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Abstract

A phenomenon appears in a sensor network when a group ofrsermatinuously generate a simi-
lar behavior over a period of time. PhenomenaBases (or detab of phenomena) are equipped with
Phenomena Detection and Trackif®PT) techniques that continuously run in the background of a sen
sor database system to detect and track phenomena. Thesprotphenomena detection and tracking
depends mainly on a multi-way join operator which is at theeaaf PDT techniques to report similar
sensor readings. With the increase in the sensor netwoekasid to address periods of heavy loads, the
join operator and, consequently, query processing in therf@menaBase face several challenges. In
this paper, we present a new join operator for PhenomenaBeakedSNJointhat is specially-designed
for dynamically-configured large-scale sensor networkh wistributed processing capabilities. In par-
ticular, SNJoin introduces a new concept of join called abte-arity join that is best suited for Phe-
nomenaBases. Variable-arity join reduces the number dbgsdhat would have been necessary in a
multi-way join. SNJoin allows the join to be performed ats$easor level and integrates query process-

ing with relevance feedback to prune further the sensoretprbbed to those only that are relevant to



the join. Experimental studies illustrate the scalabibiyd the performance gains of the proposed join

operator in PhenomenaBases with respect to the number etdet phenomena and the output delay.

1 Introduction

With the evolution of large-scale sensor-network techgigls, emerging sensor-network applications
call for new online query processing techniques. Such tgcies go beyond the traditional sampling,
transmission, and processing of sensor data to the morelermparadigm of analyzing, understand-
ing, and acting upon various forms of phenomena that deviel@psensor field. A phenomenon can
be a pollution cloud in the air, an oil spill at the ocean stefaor a fire in a building. In general, a
phenomenon [3] is a region of sensors generating similaalehover a period of time. Various tech-
niques have been developed to detect phenomena [3], estin@it boundaries [15], and utilize them in
sophisticated data analysis [12].

A sensor-networlPhenomenaBadd] is a sensor database system that handles phenomenathat d
velop in a sensor field. More specifically, a PhenomenaBasewa basic functionalities: First, it
continuously executeBhenomena Detection and Tracki(lgDT) techniques [3] at the background of
a sensor database system to detect new phenomena and &gk pagation of already-detected phe-
nomena. Second, it uses the knowledge about detected pkraadmoptimize subsequent user queries.

A key component inPDT techniques is amuter multi-wayjoin operator that detectsimilarities
among streams of sensor data over a sliding window of sizeThis join operation is “multi-way”
because it detects similarities among multiple sensorstascn “outer” join because phenomena are
usuallylocalized Out of the large number of sensors in the space, only subssensors generate the
same values. Other sensors do not participate in the jopuband are replaced by NULLSs.

Usually, a multi-way join over data streams can be perforosedg trees of non-blocking binary joins
(e.g.,symmetric hash joiffi20], XJoin [18], or hash merge joirj14]). Binary join trees perform the

multi-way join in multiple steps (i.e., tree levels) and magur several delays. Also, the output rate
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of binary-join trees is sensitive to the join order. For tteason, binary-join trees are usually equipped
with a dynamic scheme for tree reorganization (e.g., [5. oVercome the shortcomings of binary-
join trees, [19] introduces thelJoin operator, asingle-stepmulti-way join operator that is symmetric
with respect to all input stream#$4Join produces early output, maximizes the output rate, and avoid
reorganization of the query plan at execution time. Basethere features, we used an out&ioin
operator in the previous designBDT techniques [3].

MJoin has satisfactory performance for moderate system loadsvetdr, with the increase in the
network size, the sensor sampling rates, and the humberopagating phenomen®DT techniques
start losing many phenomena updates. A phenomena updagoided if a phenomenon appears, dis-
appears, or changes its location. The number of detectetbpiena updates per second reflects how
fast the system is in tracking phenomena as they move in spadackle periods of heavy system loads,

we identify three basic challenges that the current desigfhenomenaBases witJoin faces:
1. Scalability— sensor networks are typically deployed in large scale thitisands of sensors.

2. Dynamic-configuratior- Sensors can be dynamically added and removed from thersiigdo

based on the network conditions, the sensors’ life time thadvailability of additional sensors.

