
Scalability Management in Sensor-Network PhenomenaBases∗

M. H. Ali 1 Walid G. Aref1 Ibrahim Kamel2

1Department of Computer Science, Purdue University, West Lafayette, IN

{mhali, aref}@cs.purdue.edu
2Department of Electrical and Computer Engineering, University of Sharjah, P.O. Box 27272, Sharjah, U.A.E.

kamel@sharjah.ac.ae

Abstract

A phenomenon appears in a sensor network when a
group of sensors persist to generate similar behavior over a
period of time. PhenomenaBases (or databases of phenom-
ena) are equipped withPhenomena Detection and Tracking
(PDT) techniques that continuously run in the background
of a sensor database system to detect new phenomena and
to track already existing phenomena. The process of phe-
nomena detection and tracking is initiated by a multi-way
join operator that comes at the core ofPDT techniques to
report similar sensor readings. With the increase in the
sensor network size, the join operator (and, consequently,
query processing in the PhenomenaBase) face several scal-
ability challenges. In this paper, we present a join op-
erator for PhenomenaBases (theSNJoinoperator) that is
specially-designed for dynamically-configured large-scale
sensor networks with distributed processing capabilities.
Experimental studies illustrate the scalability of the pro-
posed join operator in PhenomenaBases with respect to the
number of detected phenomena and the output delay.

1 Introduction

With the evolution of large-scale sensor-network tech-
nologies, emerging sensor-network applications call for
new online query processing techniques. Such techniques
go beyond the traditional sampling, transmission, and pro-
cessing of sensor data to the more complex paradigm of an-
alyzing, understanding, and acting upon various forms of
phenomena that develop in a sensor field. A phenomenon
can be a pollution cloud in the air, an oil spill at the ocean
surface, or a fire alarm in a building. In general, a phe-
nomenon (as defined in [3]) is a region of sensors generating

∗This work was supported in part by the National Science Foundation
under Grants IIS-0093116 and IIS-0209120.

similar behavior over a period of time. Various techniques
have been developed to detect phenomena [3], estimate their
boundaries [15], and utilize them in sophisticated data anal-
ysis [12].

A sensor-networkPhenomenaBase[1] is a database of
phenomena that develop in a sensor field. In particular,
a PhenomenaBase has two basic functionalities: First, it
executesPhenomena Detection and Tracking(PDT) tech-
niques (e.g., [3]) continuously at the background of a sen-
sor database system to detect new phenomena and to track
the propagation of already-detected phenomena. Second, it
uses the knowledge about detected phenomena to optimize
subsequent user queries.

At the core ofPDT techniques is anouter multi-wayjoin
operator that detects similarities among streams of sensor
data over a sliding window of sizeω. Notice that the join
operation is a “multi-way” join because it detects similari-
ties among multiple sensors. Also, the join operation is an
“outer” join because phenomena are usually localized. Out
of the large number of sensors in the space, only subsets
of sensors generate the same values. Other sensors do not
participate in the join output and are replaced by NULLs.

In general, a multi-way join over data streams can be per-
formed using trees of non-blocking binary joins (e.g.,sym-
metric hash join[20], xjoin [18], or hash merge join[14]).
Binary join trees perform the multi-way join in multiple
steps (i.e., tree levels) and may incur several delays. Also,
the output rate of binary-join trees is sensitive to the joinor-
der. For this reason, binary-join tress are usually equipped
with a dynamic scheme for tree reorganization (e.g., [5]).
To overcome the shortcomings of binary-join trees, [19] in-
troduces theMJoin operator, asingle-stepmulti-way join
operator that is symmetric with respect to all input streams.
Hence,MJoin produces early output, maximizes the output
rate, and avoids reorganization of the query plan at execu-
tion time. Therefore, an outerMJoin operator has been se-
lected in the previous design ofPDT techniques [3].

MJoinhas satisfactory performance for moderate system

1



loads. However, with the increase in the network size, the
sensor sampling rates, and the number of propagating phe-
nomena,PDT techniques start losing many phenomena up-
dates. A phenomena update is reported if a phenomenon
appears, disappears, or changes its location. The number
of detected phenomena updates per second reflects how fast
the system is in tracking phenomena as they move in space.
To face periods of heavy system loads, we identify three
basic challenges that face the current design of Phenom-
enaBases withMJoin. These challenges can be summarized
as follows:

1. Thescalability challenge, where sensor networks are
typically deployed in large scale with thousands of sen-
sors.

2. Thedynamic-configurationchallenge, where sensors
can be added and removed from the sensor field dy-
namically based on the network conditions, the sen-
sors’ life time, and the availability of additional sen-
sors.

3. The distributed-executionchallenge, where the join
operation is performed in a distributed fashion to elim-
inate the bottlenecks of a centralized system.

In this paper, we introduce theSNJoin (or Sensor-
Network Join) operator as the successor ofMJoin inside
PhenomenaBases.SNJoinhandles the distributed execu-
tion of continuous multi-way window joinqueries over
dynamically-configured large-scalesensor networks. In
contrast toMJoin, SNJoinis not an outer multi-way join.
SNJoinintroduces a new concept, the concept ofvariable-
arity join. Variable-arity join produces variable-size join
output in response to the variable number of sensors con-
tributing to a phenomenon. Moreover, the performance of
SNJoinimproves over time through arelevance feedback
(RFB) mechanism.RFBmonitors the contribution of each
sensor to the output. Then,RFB issues a feedback note to
the join operator to indicate the relevance of each sensor to
the output. This feedback note tunes query processing to-
wards sensors that maximize the join output rate. With the
notions of variable-arity join andRFB, SNJoinscales with
respect to the number of sensors in space and adapts to the
dynamic configuration of the network.

