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Abstract

Spatio-temporal data streams that are generated from
mobile stream sources (e.g., mobile sensors) experience
similar environmental conditions that result in distinct phe-
nomena. Several research efforts are dedicated to detect
and track various phenomena inside a data stream man-
agement system (DSMS). In this paper, we use the detected
phenomena to reduce the demand on the DSMS resources.
The main idea is to let the query processor observe the input
data streams at the phenomena level. Then, each incoming
continuous query is directed only to those phenomena that
participate in the query answer. Two levels of indexing are
employed, a phenomenon index and a query index. The phe-
nomenon index provides a fine resolution view of the input
streams that participate in a particular phenomenon. The
query index utilizes the phenomenon index to maintain a
query deployment map in which each input stream is aware
of the set of continuous queries that the stream contributes
to their answers. Both indices are updated dynamically in
response to the evolving nature of phenomena and to the
mobility of the stream sources. Experimental results show
the efficiency of this approach with respect to the accuracy
of the query result and the resource utilization of the DSMS.

1 Introduction

Recent research in exploiting the spatio-temporal proper-
ties of mobile stream sources conclude that stream sources
that are spatially co-located, at a certain period of time, ex-
perience similar environmental conditions and provide sim-
ilar readings (e.g., see [1, 2, 3, 11, 12, 17]). Such behav-
ior is termed aphenomenon. A phenomenonis a group of
close-by stream sources that persist to generate similar be-
havior over a period of time. Typically, in an environment
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with large numbers of stream sources, there always exist a
large number of overlapped phenomena of different sizes
and shapes. Due to the highly dynamic nature of mobile
stream sources, phenomena continuously change their sizes
and locations over time. Examples of detectable phenom-
ena include pollution clouds in the air, oil spills at the ocean
surface, fire alarms in a building, water floods of a river,
migration of birds, and epidemic spread of diseases.

In this paper, we introduce a newphenomenon-aware
stream query processor. The main idea is to make use
of the efficient techniques for phenomenon detection and
tracking (e.g., see [3, 11, 12, 17]) in optimizing subsequent
queries. Detected phenomena act as an indexing scheme
that directs the execution of spatio-temporal queries to only
those stream sources that can contribute to the query answer.
By looking at the existing phenomena within the stream
sources, the query processor will have a fine resolution view
over all the streams. Based on this view, the query proces-
sor decides which phenomena need to be investigated more
closely to answer a specific query. Thephenomenon-aware
query processor achieves a trade-off between the number
of stream sources participating in the query execution and
the accuracy of that query. One main attractive feature of
the proposedphenomenon-awarequery processor is that it
is inherently equipped with an outlier-detection mechanism
that makes it sustainable to the noisy environment of stream
sources. Outlier or isolated stream sources that do not con-
tribute to any phenomenon do not appear in the finer resolu-
tion view. Thus, they do not contribute to the query answer.

To efficiently realize thephenomenon-awarequery pro-
cessor, we employ two indexing schemes, thephenomenon
indexand thequery index. The phenomenon indexkeeps
track of currently detected phenomena within the stream
sources. The main assumption behind this index is that the
change in the overall phenomenon parameters (e.g., shape
and location) is much less frequent than the change in the
underlying stream sources. Thus, while it is almost infeasi-
ble to index mobile stream sources, one can provide an ef-
ficient indexing scheme for the list of phenomena over the
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stream sources. Thequery indexkeeps track of currently
registered queries in the system and indexes them by their
regions of interesting phenomena (i.e., phenomena that sat-
isfy the query predicates). On top of both thephenomenon
indexand thequery index, aquery deployment map(QDM)
is maintained. The QDM allows each stream sources to
subscribe only to a list of queries thats contributes to their
answer. The QDM is updated as stream sources join, leave,
or change their locations in the environment. In summary,
the contributions of this paper are as follows:

1. We introduce the concept ofphenomenon-aware query
processingand empower data stream management sys-
tems with a phenomenon-aware optimizer.

