-

A large body of research in the data streaming arealay. Moreover SNJoinis specially designed for large-scale
focuses on the join operation, e.g., [8, 9, 10, 13]. To dynamically-configured sensor networks. Trees of binary
highlight the reasons that ma&NJoinapplicable in Phe-  joins are sensitive to variable input rates and require-reor
nomenaBases, we overview related multi-way join tech- ganization of the query plan operators (e.g., see [5]) to in-
nigues and compare them 8NJoin Multi-way join can crease the output rate. All techniques handle outer joins
be achieved through a tree of binary joins (eitsygmmetric by traversing the join probing sequence completely. On the
hash join[20], xjoin [18], or hash merge joii14]), a single other handSNJoinsupports, by design, variable-arity joins
MJoin operator [19], or a singl&NJoinoperator. Based on  to avoid long chains of probing sequences.

the experiments in Section 6, Figure 12 provides a compar-
ison among various multi-way join techniques based on a
key set of distinguishing features.

7 Related Work
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Conclusions

In this paper, we presented tH&NJoin (or Sensor-
Network Join) operator, a variable-arity join operator for [12]
sensor-network PhenomenaBases. To meet the demands of
sensor networksSNJoinis designed to scale with respect
to the number of sensors in the network without sacrific- [13]

ing the output rate. We introduced the notion of query pro-

cessing witlrelevance feedbadk adjust the join selectivity
between sensor pair&NJoinsupports the distributed exe-
cution of the join operation with the capability to accepian
process relevance feedback.

Experimental studies that are based on a real implemen{15]
tation of the join operators insiddile-PDT show the scal-
ability of SNJoin SNJoinincreases the output rate over bi-
nary join trees antlJoin. OnceSNJoinis adopted by Phe-
nomenaBases, the number of detected phenomena updates
is increased while the output delay is reduced.
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