The contributions of this paper can be summarized as
follows:

1. We introduce the notion of variable-arity join and
adopt it in the context ofSNJoin.

2. We promote the distributed processing capabilities of
SNJoinby performing the join at the sensor level.

3. We extendSNJoinwith the ability to accept and pro-
cess relevance feedback.

������������
������������
������������

������������
������������
������������

���������
���������
���������

���������
���������
���������

QueryQuery Result

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

Detected Phenomena

Nile−PDT Module

Query
Admission

Query Plan
Generator

Nile Engine

Query
Executer

Sensor Network

Sensor
Readings

Result

Plan

����������
����������
����������
����������
����������

Execution

Query
Phenomenon−aware

Optimizer

Figure 1. The architecture of Nile.

4. We provide an experimental study that is based on
a real implementation ofSNJoininside Nile-PDT to
prove its efficiency in terms of the number of detected
phenomena updates and the output delay.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an outline ofSNJoinand investigates the under-
lying sensor platform. Section 3 presents the variable-arity
notion of SNJoin. Section 4 empowersSNJoinwith dis-
tributed processing capabilities. Section 5 describes therel-
evance feedback mechanism ofSNJoin. Section 6 provides
an experimental study of the performance of various join
techniques. Section 7 overviews related join techniques and
compares them toSNJoin. Finally, Section 8 concludes the
paper.

2. Outline of the SNJoin Algorithm

The concept of PhenomenaBases has been adopted by
the Nile data stream management system [11]. Figure 1
illustrates the architecture ofNile. The basic components
of Nile are the query admission controller, the query plan
generator, and the query executer. These basic components
decide whether to accept or reject a query based on sys-
tem resources, generate a query plan, and deploy the query
plan over the sensor network for execution, respectively. To
empowerNile with the capabilities of PhenomenaBases, we
add two new components to the system: (1) TheNile-PDT
(or Nile Phenomena Detection and Tracking) module [2]
that continuously detects phenomena at the background of
the Nile engine. (2) A phenomenon-aware optimizer that
accepts phenomenon-aware feedback fromNile-PDT and,
hence, optimizes user queries based on its knowledge about
the sensor field.

As illustrated in Figure 2, the sensor platform ofNile is
an ad-hoc network with resource-constrained sensor nodes.

2



 

CH1 

 

 

Sink node Client 

CH2 

CHD 

CHi 

C1 

C2 

Ci 

CD 

Sensor Network 

Relevance 
feedback 

Figure 2. The sensor platform.

Each sensor generates a stream of readings. Stream tuples
are timestamped at the source nodes before they are trans-
mitted over the network to a sink node. However, tuples
may arrive late or out-of-order due to network conditions.

Several techniques can be used to configure the net-
work topology dynamically, e.g., [4, 6, 23]. These tech-
niques involve message exchange among sensors to acquire
knowledge about their locations and energy levels. Based
on the acquired knowledge, sensors are grouped into clus-
ters. Within each cluster, a specific node, usually one with
a high-energy level, is designated to serve as thecluster
head(theCH ′

is in the figure). Cluster heads communicate
with each other to achieve a distributed execution of various
queries over the sensor network. A cluster head receives
partial results from sensors in its cluster or from other clus-
ter heads. Then, the cluster head performs additional query
processing and forwards the result to another cluster head
or to the sink node, possibly through a multi-hop route. The
sink node is a node with high processing capabilities. The
sink node analyzes the query result, assesses its relevance
to the query, and returns feedback to cluster heads seeking
further optimizations.

The basic steps of theSNJoinalgorithm can be summa-
rized as follows:

Step1.Each sensor forwards its readings to its cluster head.

Step2. At each cluster head, a variable-arity join is per-
formed among the readings of its cluster members to gener-
ate join tuples of variable size (Section 3). The size of the
join output depends on the number of joining sensors. Also,
SNJoinhandles late and out-of-order tuples in this step.

Step3.A distributed processing phase is initiated by cluster
heads (Section 4). Each cluster head decides on a probing
sequence to probe other cluster heads looking for matching
tuples among members in their clusters. At the end of the
probing sequence, the join result is shipped to the sink node.

Step4.The sink node measures the weight of each cluster in
the output and returns a relevance feedback note to the clus-
ter head that initiated the probing sequence. Based on the
feedback, the cluster head adjusts future probing sequences
to include clusters with similar values with high probability
(Section 5).

3 Variable-arity Join

In this section, we introduce the concept of variable-arity
join and compare it to the outer multi-way join that is im-
plemented in previous versions ofNile-PDT[2]. In sliding-
window multi-way join, upon the arrival of a new tuple, say
t̂, from streamŜ, t̂ probes other streams looking for match-
ing tuples.̂t joins with tuples that have the same value from
other streams provided that matching tuples are withinω

time-window fromt̂. Deriving an outer join variant of an
already existinginner join technique is straightforward. If
the probing tuple is missing in one of the streams, simply
append NULL in lieu of the missing stream and proceed to
the next stream. This approach applies to binary-join trees
and toMJoin. In a tree of binary joins, we propagate par-
tial join results up the tree even if no matching values are
found at some tree levels. InMJoin, the join probing se-
quence spans all streams. The join probing sequence does
not terminate if no matching values are found in any of the
streams.

From a performance point of view, deploying outer joins
over large-scale sensor networks is prohibitive. To detect
subsets of joining sensors using outer join, every sensor in
the network has to be probed. Given the fact that phenom-
ena are usually localized, we may end up probing thousands
of sensors to detect tens of sensors with similar behavior.