2. We propose two levels of indices at the core of the
phenomenon-aware optimizer; aphenomenon index
and aquery index.

3. Given the phenomenon and the query indices, we de-
velop an efficientquery deployment mapwhere each
query is deployed over a small subset of data streams.

4. We provide an experimental evidence that
phenomenon-aware query processing increases the
output rate of continuous queries that are registered at
the system (e.g., by up to300%).

The rest of this paper is organized as follows. Section 2
describes the system architecture. Sections 3 and 4 describe
the phenomenonand thequery indices, respectively. Sec-
tion 5 provides an experimental study of the proposed in-
dices inside a prototype DSMS. An overview of the related
work is given in Section 6. Section 7 concludes the paper.

2 System Architecture

Figure 1 gives the architecture of the proposed
phenomenon-aware optimizer. The phenomenon-aware op-
timizer has three components: thephenomenon monitor, the
query plan analyzer, and thequery dispatcher. The phe-
nomenon monitortracks phenomena as they move in space
and maintains aphenomenon index. The phenomenon in-
dex indexes phenomena by content (i.e., reading values).
The query plan analyzertraverses the phenomenon index
for each query plan to decide which phenomenon regions
are likely to satisfy the query predicates. Then, thequery
index is built to index queries spatially based on their re-
gions of interest. Thequery dispatcherupdates the query
deployment map according to the locations of the mobile
stream sources. Then, thequery dispatcherexecutes each
query only over stream sources that are in the query’s re-
gions of interest.

Inputs to the phenomenon-aware query optimizer are of
three types: a stream ofphenomenon updates, a stream
of location updates, and a set of query plans. The
stream ofphenomenon updatesprovides the optimizer with
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Figure 1. The Architecture of a phenomenon-
aware stream query optimizer.

the necessary knowledge about phenomena in the space.
A phenomenon updatetuple has one of the two forms:
(Phenomenon-id, Behavior-Update, B)or (Phenomenon-id,
Region-Update, R)to indicate a behavior or a region up-
date, respectively. A phenomenon-behavior update implies
a change in the readings of the phenomenon underlying
streams, e.g., an increase in the temperature readings of a
fire. A phenomenon-region update implies a displacement
of the stream sources contributing in the phenomenon, e.g.,
the movement of a fire in accordance to the wind direction.
The stream oflocation updatesprovides the optimizer with
the current locations of the stream sources and has the form
(StreamSource-id,x,y), wherex andy are the location coor-
dinates. The set ofquery plansis processed by the optimizer
based on the optimizer’s knowledge of existing phenomena.

The phenomenon-aware optimizer outputs aquery de-
ployment map. Thequery deployment mapis represented
as a sequence of commands of the form(StreamSource-
id SUBSCRIBES TO Query-id) to indicate that a stream
source is of interest to a particular query.

3 Phenomenon Indexing

This section provides a basic and generic definition of a
phenomenon along with a description of the phenomenon
index and its manipulating algorithms.

Definition 1 A phenomenonPτ at time instantτ is a binary tu-
ple (Rτ ,Bω), whereRτ is the bounding region of phenomenonPτ

at time instantτ and Bω is the representative behavior of phe-
nomenonPτ over the most recent time window of sizeω, S.T.∀
streamSi ∈ Rτ , Prob(|Bω(Si) − Bω| ≥ ǫ) ≤ α.
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Based on Definition 1, a phenomenon has to be asso-
ciated with a time instantτ because a phenomenon may
change its location (Rτ ) over time. Also, the representative
behavior of a phenomenonBω is captured over a window
of time (ω) to ensure its persistency and to avoid the effect
of noise. A stream sourceSi that lies in the phenomenon
regionRτ should report a behavior (Bω(Si)) that is similar
to the phenomenon representative behaviorBω with high
probability.Bω captures the intrinsic features of the under-
lying phenomenon, e.g., values, frequencies, and trends of
tuples contributing to the phenomenon. The exact choice
of Bω is orthogonal to the phenomenon indexing. The
only requirements thatBω needs to satisfy are the following
two properties: (1) Fast online processing, where the phe-
nomenon behavior should be captured and updated quickly
to fit in the online data-streaming environment, (2) Adher-
ence to the postulates of a metric space, where the distance
among the behavior of different phenomena should be pos-
itive, symmetric, and should satisfy the triangular inequal-
ity. Assuming that the phenomenon behavioral properties
are upheld, we present the indexing algorithms in terms of
the following two phenomenon interface functions:

1. P2P-Dist(P1,P2): A phenomenon-to-phenomenon
distance function to compute the distance between the
behaviors of two phenomena. TheP2P-Distfunction
is used to maintain the phenomenon index upon inser-
tion and deletion of phenomena.

2. Q2P-Dist(Q,P ): A query-to-phenomenon distance
function to compute the distance between a given
queryQ and the behavior of a phenomenonP . The
Q2P-Dist function is used by standing queries to
search the index for interesting phenomena.

There are several alternatives to represent a phenomenon
behavior in a metric space. As an example of such metric
representations, we represent the phenomenon behavior by
a histogram of its underlying values. TheP2P-distfunction
is theL2 distance between the normalized histogram buck-
ets. Equation 1 gives the distance between the equi-width
histograms of two phenomena:P1 andP2. Each histogram
containsn buckets of equal width. PhenomenaP1 andP2

contain a total ofN1 andN2 reading values coming from
their underlying streams over the most recent windowω, re-
spectively. The number of values in each histogram bucket
(h1i andh2i) is normalized by the total number of values
(N1 andN2) because two phenomena may have similar be-
haviors but with a different number of underlying stream
readings. Then, we measure the distance between corre-
sponding histogram buckets. TheQ2P-distfunction (Equa-
tion 2) measures the selectivity of the query over the his-
togram buckets. Then, we divide the selectivity by the total
number of streams in the phenomenon to assess the number
of expected output tuples relative to the query deployment
cost.
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Figure 2. The phenomenon index.
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Having a function that measures the distance among phe-
nomenon behaviors in a metric space enables the indexing
of phenomena by their behaviors. For example, we can
build the phenomenon index usingM-tree [6]. M-tree in-
dexes large data sets in a generic metric space.

3.1 The Phenomenon-Index Structure

Figure 2 illustrates the phenomenon index. The phe-
nomenon index has two types of nodes:leafnodes andnon-
leaf nodes. Oneleaf node is constructed per phenomenon
to store the following information: (1)Ph-id, the phe-
nomenon identifier, (2)R, the current phenomenon region,
and (3)LSQ, a list of satisfied queries, i.e., queries with
predicates that are satisfied by values of the phenomenon.
Non-leafnodes recursively group nodes with similar behav-
ior. Each non-leaf node maintains a list of<child-ptr, B>

pairs wherechild-ptr is a pointer to the child whose behav-
ior is B. As we go up the tree, the behavior fieldB in the
non-leaf node is set to be a representative for the behavior
of all the phenomena in the child subtree. Hence,Non-leaf
nodes direct the search operation to the leaf nodes.

3.2 Maintaining the Phenomenon Index

Figure 3 gives the algorithm for maintaining the phe-
nomenon index when receiving a change in the phe-
nomenon behavior. The inputs to the algorithm are the phe-
nomenon identifier (Ph-id) and the new behavior (Bnew).
To avoid updating the phenomenon index for marginal phe-
nomena changes, we compare the input behavior to the base
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PROCEDUREUpdate-Phenomenon-Behavior(Ph-id,Bnew)

1. CurrentBehvior(Ph-id)=Bnew

2. if (P2P-Dist(CurrentBehavior,BaseBehavior)≤BTP ) exit
3. BaseBehavior(Ph-id)=Bnew

4. Propagate (Ph-id,Bnew) update to upper levels of the index
5. FOR (i=1 TO sizeof(Ph-id.LSQ))

if Q2P-Dist(Ph-id.LSQ[i],Ph-id)> d
delete(Ph-id.LSQ[i])