3. Distributed-executior the join operation should be performed in a distributeditasto eliminate

the bottlenecks of a centralized system.

In this paper, we introduce a novel join operator for PhenumBases, calle@NJoin(or Sensor-
Network Join operator. In a nutshel§NJoinhandles the distributed executionantinuous multi-way
window joinqueries ovedynamically-configured large-scakensor networks. In contrast MJoin,
SNJoinis not an outer multi-way join.SNJoinintroduces a new concept of join callgdriable-arity
join. Variable-arity join produces variable-size join put in response to the variable number of sen-
sors contributing to a phenomenon. It exploits kbeality characteristics of phenomena to reduce the

number of streams that need to be joined. Moreover, the peaioce ofSNJoinimproves over time



through arelevance feedbadlRFB) mechanism RFB monitors the contribution of each sensor to the
output. ThenRFBissues deedback not¢o the join operator to indicate the relevance of each sensor
to the output. This feedback note tunes query processingrttsisensors that maximize the join output
rate. With these two new notions of variable-arity join d&¥eB, SNJoinscales well with respect to the
number of sensors and easily adapts to the dynamic configuiraft the network. These two features
makeSNJoina perfect match for the join operation in environments wlaesenall number of sensors
(relative to the huge number of sensors in the sensor fietd)illy to join. Although not limited to
PhenomenaBaseSNJoinsuits the process of phenomenon detection since phenomenszally lo-
calized in small portions of the sensor field. Fire, smokel aihspills usually span small portions of
the sensor field. Other environments where such localitypeeted call for the deployment &NJoin
over its streaming sources.

The contributions of this paper can be summarized as follows
1. We introduce the new concept of variable-arity join anddt in the context oS5NJoin

2. We enhanc&NJoinwith distributed processing capabilities by performing fbin at the sensor

level.

3. We extendSNJoinwith the ability to accept and process relevance feedbacks.

4. We provide an analytical study and an experimental stoalyi$ based on a real implementation of
SNJoininsideNile-PDTto prove its efficiency both in terms of the number of detepieenomena

updates and the output delay.

The remainder of this paper is organized as follows: Se&igives an overview of PhenomenaBases
andNile PDT, a framework for Phenomenon Detection and Tracking inslde. Section 3 gives an
outline of SNJoinand investigates the underlying sensor platform. Sectigneéents the variable-
arity notion of SNJoin Section 5 empowerSNJoinwith distributed processing capabilities. Section 6

describes the relevance feedback mechanisBNafoin Section 7 presents a mathematical analysis of
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Figure 1. The architecture of Nile.

various join techniques and provides an experimental stitlyese techniques’ performance. Section 8

overviews related join techniques and compares the®&iNdoin Finally, Section 9 concludes the paper.

2. PhenomenaBases

PhenomenaBases extend sensor database systems with phenemvareness capabilities as a major
step towards the understanding of sensor data. A phenonmegpmears in a sensor field if a group
of sensors show “similar” behavior over a period of time. hrtular, phenomenon-aware sensor
databases or PhenomenaBases, have two major tasks: Etestfinlg and tracking various forms of
phenomena. Second, utilizing the knowledge about phenanteenptimize subsequent user queries.
Although individual sensor readings can be useful by théresgphenomenon detecti@xploits various
notions of correlation among sensor data and providesradtie and meaningful information about
the underlying environmenEhenomenon trackingnonitors the propagation of detected phenomena to
reflect the changes in the surrounding environmental ciomdit Given the knowledge about phenomena
in the surrounding space, phenomenon-aware optimizedgédithe gap between the low-level sensor
readings and the high-level understanding of phenomenastwexr user queries efficiently.