To reduce the number of probes involved in an outer
multi-way join, we propose the concept of variable-arity
join as given by Definition 1, below. Notice that variable-
arity join is different from outer join both at the concep-
tual and the implementation levels. At the conceptual level,
variable-arity join omits streams that do not participate in
the join to produce a variable-size tuple. The variable-size
tuple contains (1) the join valuêt, (2) the source stream and
the timestamp of the tuple [̂S, τ̂ ], and (3) a variable-size
list of streams that produce matching tuples along with the
timestamps of the matching tuples ([So1

, τo1
], [So2

, τo2
],

· · · ). On the other hand, outer join produces a fixed-size tu-
ple with NULL values in lieu of missing streams (even if we
have many of these NULL values). At the implementation
level, variable-arity join touches only streams that partici-
pate in the join. Streams with no matching tuples place zero
cost. However, outer join probes every stream to check the
existence of the join value (even if we have many of these
streams).SNJoinavoids unnecessary long chains of prob-
ing sequences. Other techniques, i.e., binary join trees or

3



 

Clean-sweep List

H(t i) 

(Sj, 
τ

j) 

(t i) 
Partition  

Value occurrence 
list 

Tuple value list 

Figure 3. The SNJoin hash table.

MJoin, probe large numbers of sensors that may produce
no output. The remainder of this section elaborates on the
idea of variable-arity join in detail and discusses how it is
implemented.

Definition 1 Givenm input streams,S1, S2, · · · , Sm, each
streamSi generates tuples of the form(ti, [Si, τi]) (where
ti is the tuple value generated by streamSi at timeτi). For
a newly arriving tuple(t̂, [Ŝ, τ̂ ]), a variable-arity join over
windowω produces an outputO={(t̂, [Ŝ, τ̂ ], [ So1

, τo1
],

[So2
, τo2

], · · · ), whereSoi
is one of the joining streams,

oi ∈ 1 · ·m, such that̂t=toi
and |τ̂ − τoi

| ≤ ω, Soi
6= Ŝ,

Soi
6= Soj

∀i 6= j }.

3.1 Data Structures

Hash-based join techniques maintain a hash table per
stream. A new input tuple is inserted, based on a hash
function, into its own stream’s hash table and probes other
streams’ hash tables looking for matches. With the increase
in the number of streams, managing a large number of hash
tables becomes costly. To avoid a lengthy join probing se-
quence,SNJoinproposes a single global hash table where
all incoming tuples are hashed and are inserted regardless
of their streaming sources. Grouping tuples of the same
value from various streams in the same partition of a hash
table prepares candidates for the join output in advance.

Figure 3 illustrates the hash table ofSNJoin. The hash
table is divided into partitions based on a suitable hash func-
tion H . The hash function is applied over the value of the
join attribute (in case the tuple has multiple attributes).In
each partition, all tuple values that appear in the current
windowω are chained in atuple-value list(TVL), one entry
per value. An entry inTVL is of the form:

1. t: the tuple value of the join attribute. Notice that a

PROCEDURE Insert-Probe
INPUT: (1) a new input tuple (̂t,[Ŝ, τ̂ ]) and (2) an SNJoin hash
table
OUTPUT: (1) an updated SNJoin hash table (2) the join output
produced by tuplêt
// TVL: Tuple Value List, VOL: Value Occurrence List,
// and CSL: Clean Sweep List

1. TVLEntry=TVL[(H(t̂)].Search(̂t)

2. VOLEntry=TVLEntry.vol-ptr.Insert(̂S, τ̂ )

3. CSL.Append(VOLEntry)

4. temp=TVLEntry.vol-ptr.first;
while(temp6=NULL andτ̂ − temp.τ ≤ ω) begin

if Ŝ 6= temp.S includetemp.τ in the join output of̂t
temp=temp.next

end

5. TraverseCSL to delete expired tuples

Figure 4. The SNJoin algorithm.

single entry is created per value even ift appears mul-
tiple times, whether in a single stream or in multiple
streams.

2. V OL−ptr: a pointer to theValue-Occurrence List(or
VOL). VOL stores every occurrence of the valuet. An
entry inVOLcontains the following:

(a) S: an identifier of the stream that produced the
valuet.

(b) τ : the timestamp at whicht is produced.

VOL is reverse-ordered based on timestamp (i.e.,τ ). A
newly-incoming tuple is appended at the head ofVOL.

Finally, every single occurrence of a tuple (t,[S, τ ])
is chained chronologically, i.e., based on timestamp, in a
globalClean-Sweep List(or CSL)). CSLspans all partitions
of the hash table to link all tuples from all streams (with
the oldest at the head of the list). The purpose ofCSLis to
expire tuples once they get outside the sliding windowω.

3.2 SNJoin Algorithm

The SNJoinalgorithm is given in Figure 4. In Step 1,
with the arrival of a new tuplêt from streamŜ at timestamp
τ̂ , the hash functionH is applied over̂t to determine the
partition where the tuple should go. Then, the partition’s
tuple value list (TVL)is searched to return a handle to the
tuple’s entry inTVL. If the tuple is not found, a new entry
in TVL is created. In Step 2, the stream that generated the
tuple (Ŝ) and the tuple’s timestamp (τ̂ ) are inserted at the
head of thevalue occurrence list (VOL)that is associated