6. Node-Ptr=LeafNode(Ph-id)
Do

(a) Node-Ptr=ParentNode(Node-Ptr)
(b) Changed=FALSE
(c) FOR EVERY leaf nodesLN in Node-Ptrsubtree S.T.LN is not visited

before
FOR (i=1 TO sizeof(LN.LSQ))

if Q2P-Dist(LN-Ptr.LSQ[i],Ph-id)≤d
add LN-Ptr.LSQ[i] TO LeafNode(Ph-id)
Changed=TRUE;

WHILE (Changed)

Figure 3. Updating the phenomenon index.

phenomena behavior, i.e., the one used in building the phe-
nomenon index. Then, we process the incoming phenomena
update only if it is more different than the base phenomenon
by thebehavior tolerance parameter(BTP) (Steps 1 and 2
in Figure 3). Examples of marginal phenomena update that
we want to avoid processing include the temperature read-
ings inside a fire region where temperature fluctuates up and
down by small amounts. Updating the index with every be-
havior update may overload the system. Once the distance
between the current and the base behaviors goes aboveBTP,
the value of the current behavior is copied into the base
behavior (Step 3 in Figure 3). Then, the base behavior is
propagated up the phenomenon index causing updates in
the non-leaf index nodes (Step 4 in Figure 3). For all the
queries that were interested in the phenomena (LSQ), we
check whether they are still interested in the new value of
the phenomena. This is performed by going through all the
queries inLSQ and computing the distance between each
query and the phenomenon new behavior. If the distance
becomes greater thand, the query is removed from theLSQ
of this phenomenon region (Step 5 in Figure 3).

To discover the new queries that become interested in the
phenomenon new behavior, we make use of the similarity
in behavior among neighboring regions in the phenomenon
index (Step 6 in Figure 3). The main idea is to backtrack
the path from the leaf node of the phenomenon index to the
root node. At every non-leaf node on the path (pointed to
by Node-Ptr), we identify the queries that are in the subtree
of Node-Ptrand arenot in the phenomenon query list (i.e.,
LSQ of Ph-id). These queries are candidates to be added
to theLSQ of the phenomenonPh-id if they are within dis-
tanced from the phenomenon new behavior. We go up the
phenomenon index until we reach a level where no more
queries are added to theLSQ of Ph-id leaf node.

PROCEDURETune-d (dinitial[1 · · No-of-Queries])

1. FOR (i=1 TO No-of-Queries)

(a) d[i]=dinitial[i]
(b) dsafe[i]=dinitial[i] × SafetyFactor
(c) PhenomenonIndex.Search(Qi,dsafe[i])
(d) Dispatch(Qi,d[i])

2. WHILE (TRUE)

(a) FOR (i = 1 TO No-of-Queries)
QMi= Output−tuples−per−secondi

No−of−Streamsi

(b) AvgQM=
P

QMi
No−of−Queries

(c) FOR (i = 1 TO No-of-Queries)

i. d[i] = d[i] ×
µ·QMi

AvgQM

ii. if d[i] > dsafe[i]

A. dsafe[i] = d[i]× SafetyFactor
B. PhenomenonIndex.Search(Qi,dsafe[i])

iii. Dispatch(Qi,d[i])
(d) wait a number of seconds

Figure 4. Searching the phenomenon index.

3.3 Searching the Phenomenon Index

A query is executed over a phenomenon region if the
phenomenon behavior is within distanced from the query
(based on theQ2P-Distfunction). For each query, a range
selection (with the query in the center and with a radius
of d) is executed over the phenomenon index. With the
increase ind, the query is deployed over a larger number
of phenomenon regions. Consequently, more output tuples
are produced at the expense of consuming more system re-
sources. On the other hand, decreasingd conserves the sys-
tem resources and produces less output tuples. Choosing
the value ofd depends on two factors: (1) The availability
of resources (that are assigned to queries based on their pri-
orities) and (2) The quality of the output. Varyingd both
over time and from query to query gives the flexibility to
tune every query based on the quality of its output.