There are five major conduits through which sensor-netwpphtieations can benefit fro®eDT tech-



niques: (1)High-level description of the sensor field- With the aid ofPDT techniques, an application
may ask for “What is going on in a sensor field?” instead ofegKiVhat are the sensor readings?” (2)
Phenomenon-guided data acquisitior Data acquisition can be guided by detected phenomenag henc
reducing the sampling rate abn-interestingensors that do not contribute to any phenomenaD &8
compression— where we maintain the boundaries of exiting phenomenagalath a brief summary

of the phenomenon content) instead of maintaining everyisireading from every single sensor. (4)
Prediction — Tracking a phenomenon movement and predicting its furajedtory foresees the next
state of the sensor field. (Phenomenon-guided query processing Given a query and given a set of
phenomena, query processing can be guided to regions watiopiena that satisfy the query predicates.
Hence, the query space is reduced.

As an effort in the direction of phenomenon-aware systemeshave augmented an existing data
stream management system, namiglie [11], with the concept of PhenomenaBases. Figure 1 illus-
trates the architecture dile. Nile has three basic components: the query admission conjrtiker
guery plan generator, and the query executer. These basjpaeents decide whether to accept or reject
a query based on system resources, generate a query plate@ag the query plan over the sensor net-
work for execution, respectively. To empoweile with PhenomenaBase capabilities, we add two new
components to the system: (1) TNde-PDT (or Nile Phenomena Detection and Tracking) module [2]
that continuously detects phenomena at the backgrouncedfitb engine. (2) A phenomenon-aware
optimizer that interacts witNile-PDT to optimize user queries based on Nile-PDT’s knowledge &bou
the sensor field. In this paper, we focus on 8iJoinalgorithm that comes at the core of tNée-PDT

module.

3. Outline of the SNJoin Algorithm

In this section, we describe the underlying sensor platfover whichSNJoinoperates and outline

the basic steps of the proposed join algorithm. As illusttah Figure 2, the sensor platform Mfle is
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Figure 2. The sensor platform.

an ad-hoc network with resource-constrained sensor n&@deh sensor generates a stream of readings.
Stream tuples are timestamped at the source nodes befgrareéheansmitted over the network to a sink
node. However, tuples may arrive late or out-of-order dusetwvork conditions.

Several techniques can be used to dynamically configuredtveork topology like those proposed
in [4, 6, 23]. These techniques involve message exchanga@sensors to acquire knowledge about
their locations and energy levels. Based on the acquiredleualge, sensors are grouped into clusters.
Within each cluster, a specific node, usually one with a l@ghrgy level, is designated to serve as the
cluster headtheC H/s in the figure). Cluster heads communicate with each othesti@ae a distributed
execution of various queries over the sensor network. Aetlead receives partial results from sensors
in its cluster or from other cluster heads. Then, the cluséad performs additional query processing
and forwards the result to another cluster head or to thersiale, possibly through a multi-hop route.
The sink node is assumed to be a node with high processingitiipa. The sink node analyzes the
guery result, assesses its relevance to the query, andsetlevance feedback to cluster heads seeking
further optimizations.

We now lay down the basic steps of the algorithm that implasdére propose&NJoinalgorithm:
Stepl.Each sensor forwards its readings to its correspondingezibgad.

Step2.At each cluster head, a variable-arity join is performed agibe readings of its cluster members



to generate join tuples of variable sizes (Section 4) whieeesize of the join output depends on the

number of joining sensor&NJoinhandles late and out-of-order tuples in this step.

Step3. A distributed processing phase is initiated by cluster b€&ection 5). Each cluster head decides
on aprobing sequenct® probe other cluster heads looking for matching tuplesragmoembers in their

respective clusters. At the end of the probing sequencggitheesult is shipped to the sink node.

Step4. The sink node measures the weight or contribution of eacéterun the output and returns a
relevancdeedback not¢o the cluster head that initiated the probing sequenceedan the feedback,
the cluster head adjusts future probing sequences by asgigigh probability of being included to

clusters with similar values (Section 6).

4 Variable-arity Join

In this section, we elaborate on the new variable-arity joat would produce variable-size join output in
response to the variable number of sensors contributingib@aomenon. We also compare it to the outer
multi-way join that was initially implemented in previousnsions ofNile-PDT|[2]. In sliding-window
multi-way join, upon the arrival of a new tuple, sayfrom streamS, { probes other streams looking for
matching tuplest joins with tuples that have the same value from other streamsded that matching
tuples are withinu time-window from¢. Deriving an outer join variant of an already existinger join
technique is straightforward. If the probing tuple is niggsin one of the streams, simply append NULL
in lieu of the missing stream and proceed to the next stredns dpproach applies to binary-join trees
and toMJoin. In a tree of binary joins, we propagate partial join resufighe tree even if no matching
values are found at some tree levels.Mdoin, the join probing sequence spans all streams. The join

probing sequence does not terminate if no matching valeefand in any of the streams.