4



with TVLEntryto denote a new occurrence oft̂. Step 3 ap-
pends the tuple’s occurrence to theclean-sweep list (CSL)
that maintains all tuples based on their arrival order for later
clean-up purposes. In Step 4, we traverse thevalue occur-
rence list (VOL(̂t)) until we reach its end (temp=NULL) or
until we reach a tuple that is far in the past by more than
the window size (̂τ − temp.τ > ω). As we traverseV OL,
we form the join output from the value occurrences in other
streams (i.e.,̂S 6= temp.S). The join output is formed in
two steps: First, we separate the values inVOL based on
their source stream intok sublists, i.e., a sublist per stream.
Second, we compute the cartesian product ofk +1 sublists:
thek sublists plus a sublist of one tuple, the probing tuplet̂.
The cartesian product of the sublists is equivalent to the join
output becuase the join condition (i.e., equality on the tu-
ple value) has been already fulfilled bypre-groupingtuples
by value in the sameVOL. Finally, in Step 5, we traverse
theclean sweep list (CSL)to delete any tuple with a time-
stamp that is outside the most recent sliding time-window,
i.e.,Current time − CSL.τ > ω. Although we choose to
perform the clean-sweep step with the arrival of every tuple,
the clean-sweep step can be performed periodically or in a
lazy fashion when there is plenty of system resources.

3.2.1 Late and Out-of-order Arrival

In this section, we address two issues. First, we address
late tuple arrivals, which means a tuple may arrive at the
system’s buffersǫ time units past its timestamp. Second, we
address out-of-order arrivals, which means tuples are not
only late but also their order has been altered. To handle
late tuple arrivals, we modify Step 5 in Figure 4. We do
not expire tuples on theclean sweep list (CSL)unless they
go outside the sliding windowω by a safety factorǫ, i.e.,
Current time − CSL.τ > ω + ǫ, whereǫ represents the
maximum delay in the tuple’s arrival [17]. The safety factor
gives late tuples a chance to join with expired tuples.

In addition to handling late tuple arrivals,SNJoinis in-
sensitive to out-of-order arrivals provided that we keep the
value occurrence list (VOL)sorted by timestamps. We in-
sert a delayed tuple in its proper position inVOL. Although
the join output will be delayed by the maximum amount of
delay in the components of the join output tuple, the output
remains unchanged. On the other hand, theclean-sweep
list (CSL)does not have to be kept sorted by timestamps.
However, the expiration of a delayed tuple will be delayed
becauseCSL is sorted based on the tuple’s arrival time at
the system. A delayed tuple will not be deleted unless all
tuples that arrived before it are deleted. As a side effect,
system resources will be slightly affected because delayed
tuples occupy the system’s memory for a longer period of
time than they should do. For other techniques that handle
out-of-order tuples, the reader is referred to [17].

3.2.2 Support for Multiple Window Sizes

Up to this point, we assume that the join operation is per-
formed over a sliding windowω such thatω is fixed for
all sensors. However, many applications require a different
window size for each group of sensors or a different win-
dow size for each individual sensor (i.e.,ωi is the sliding
window over streamSi). In SNJoin, it is straightforward to
support multiple window sizes. We change Step 4 of Fig-
ure 4 as follows to support multiple window sizes:

temp=TVLEntry.vol-ptr.first;
while(temp 6=NULL and τ̂ − temp.τ ≤ ωMAX ) begin

if Ŝ 6= temp.S andτ̂ − temp.τ ≤ ωtemp.S

includetemp.τ in the join output of̂t
temp=temp.next

end

We make two modifications. First, we traverse the value
occurrence list (V OL) till we reach the maximumω ( i.e.,
τ̂ − temp.τ ≤ ωMAX ). Second, for each entry in theV OL,
the timestamp of an element of streamSi is tested against
its own widnow sizeωtemp.S instead ofω, i.e., (i.e., τ̂ −
temp.τ ≤ ωtemp.S).

4 Distributed SNJoin

Up to this point,SNJoinaddresses the demands of large-
scale dynamically-configured sensor networks through the
notion of variable-arity join. However, ifSNJoinrequires
all sensors to transmit their readings to a centralized sink
node, the sink node will be a bottleneck, specially, with the
increase in the network size. Scalable query processing re-
quires theen-routeprocessing of sensor readings, i.e., while
they are being transmitted to the sink node. Examples of
such in-network query processing include [7, 16, 22]. In this
section, we present the distributed variant ofSNJointhat
shifts the join operation from the sink node to the sensor-
network level.

As illustrated in Figure 2, we model the sensor network
as an ad-hoc network of sensor nodes grouped into clus-
ters based on their energy level and their spatial locations.
SNJoindecomposes the entire join operation into multiple
smaller join operations that are performed separately over
each cluster at the cluster head. Then, each cluster head
chooses acluster-head probing sequenceto probe other
cluster heads looking for matches.

Figure 5 gives the distributedSNJoinalgorithm. A clus-
ter head receives either an input tuple from one of its cluster
members or a probing request from another cluster head.
Upon receiving a new input tuple,SNJoinprobes the clus-
ter head’s local hash table to retrieve a local join result (r)
(Step 1). The cluster head (CHo1

) decides a probing se-
quence that spans other cluster heads, (CHo2

, CHo3
, · · · ,

CHoD
) such that1≤oi≤D whereD is the total number of

5



PROCEDURE Distributed-Insert-Probe

Upon receiving a new input tuple:
INPUT: a new input tuple (̂t,[Ŝ, τ̂ ]).
OUTPUT: the join output produced by tuplêt plus a cluster-head probing sequence.

1. r=insert-probe(̂t,[Ŝ, τ̂ ])

2. Choose a cluster-head probing sequence (CHo2
, CHo3

, · · · , CHoD
)

3. SeqNo = 1

4. Ship (SeqNo, [ t̂, τ̂ ], [ CHo1
, CHo2

, · · · , CHoD
], r) To

CHoSeqNo+1

Upon receiving a probe request:
INPUT: a probe request PR:(SeqNo, [ t̂, τ̂ ], [ CHo1

, CHo2
, · · · , CHoD

], R).