Figure 4 gives the algorithm that measures the quality
of a query output in terms of the average number of out-
put tuples per second per stream compared to other queries.
This measure reflects the relative (i.e., relative to other
queries) output gain (i.e., output tuples per second) per unit
cost. Here, a unit cost means deploying the query over one
stream. The input to the algorithm is an initialization vector
for the values ofd, one entry per query. Initially, the value of
d for each queryQi is set to its corresponding initial value
dinitial[i] (Step 1a in Figure 4). In addition, we initialize a
safety vectorto the correspondingdinitial multiplied by a
safety factor(Step 1b in Figure 4). Thesafety vectoris used
to prefetcha larger number of regions than required when
searching the phenomenon index, i.e., a superset of the re-
sult returned by vectord (Step 1c and 1d in Figure 4). The
main idea is to avoid searching the index multiple times if
the values in vectord increase over time.

For every query, we evaluate its quality measure (Step 2a
in Figure 4). Then, we find the average value for the qual-
ity measure over all queries (Step 2b in Figure 4). For each
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query, the value ofd is tuned based on the relative perfor-
mance of each queryµ·QMi

AvgQM
whereµ is a weight factor

between0 and1 that indicates how fast we propagate up-
dates to the values ofd. If the new value ofd exceeds the
precomputed safe valuedsafe, dsafe values is updated and
the phenomenon index is searched gain. Finally the query is
dispatched to the new set of phenomenon regions and the al-
gorithm goes into a sleep period before it is executed again
(Step 2d in Figure 4). Thesafetyfactor, µ, and the length of
thesleep periodare all system tuning parameters.

4 Query Indexing

This section describes building and maintaining the
query index over the outcome of the phenomenon index.
The query index indexes queries by their regions of inter-
est to generate efficient query deployment maps (QDMs).
A QDM (as in Definition 2) maps and executes each query
on a set of data streams. An efficientQDM deploys queries
over regions that are likely to satisfy the query predicates.
As an alternative toQDM, we define the stream’s query
working set (QWS) to capture the same information as
QDM. A stream’sQWS(as in Definition 3) is the set of
queries that are executed on that stream. AQDM can be
driven from the streams’ query working sets and vice versa.
Therefore,QDMsandQWSsare used interchangeably.

Definition 2 A query deployment map (QDM) gives for each
queryQ a set of streamsS S.T.∀ si ∈ S , Q is executed onsi.

Definition 3 A query working set (QWS) gives for each streams

a set of queriesQ S.T.∀ Qi ∈ Q, Qi is executed ons.

Figure 5 illustrates the query index. Leaf nodes store
the phenomenon identifiers, their regions R, and their cor-
responding lists of satisfied queries LSQ, where one leaf
node corresponds to only one phenomenon. Non-leaf nodes
are constructed to spatially index thebounding boxes bbof
phenomenon regions. The phenomenon index is a typical
spatial index (e.g., an R-tree or one of its variants) for phe-
nomenon regions. Updates to the index correspond to the
movements of the phenomenon regions in space over time.

The query index is constructed by the query plan ana-
lyzer and is searched by the query dispatcher (Figure 1).
The query plan analyzer propagates all updates in the region
and theLSQfields of the phenomenon-index leaf nodes to
the query-index leaf nodes. If a phenomenon region is up-
dated, this phenomenon region is deleted and is reinserted
into the query index to adjust the indexs spatial properties.
Updates to theLSQ fields are localized to the leaf nodes
and do not affect the non-leaf nodes. For every stream,
the query dispatcher searches the query index to retrieve all
phenomenon regions that overlap the stream’s location. The
stream’s query working set (QWS) is the union of allLSQs

that are associated with regions that overlap the stream’s lo-
cation. TheQWSof streamsj is obtained as follows:

QWS(sj) =
[

LSQi such that sj .location ∈ Ri (3)