¢ From a performance point of view, deploying outer joinsrdaye-scale sensor networks is cost pro-



hibitive. To detect subsets of joining sensors using owder, jevery sensor in the network has to be
probed. Given the fact that phenomena are usually loca{ezed, an oil spill in a specific area), we may
end up probing thousands of sensors to find out that only tessnsors have a similar behavior. To re-
duce the number of probes involved in an outer multi-way,joia propose the concept of variable-arity

join as given by Definition 1.

Definition 1 Givenm input streamsS;, Ss, - - -, and S,,, each streant; generates tuples of the form

(t;, [Si, 7)), wheret; is the tuple value generated by streaiat timer,. For a newly arriving tuple

—~

t,[S,7]), a variable-arity join over window produces an outpud={(Z, [S, 71, [ Su,» To, ], [ Sos» Toul,
---), whereS,, is one of the joining streams; € 1 - -m, such that=t,, and|* — 7,,| < w, S,, # S,

So, # 50, Vi 5 }.

We should notice that variable-arity join is different frauter join both at the conceptual and imple-
mentation levels. At the conceptual level, variable-goinp omitsstreams that do not participate in the
join to produce a variable-size tuple. The variable-sipgeticontains (1) the join valug (2) the source
stream and the timestamp of the tupfe £], and (3) a variable-size list of streams that produce magch
tuples along with the timestamps of the matching tuplés, ([, ], [Se,, 70,], -+ -). In contrast, outer
join produces a fixed-size tuple withULL values in lieu of missing streams (even in the presence of
many of these NULL values). At the implementation level jalle-arity join probes only streams that
participate in the join. Streams with no matching tuples doimfer any additional cost. However, outer
join probes every stream to check the existence of the jdurev@ven in the presence of many of such

streams.)
4.1 Data Structures

Usually, hash-based join technigues maintain one hash bl stream. A new input tuple is inserted,

based on a hash function, into its own stream’s hash tableagmbe is then launched to look for
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Figure 3. The SNJoin hash table.

matches in other streams’ hash tables. With the increadeeimumber of streams, managing a large
number of hash tables becomes costly. To avoid a lengthypjaining sequence, the variable arity join
uses a single global hash table where all incoming tupleasbed and inserted regardless of their
streaming sources. Grouping tuples of the same value froinugastreams in the same patrtition of a

hash table prepares candidates for the join output in aédvanc

Figure 3 illustrates the proposed SNJoin hash table thaad by the variable arity join. The hash table
is divided into partitions based on a suitable hash functiomhe hash function is only applied over the
value of the join attribute in case the tuple has multiplglaites. In each partition, all tuple values that
appear in the current window are chained in &uple-value lis{TVL), one entry per value. An entry in

TVLis of the form:

1. ¢: the tuple’s value of the join attribute. Notice that a senghtry is created per value evert if

appears multiple times, whether in a single stream or iniplalstreams.

2. VOL — ptr: a pointer to thé/alue-Occurrence Ligior VOL). VOL stores every occurrence of the

valuet. An entry inVOL contains the following:

(@) S: an identifier of the stream that produced the value
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(b) 7: the timestamp at whichwas produced.

VOL is reverse-ordered based on timestamp (ie. A newly-incoming tuple is appended at the

head ofVOL

Finally, every single occurrence of a tupte[ €, 7]) is chronologically chained, i.e., based on timestamp,
in a globalClean-Sweep Liqbor CSL)). CSLspans all partitions of the hash table to link all tuples from
all streams (with the oldest at the head of the list). The psemfCSLIis to expire tuples once they get

outside the sliding windoww.