OUTPUT: the join output produced by PR and a an updated PR.

1. r=probe(̂t, τ̂ )

2. SeqNo = SeqNo + 1

3. Ship (SeqNo, [ t̂, τ̂ ], [ CHo1
, CHo2

, · · · , CHoD
], R + r) To

CHoSeqNo+1

Figure 5. The distributed SNJoin algorithm.

Upon receiving a relevance feedback note:
INPUT: a relevance feedback note:(t̂, [(Cs1

,ws1
), (Cs2

,ws2
), · · · ,

(Csk
,wsk

)]).

OUTPUT: an updated relevance feedback matrix.
for i=1 to k

RFBM[H(t̂), si]=RFBM[ H(t̂), si] -

Pk
j=1

wsj

k
+ wsi

Figure 6. Processing of relevance feedback.

clusters (Step 2). The cluster head sets a sequence number
to one (SeqNo = 1) because the cluster head is the initia-
tor of the join operation (Step 3). Finally, the cluster head
ships the probing request to the next hop (i.e., Cluster head
numberSeqNo+1) (Step 4). A probing request consists of
a sequence number that indicates the last cluster head that
processed the request, the probing tuplet̂, the tuple’s time-
stampτ , a sequence of cluster heads, and the partial join
resultr computed from Step 1.

Upon receiving a probing request, the cluster head
probes its own hash table (Step 1). Then, the cluster head
increases the probing sequence number (Step2). Finally, the
cluster head accumulates its local resultr to the partial re-
sultR computed so far and forwards the probing request to
the next hop.

5 Query Processing with Relevance
Feedback

In this section, we introduce the concept of query pro-
cessing with relevance feedback. A major challenge in
multi-way join queries over sensor networks is that actu-

ally, only a small number of sensors (compared to the thou-
sands of sensors in the network) join with each other. The
problem becomes more challenging in adistributedenvi-
ronment where a probe between two cluster heads requires
a significant communication cost. Ideally, the cluster-head
probing sequence spans all cluster heads in the network to
produce as much output results as possible. However, due
to the large size of the network and its associated communi-
cation cost, it is practical to probe only clusters where it is
more likely to find matches. The objective of query process-
ing with relevance feedback is to guide the join operation to
process only relevant cluster heads, i.e., clusters that gener-
ate the same values. This selective probing reduces both the
processing cost and the communication cost at the price of
losing some streams that could have participated in the join
if they were included in the probing sequence.

With the arrival of a new tuplêt at a cluster head, a join
probing sequence has to be determined. In this case, the
probing sequence will be (CHo1

, CHo2
, · · · , CHok

) such
thatk≤D, whereD is the number of clusters. Each cluster
head along the probing sequence performs the join opera-
tion over its data, then ships the result to the next cluster
head in the probing sequence until the join result is received
at the sink node. Based on the join result, the sink node de-
cides how much each sensor contributes to the output, i.e.,
how much each sensor along the probing sequence is rele-
vant to the output. In the query processing with relevance
feedback paradigm, the sink node forms a feedback array
[w1, w2, · · · , wk] (wherek is the arity of the join result) to
represent the contribution weight of each sensor in the out-
put and sends it back to the cluster head that initiated the
probing sequence (i.e.,CHo1

). For simplicity, letwi be the
percentage of the output tuples in which cluster headCHi

appears. Each cluster head maintains aRelevance Feedback
Matrix (RFBM)to record the relevance of every other clus-
ter head to its own input tuples. TheRFBMis used to guide
future probing sequences. TheRFBM is defined as follows:

Definition 2 Given a hash functionH(t̂) → [h1, h2, · · · ,
hn] and givenD cluster headsCH1, CH2, · · · , CHm, a
Relevance Feedback Matrix (RFBM)is a two dimensional
matrix (n × D) such thatRFBM [H(t̂), CHi] represents
the relevance of cluster headCHi to the join probing se-
quence of tuplêt.

UsingRFBM, the join probing sequence (Step 2 in Fig-
ure 5) for an input tuplêt is formed such that the proba-
bility of including a cluster head in the probing sequence
is proportional to its relevance tôt. The relevance probing
sequence is defined as follows:

Definition 3 GivenD cluster headsCH1, CH2, · · · , CHD

and given an input tuplêt, theRelevance Probing Sequence
(RPS)of t̂ is a sequence of cluster headsCHo1

, CHo2
, · · · ,

6



CHok
such thatk ≤ D and the probability Pr{CHi ∈

RPS}= RFBM [H(t̂),CHi]
P

D
i=1

RFBM [H(t̂),CHi]
.

TheRFBMentries are initially set to a base value (e.g.,
50% to denote that each cluster head has an equal probabil-
ity of being included/excluded from the probing sequence).
Then, the entries of theRFBMchange dynamically with the
arrival of relevance feedback notes based on the following
equation:

RFBM [H(t̂), CHi]=RFBM [H(t̂), CHi]-
Pk

j=1 wj

k
+ wi

TheRFBMentries are affected by the cluster head weight
in the output (wi) relative to the average weights of all clus-

ter heads in the output (
Pk

j=1
wj

k
). The algorithm of pro-

cessing relevance feedback notes that are received from the
sink node is given in Figure 11. Notice that as cluster heads
contribute to the output, theygraduallyget a higher proba-
bility to be included in the probing sequence. Similarly, if
cluster heads do not participate in the join output theygrad-
ually lose theirgood reputationand are excluded from the
probing sequence.