Equation 3 implies that each stream subscribes to all
queries that are interested in regions overlapping with the
stream’s location. Queries that have no interest in these re-
gions are not executed on that stream. Therefore, no system
resources are wasted to process queries that are not likely
to be satisfied by the stream readings. The query dispatcher
monitors changes in the streams’ locations to update their
QWSsdynamically. Imagine a sensor attached to a fire-
fighter moving inside a building on fire and experiencing
various types of phenomena, e.g., smoke, heat, and illumi-
nation as he moves from one region to another. Figure 6
gives an example of such a mobile stream source over the
last five time instants. At timestampτ − 4 the stream falls
in regionsR3 and R4. The stream’sQWS is the union
of all queries that are interested in these two regions, i.e.,
(Q3, Q4, Q5, Q6)

⋂
(Q3, Q5, Q6) = (Q3, Q4, Q5, Q6).

At timestampτ − 3, the stream is in regionR4 only and
Q4 is no longer interested in the stream’s readings. As
the stream moves to regionR2 andR1, theQWSbecomes
(Q2,Q5,Q7) and (Q1,Q2,Q5), respectively.

The leaf nodes in the phenomenon index have the same
structure as the leaf nodes in the query index. Hence, the
leaf nodes are shared by the two indices as illustrated in
Figure 7. Upon receiving a phenomenon update, the up-
date is propagated up the phenomenon index to reflect the
phenomenon new behavior. Query plans search the phe-
nomenon index from the root downwards and update the
LSQfields of the leaf nodes accordingly. Upon updating the
leaf nodes, the query index is updated from the bottom up to
accommodate any changes in the region fields of leaf nodes.
Finally, the query index is searched from the top down with
every update in the network configuration to associate each
stream with a set of phenomenon regions.

To implement the query index, we need a spatial in-
dex to maintain the bounding boxes of the queries’ in-
teresting regions. The query index is required to accom-
modate frequent updates in the indexed regions. We im-
plement the query index as anR-tree with update memo
(RUM [20]). RUM accommodates heavy updates by using
an update-memo approach. This approach buffers updates
in an update-memo structure and propagates these updates
up the R-tree index from time to time.

5 Experiments

The proposed phenomenon-awareoptimizer and its asso-
ciated indices are implemented inside theNile DSMS [10].
In this section, we explore the performance of the proposed
phenomenon-aware optimizer experimentally. The experi-
ments are based on a sensor data set that is extracted from
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Figure 8. The performance of the phenomenon-aware optimizer w.r.t. the output rate.

theNile-PDT system [2]. The experimental setup ofNile-
PDT simulates a large-scale sensor network (up to 2000
sensors). Each sensor generates a stream of 10,000 tuples
where the tuple values follow the Zipfian distribution. For
each stream, the Zipfian parameter is an integer value cho-
sen randomly between1 and5. The interarrival time be-
tween two consecutive tuples coming from the same source
follows the exponential distribution with an average of one
second. The phenomenon is detected as in Definition 1 with
α andω set to5 and10 seconds, respectively. Unless men-
tioned otherwise, we deploy100 range queries over a set
of 1000 data streams randomly distributed in space. The
average radius of the query range is10% of the space.

We conduct three sets of experiments. The first set of
experiments measures the increase in the output rate in
response to the proposed phenomenon-aware optimization
(Section 5.1). The second set of experiments measures
the reduction in the system’s resource consumption (Sec-
tion 5.2). The third set of experiments evaluates the best
values for the system’s tuning parameters (Section 5.3). We
measure the output rate and the system resources with re-
spect to a variable number of queries and a variable number
of data streams. We also investigate the effect of varying the
radius of a range query on the system’s performance. All the
experiments in this section are based on a real implementa-
tion of the proposed optimizer insideNile [10]. The Nile
engine executes on a machine with Intel Pentium IV, CPU
2.4GHZ and 512MB RAM running Windows XP.