6 Experiments

In this section, we conduct an experimental study to ex-
plore the performance of the proposedSNJoinoperator. We
use two sensor data sets that are extracted from theNile-
PDT system [2]. Nile-PDT has two experimental setups.
The first setup is areal small-scale sensor board with a grid
of 5 × 5 temperature sensors. Due to hardware limitations,
the number of sensor is limited to25. However, we overload
the system by increasing the sampling rate of each sensor to
one reading every10 milli-seconds. We run each experi-
ment for 10 minutes and we move a heat effect back and
forth over the sensor board to generate phenomena. The
second setup simulates a large-scale sensor network (up to
2000 sensors). Each sensor generates a stream of 10,000
tuples where the tuple values follow the Zipfian distribu-
tion [24]. For each stream, the Zipfian parameter is an in-
teger value chosen randomly between1 and5. The inter-
arrival time between two consecutive tuples coming from
the same source follows the exponential distribution with
an average of1 second. In both setups, the join techniques
are triggered through a multi-way join query with a sliding
window of size 10 seconds.

Three sets of experiments are performed. The first set
of experiments (Section 6.1) investigates the performance
under the real sensor-platform setup. The second set of ex-
periments (Section 6.2) addresses the large-scale simulated
sensor-network setup and examines the dynamic reconfigu-
ration of the network. In Sections 6.1 and 6.2, we compare
the performance of acentralizedimplementation of the fol-
lowing three techniques:

1. HMJ-tree, where an outer join is performed using a
binary tree of binaryhash merge joinoperators.

2. MJoin, where an outer join is performed using the
single-step symmetricMJoinoperator.

3. SNJoin, where a variable-arity join is performed as de-
scribed in this paper.

The third set of experiments (Section 6.3) highlights (un-
der the simulated setup) the advantages of query processing
with relevance feedback and compares the performance of
distributedSNJoinwith a distributed variant ofMJoin.

The overall system performance is measured in terms
of the number ofdetected phenomena updates per second.
Other measures of performance include theoutput delay,
the input drop rate, and theoutput rate. The output delay
is the time difference between the arrival of a tuple and the
time its effect appears in the output. Due to the system’s
limited CPU time and the continuous arrival of stream data,
some input tuples are dropped randomly from the system’s
buffers to accommodate new tuples (i.e., random load shed-
ding). In all experiments, we assume that tuple dropping
occurs due to limited CPU time and not to limited memory.
We allocate enough memory to accommodate all tuples in
the sliding window. We measure the number of dropped
input tuples relative to the total number of input tuples as
the input drop rate. The output rate is measured in terms
of the number of output join tuples per second. All the ex-
periments in this section are based on a real implementation
of the join operators insideNile [11]. TheNile engine ex-
ecutes on a machine with Intel Pentium IV, CPU 2.4GHZ
and 512MB RAM running Windows XP.

6.1 Performance Using Real Data Sets

The performance ofa HMJ tree, MJoin, andSNJoinun-
der the real sensor-platform setup is given in Figure 7. As
illustrated in Figure 7a,SNJoinreduces the output delay by
up to36% over theHMJ treeand by up to19% overMJoin
(in case of20 sensors). The output delay reflects the per-
tuple processing time (i.e., from the time a tuple arrives at
the operator buffer till its effect appears in the output). No-
tice that operators with lower per-tuple processing time, ex-
hibit a lower input drop rate (Figure 7b), and consequently
produce a higher output rate (Figure 7c). From the overall-
performance point of view,SNJoindetects up to75% more
phenomena updates thanHMJ treesand up to43% more
phenomena updates thanMJoin (Figure 7d).

6.2 Performance Using Synthetic Data
Sets

Performance gains ofSNJoinbecome more significant
for large-scale sensor networks. In contrast to binary join

7



 0

 50

 100

 150

 200

 250

 300

 0  5  10  15  20  25

O
u

tp
u

t 
d

e
la

y
 (

u
s
e

c
)

Number of sensors

HMJ-tree
MJoin

SNJoin

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25

D
ro

p
 r

a
te

 (
%

)

Number of sensors

HMJ-tree
MJoin

SNJoin

 0

 200

 400

 600

 800

 1000

 1200

 0  5  10  15  20  25

O
u

tp
u

t 
ra

te
 (

tu
p

le
/s

e
c
)

Number of sensors

HMJ-tree
MJoin

SNJoin

 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25

P
h

e
n

o
m

e
n

a
 u

p
d

a
te

/s
e

c

Number of sensors

HMJ-tree
MJoin

SNJoin

(a) Output delay (b) Input drop rate (c) Output rate (d) Phenomena updates

Figure 7. Performance under real small-scaledata sets.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 200  400  600  800  1000 1200 1400 1600 1800 2000

O
u

tp
u

t 
d

e
la

y
 (

u
s
e

c
)

Number of sensors

HMJ-tree
MJoin

SNJoin

 0

 5

 10

 15

 20

 25

 30

 35

 200  400  600  800  1000  1200  1400  1600  1800  2000

D
ro

p
 r

a
te

 (
%

)

Number of sensors

HMJ-tree
MJoin

SNJoin

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 200  400  600  800  1000 1200 1400 1600 1800 2000

O
u

tp
u

t 
ra

te
 (

tu
p

le
/s

e
c
)

Number of sensors

HMJ-tree
MJoin

SNJoin

 10

 20

 30

 40

 50

 60

 70

 80

 90

 200  400  600  800  1000  1200  1400  1600  1800  2000

P
h

e
n

o
m

e
n

a
 u

p
d

a
te

/s
e

c

Number of sensors

HMJ-tree
MJoin

SNJoin

(a) Output delay (b) Input drop rate (c) Output rate (d) Phenomena updates

Figure 8. Performance under synthetic large-scaledata sets.

trees andMJoin, SNJoinavoids unnecessary probes to a
huge number of separate tables, and therefore, reduces its
per-tuple processing time. The same experiments of Sec-
tion 6.1 are repeated using the 2000 sensor simulated setup.
Figure 8 illustrates the efficiency ofSNJoinin terms of the
output delay, the input drop rate, and the output rate.SNJoin
doubles the output rate of aHMJ treeand increases the out-
put rate by up to60% overMJoin. Moreover,SNJoindetects
up to180% more phenomena updates thanHMJ treesand
up to85% more phenomena updates thanMJoin.

Figure 9 gives the behavior of the join techniques with
respect to the dynamic configuration of the network. Ev-
ery minute, a group of sensors (randomly chosen between 1
and 100 sensors) is either added or removed from the sen-
sor set. Comparing Figure 8d and Figure 9, notice that the
dynamic behavior of the network reduces the number of de-
tected phenomena updates by up to80% in case of aHMJ
treeand by up to50% in case ofMJoin. However, the per-
formance ofSNJoinis reduced by only20% (at 2000 sen-
sors).

6.3 Performance of Distributed SNJoin

In this Section, we study the distributed execution of
SNJoinover clusters ofuniformly-distributedsensors in the
space. Clusters of sensors are obtained using a simulation of
theHEED clustering technique [23] with the cluster range
being set to10% of the total sensor space (the number of

clusters is decided by the algorithm based on the cluster
range). We construct a one-level clustering hierarchy where
cluster heads communicate through a multi-hop commu-
nication link. The number of hops between two commu-
nicating cluster heads is determined by the routing proto-
col [21]. Cluster heads receive the sensor readings of their
cluster members, perform the join operation, and commu-
nicate with other cluster heads to perform remote probes.
Figure 10 gives a comparison between the performance of
a distributed variant ofMJoin and the performance of two
distributed variants ofSNJoin: one with relevance feedback
and the other without relevance feedback. The distributed
variant ofMJoin is obtained by performing theMJoin op-
eration among members of the same cluster at the cluster
head. Then, each cluster head probes other clusters in a de-
scending order of the average selectivity of their members.
From Figure 10, notice thatSNJoinincreases the number
of detected phenomena changes by up to30% overMJoin.
Moreover, query processing with relevance feedback en-
hances the performance ofSNJoinby up to90% (for 2000
sensors).

The relevance feedback allows the join operation to fo-
cus on sensors with similar behavior, and hence, reduces
the number of probed streams. Consequently, the per-tuple
processing time is reduced. As a negative effect of rele-
vance feedback, not all cluster heads are probed and, con-
sequently, the output join tuple may miss some streams that
could otherwise participate in the join. Hence, the arity of

8



 0

 10

 20

 30

 40

 50

 60

 70

 80

 200  400  600  800  1000  1200  1400  1600  1800  2000

P
h
e
n
o
m

e
n
a
 u

p
d
a
te

/s
e
c

Number of sensors

HMJ-tree
MJoin

SNJoin

Figure 9. The effect of dynamic network
configuration.

 0

 10

 20

 30

 40

 50

 60

 70

 200  400  600  800  1000  1200  1400  1600  1800  2000

P
h
e
n
o
m

e
n
a
 u

p
d
a
te

/s
e
c

Number of sensors

Distributed MJoin
Distributed SNJoin w/o R.FB.
Distributed SNJoin with R.FB.

Figure 10. The effect of distributed query
processing.

Percentage reduction in
No of no of output drop O/P tuple comm.

sensors probes delay rate rate width cost
200 0 0 0 0 0 0
400 29.1 23.6 3.5 2.2 3.4 25.3
600 41.2 30.4 5.1 4.7 6.8 38.6
800 50.3 37.7 6.2 6.0 7.2 46.3
1000 60.8 47.5 7.4 6.9 7.9 57.3
1200 65.2 54.1 14.0 12.0 8.1 62.3
1400 69.6 58.8 33.6 29.1 8.6 64.9
1600 74.4 65.4 43.7 42.6 9.3 72.2
1800 77.4 67.6 51.0 47.3 9.9 73.8
2000 79.4 70.1 52.3 50.3 11.5 75.5

Figure 11. The effect of relevance feedback.

the output join tuple is reduced. Experimentally, this reduc-
tion in the arity of the tuple does not exceed12% (at 2000
sensors). Figure 11 illustrates the effect of the relevance
feedback on the performance ofSNJoinwith respect to the
reduction in the number of probed streams, the output delay,
the input drop rate, the tuple width, and the communication
cost (measured in terms of the number of bytes transmit-
ted per second). In general, if we compare the full fledged
SNJoinoperator (i.e.,SNJoinwith relevance feedback) to its
predecessor insideNile-PDT (i.e., MJoin), we find out that
SNJoinreduces the output delay by70% and increases the
number of detected phenomena updates by150%.

7 Related Work

A large body of research in the data streaming area
focuses on the join operation, e.g., [8, 9, 10, 13]. To
highlight the reasons that makeSNJoinapplicable in Phe-
nomenaBases, we overview related multi-way join tech-
niques and compare them toSNJoin. Multi-way join can
be achieved through a tree of binary joins (eithersymmetric
hash join[20], xjoin [18], or hash merge join[14]), a single
MJoinoperator [19], or a singleSNJoinoperator. Based on

Binary join MJoin SNJoin
Trees

Scalability × √ √√

Dynamic configuration × √ √√

Symmetric Join × √ √

Reduction in output delay × √ √

Sensitivity to variable i/p rates
√ × ×

Query plan reorganization
√ × ×

variable-arity join support × × √

Figure 12. Comparison among various multi-
way join techniques (×: feature not supported,

√
:

feature supported,
√√

: feature supported and enhanced).

the experiments in Section 6, Figure 12 provides a compar-
ison among various multi-way join techniques based on a
key set of distinguishing features.