5.1 The Output Rate

In this section, we investigate the average output rate per
query under three different implementations:

1. Optimal query execution, where the query result is
computed as if we have infinite resources. The stream
rates are slowed down such that no tuples are dropped
out of the input buffers.

2. Naive query execution,where all queries are executed
over all streams in the system.

3. Optimized query execution, where a phenomenon-
aware optimizer is utilized.

Figure 8a illustrates the output rate per query of the
three implementations with respect to a variable number of
queries. In the optimal implementation, each query gets
enough resources to process all tuples, and therefore, the
output rate is not affected by the number of queries. In
the naive implementation, the system resources are divided
among all queries leading to a decrease in the output rate
with the increase in the number of queries. In the opti-
mized solution, each stream subscribes only to a small sub-
set of queries (the stream’s query working set) leading to a
reduced processing load. Hence, the system resources are
utilized efficiently to increase the output rate of each query.

Figure 8b illustrates the output rate per query with re-
spect to a variable number of streams. The optimal output
rate increases linearly with the increase in the number of
streams because each additional stream contributes to the
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Figure 9. The effect of increasing the number of querieson the system resources.

 0

 50

 100

 150

 200

 250

 300

 350

 200  400  600  800  1000 1200 1400 1600 1800 2000

A
vg

 n
o

 o
f 

st
re

a
m

s 
p

e
r 

q
u

e
ry

Number of streams

Raduis=5%
Raduis=10%
Raduis=15%

 0

 5

 10

 15

 20

 200  400  600  800  1000  1200  1400  1600  1800  2000

A
vg

 n
o

 o
f 

q
u

e
ri
e

s 
p

e
r 

st
re

a
m

Number of streams

Radius=5%
Radius=10%
Radius=15%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 200  400  600  800  1000  1200  1400  1600  1800  2000

P
e

rc
e

n
ta

g
e

 o
f 

id
le

 s
tr

e
a

m
s

Number of streams

Radius=5%
Radius=10%
Radius=15%

(a) (b) (c)
Figure 10. The effect of increasing the number of streamson the system resources.

query result. However, the output of the naive and opti-
mized versions saturates with the increase in the number of
streams, yet, with different rates. The optimized solution
triples (300%) the output rate of the naive implementation,
and meanwhile, the optimized output rate is30% less than
the optimal output rate (at100 queries and1000 streams).

5.2 The System Resources

In the absence of a phenomenon-aware optimizer, every
query is deployed over every stream in the system. In this
section, we evaluate the amount of savings in system re-
sources achieved by a phenomenon-aware optimizer. We
measure the average number of streams that subscribe to the
same query and, alternatively, the number of queries that are
executed on the same stream. We also measure the percent-
age of idle streams, i.e., streams that subscribe to no queries.
Idle streams can be sampled at a lower rate or can be turned
off for some time. We repeat the experiment for the same
data set after we vary the average radius of the search range.

Figure 9 measures the effect of increasing the number
of queries on the system resources. With the increase in
the number of queries, the average number of streams sub-
scribed to the same query is not affected because each query
is executed only on streams of interest (Figure 9a). How-
ever, the average number of queries that are executed on the
same stream increases to accommodate the added queries
(Figure 9b). As we increase the number of queries, queries
are spread over various locations of the space and decreases
the number of idle streams (Figure 9c).

Figure 10 measures the effect of increasing the number
of streams on the system resources. With the increase in
the number of streams, the average number of streams sub-
scribed to a query increases in response to having more
streams satisfying the query predicates (Figure 10a). How-
ever, the average number of queries executed on a stream
remains fixed because each stream subscribes only to a sub-
set of interested queries (Figure 10b). Consequently, the
number of idle streams is not affected (Figure 10c). Notice
that the increase in the radius of the range query increases
the utilization of system resources quadratically.

To quantify the savings in system resources, consider the
case of100 queries (radius=10% of space) running on1000
streams. We notice that each query is executed on55 data
streams out of the1000 streams (5.5% of the total number
of streams). Also,44% of the data streams are not fed to the
query processor because they have no associated queries.