Trees of binary joins are not scalable due to their multi-
step non-symmetric processing. For the same reason, trees
of binary joins do not allow the dynamic configuration of
sensor networks (unless query plan reorganization is per-
formed). On the other hand,MJoin andSNJoinare sym-
metric, scalable, and dynamically configurable. Also, the
output delay in binary join trees increases with the in-
crease in the number of tree levels. The single-step pro-
cessing ofMJoin andSNJoinresults in a lower output de-
lay. Moreover,SNJoinis specially designed for large-scale
dynamically-configured sensor networks. Trees of binary
joins are sensitive to variable input rates and require reor-
ganization of the query plan operators (e.g., see [5]) to in-
crease the output rate. All techniques handle outer joins
by traversing the join probing sequence completely. On the
other hand,SNJoinsupports, by design, variable-arity joins
to avoid long chains of probing sequences.

9



8 Conclusions

In this paper, we presented theSNJoin (or Sensor-
Network Join) operator, a variable-arity join operator for
sensor-network PhenomenaBases. To meet the demands of
sensor networks,SNJoinis designed to scale with respect
to the number of sensors in the network without sacrific-
ing the output rate. We introduced the notion of query pro-
cessing withrelevance feedbackto adjust the join selectivity
between sensor pairs.SNJoinsupports the distributed exe-
cution of the join operation with the capability to accept and
process relevance feedback.

Experimental studies that are based on a real implemen-
tation of the join operators insideNile-PDTshow the scal-
ability of SNJoin. SNJoinincreases the output rate over bi-
nary join trees andMJoin. OnceSNJoinis adopted by Phe-
nomenaBases, the number of detected phenomena updates
is increased while the output delay is reduced.

References

[1] M. H. Ali. Phenomenon-aware sensor database systems. In
Proc. of the EDBT Ph.D. Workshop, March 2006.

[2] M. H. Ali, W. G. Aref, R. Bose, A. K. Elmagarmid, A. Helal,
I. Kamel, and M. F. Mokbel. Nile-pdt: A phenomena de-
tection and tracking framework for data stream management
systems. InVLDB, Sept. 2005.

[3] M. H. Ali, M. F. Mokbel, W. G. Aref, and I. Kamel. Detec-
tion and tracking of discrete phenomena in sensor-network
databases. InSSDBM, June 2005.

[4] A. Amis, R. Prakash, T. Vuong, and D. Huynh. Max-min
d-cluster formation in wireless ad hoc networks. InINFO-
COM, March 2000.

[5] R. Avnur and J. M. Hellerstein. Eddies: Continuously adap-
tive query processing. InACM SIGMOD, pages 261–272,
May 2000.

[6] S. Basagni. Distributed clustering for ad hoc networks.In the
Intl. Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN), 1999.

[7] J. Considine, F. Li, G. Kollios, and J. W. Byers. Approximate
aggregation techniques for sensor databases. InICDE, pages
449–460, April 2004.

[8] L. Golab and M. T. Ozsu. Processing sliding window multi-
joins in continuous queries over data streams. InVLDB,
pages 500–511, Sept. 2003.

[9] M. A. Hammad, W. G. Aref, and A. K. Elmagarmid. Stream
window join: Tracking moving objects in sensor-network
databases. InSSDBM, July 2003.

[10] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K. El-
magarmid. Scheduling for shared window joins over data
streams. InVLDB, Sept. 2003.

[11] M. A. Hammad, M. F. Mokbel, M. H. Ali, and et al. Nile:
A query processing engine for data streams. InICDE, page
851, April 2004.

[12] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Be-
yond average: Toward sophisticated sensing with queries. In
Proc. of IPSN, 2003.

[13] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window
joins over unbounded streams. InICDE, pages 341–352,
March 2003.

[14] M. F. Mokbel, M. Lu, and W. G. Aref. Hash-merge join: A
non-blocking join algorithm for producing fast and early join
results. InICDE, 2004.

[15] R. Nowak and U. Mitra. Boundary estimation in sensor net-
works: Theory and methods. InProc. of IPSN, 2003.

[16] U. Srivastava, K. Munagala, and J. Widom. Operator place-
ment for in-network stream query processing. InPODS, June
2005.

[17] U. Srivastava and J. Widom. Flexible time management in
data stream systems. InPODS, pages 263–274, 2004.

[18] T. Urhan and M. J. Franklin. Xjoin: A reactively-scheduled
pipelined join operator.IEEE Data Eng. Bull., 23(2):27–33,
2000.

[19] S. Viglas, J. F. Naughton, and J. Burger. Maximizing theout-
put rate of multi-way join queries over streaming information
sources. InVLDB, Sept. 2003.

[20] A. N. Wilschut and E. M. G. Apers. Pipelining in query
execution. Inthe Intl. Conf. on Databases, Parallel Archi-
tectures and their Applications, 1991.

[21] A. Woo, T. Tong, and D. Culler. Taming the underlying chal-
lenges of reliable multihop routing in sensor networks. In
ACM SenSys, 2003.

[22] Y. Yao and J. Gehrke. Query processing in sensor networks.
In CIDR, 2003.

[23] O. Younis and S. Fahmy. Heed: A hybrid, energy-efficient,
distributed clustering approach for ad hoc sensor networks.
IEEE Trans. Mobile Computing, 3(4):366–379, 2004.

[24] G. K. ZIPF. Human behavior and principle of least effort: An
introduction to human ecology.Addison-Wesley Publishing
Co., Reading, MA, 1949.

10