5.3 System’s Tuning Parameters

In Section 3, we presented several tuning parameters for
the phenomenon index, e.g., thebehavior tolerance param-
eter (BTP), thesafetyfactor, µ, and the length of thesleep
period. Each parameter controls the propagation of updates
to the phenomenon index. The best values of these param-
eters are obtained experimentally by varying the value of
one parameter while fixing the others. This tuning process
is conduct repeatedly till we converge to the best values of
the parameters. Also, the tuning process may be repeated
upon changing the domain of underlying data streams.

7



As we increaseBTP, the index is updated less frequently,
the update overhead is reduced, and the output rate increases
till the optimal output rate is obtained atBTP = 0.8. As
we keep increasing BTP, the index becomes too lazy to
propagate updates in a timely fashion. Hence, the index
does not reflect the underlying phenomenon behavior lead-
ing to a reduction in the output rate. Other tuning parame-
ters have the same effect on the index performance. Based
on the experiments, the typical values ofsafetyfactor, µ, and
thesleep periodare 1.6, 0.7, and 6 seconds, respectively.

6 Related Work

The research focus of spatio-temporal data streams has
been directed to process continuous queries over data
streams that are generated by mobile objects, e.g., [15, 16].
For example, [9] proposes a new join algorithm to track
moving objects in a sensor field. To optimize for the track-
ing process, [22] reconfigures a tree-like communication
structure of a sensor network dynamically. A prediction-
based strategy is proposed in [21] to reduce the power con-
sumption of the network by focusing on regions where mov-
ing objects are likely to appear.

Instead of tracking a single object, [2, 3] provide a frame-
work to track phenomena inside a DSMS. Phenomenon de-
tection has been addressed in literature, yet, under differ-
ent terminologies, e.g., homogenous regions, isobars, net-
work states, and moving clusters. Detection of boundaries
that separate homogeneous regions of sensors is investi-
gated in [17]. In [11], streams of sensor data that have
approximately the same value are grouped into continuous
regions calledisobars. The work in [8] identifies an aggre-
gate picture of the sensor network conditions/states that en-
ables the online monitoring of evolving phenomena. Given
a database of object trajectories, [12] refers to a set of ob-
jects that move close to each other as a moving cluster.

In this paper, we index phenomena as they move in
space. We use one of the recent moving object index struc-
tures, theR-tree with update memo[20]. However, indexing
moving objects has been extensively studied in literature,
e.g., [18] indexes historical trajectories of moving objects.
Other index structures, e.g., [5], keep track of the current
position of an object as it moves in the space. TheTPR*-
tree[19] predicts the future trajectories of moving objects.

Mobility is an important issue in spatio-temporal data
streams. Objects as well as queries can be mobile. A large
body of literature addresses the execution of mobile queries
over mobile objects, e.g., [4, 7, 13, 14]. In this paper, an ob-
ject generating a data stream is mobile. We have also mobile
phenomena that appear and move in the surrounding envi-
ronment. Queries are stationary and are deployed over the
entire set of registered data streams in the system. However,
weartificially move the execution of queries over regions of

their interesting phenomena in response to changes in the
monitored environmental conditions.

7 Conclusions

In this paper, we explored the impact of phenomenon
detection techniques on query optimization inside DSMSs.
Guided by detected phenomena, we build aphenomenon
index to track phenomena as they roam the surrounding
space. By traversing the phenomenon index, we construct
a query index, to index queries by the regions of their inter-
esting phenomena. By traversing the query index, a query
is added to a stream’s query working set if the stream falls
in one of the query’s interesting phenomenon regions. To
optimize for system resources, we limit each stream to sub-
scribe to a subset of queries (the stream’s query working
set). A stream’s query working set is updated dynamically
as phenomena move in the space or as the stream location is
changed. Experimental studies show that we can achieve up
to 70% of the optimal output rate while executing a query
on5.5% of the total number of streams.
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