4.2 Variable-Arity Join Algorithm

The algorithm for the proposed variable-arity join is givarFigure 4. This algorithm is executed by
the cluster head whenever it receives a readings from onts ofuster members. In Step 1, with the
arrival of a new tuplé from streamS at timestamg, the hash functio is applied over to determine
the partition where the tuple should go. Then, the partsituple value list (TVL)s searched to return
a handle to the tuple’s entry iRVL If the tuple is not found, a new entry iAVL is created. In Step
2, the stream that generated the tupi#$ 4nd the tuple’s timestamp) are inserted at the head of the
value occurrence list (VOLhat is associated witfiVLEntryto denote a new occurrence of Step

3 appends the tuple’s occurrence to thean-sweep list (CSlihat maintains all tuples based on their
arrival order for later clean-up purposes. In Step 4, weetiser thevalue occurrence list (VOLY) until
we reach its end (tempNULL) or until we reach a tuple that is far in the past by morartithe window
size ¢ — temp.T > w). As we traversé/OL, we form the join output from the value occurrences in
other streams (i.e§ # temp.S). The join output is formed by separating the value¥®L based on
their source stream intb sublists, i.e., a sublist per stream. Then, we compute tine§ian product of

k + 1 sublists: thek sublists plus a sublist of one tuple, the probing tupl@he Cartesian product of

the sublists is equivalent to the join output since the jaindition (i.e., equality on the tuple value) has
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PROCEDURE Insert-Probe
INPUT: (1) a new input tuple#([ S, 7]) and (2) an SNJoin hash table

OUTPUT: (1) an updated SNJoin hash table (2) the join output produmetliplet

1. TVLEntry=TVL[ H (£)].Searchf)
2. VOLEntry=TVLEntry.vol-ptr.Inserf{, 7)
3. CSL.Append(VOLEnNtry)

4. temp=TVLEntry.vol-ptr.first;
while(tempsNULL and7 — temp.7 < w)

begin

if S # temp.S Appendiemp.T to Sublistiemp.s
temp=temp.next
end

Output« #, Cartesian product@, tau], Sublist;Vi = 1..k), wherek is the total number of sublists

5. TraverseCSL to delete expired tuples

Figure 4. The SNJoin algorithm.
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been already fulfilled byre-groupingtuples by value in the samMOL. Finally, in Step 5, we traverse
the clean sweep list (CSlip delete any tuple with a timestamp that is outside the mexstnt sliding
time-window, i.e.,Current time — C'SL.T > w. Although we choose to perform the clean-sweep step
with the arrival of every tuple, the clean-sweep step candséopmed periodically or in a lazy fashion

when there is plenty of system resources.

4.2.1 Support for Multiple Window Sizes

Up to this point, we assumed that the join operation is peréat over a sliding window such thatv

is fixed for all sensors. However, some applications recuatdferent window size for each sensor (i.e.,
w; Is the sliding window over streaifi;). In literature, binary join is performed over two strearusls
that each stream has its own window size [17]. The genetaizaf having multiple window sizes in
the multi-way join is legitimate as well. Allowing multipleindow sizes gives the flexibility to vary the
memory overhead over different regions of the sensor fietdeemeommodates variable sensor rates and

sensitivity to the occurrence of various events in the emrirent.

In the variable-arity join, it is straightforward to supparultiple window sizes; We just need to change
Step 4 of Figure 4 as follows:
temp=TVLEntry.vol-ptr.first;

while(temp #ANULL and 7 — temp.7 < wasax) begin

if S+ temp.S and? — temp.T < Weemp.S

includetemp.r in the join output off
temp=temp.next

end

We make two modifications. First, we traverse the value oecie list {/ O L) till we reach the maxi-
mumw (i.e.,7 — temp.7 < wyax). Second, for each entry in tRéO L, the timestamp of an element

of streamsS; is tested against its own window sizg,,,,, s instead ofv, i.e.,7 — temp.7 < Wiy s-
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4.3 Variable-arity Join Versus Outer Join

The concept of variable-arity join has three major advaegagyer outer join. First, the variable-arity
join avoids unnecessary long chains of probing sequencéser @chniques, i.e., binary join trees or

MJoin, need to probe large numbers of sensors that may producetpatou

Second, the variable-arity join avoids partial-resultgassing. Binary join tress ddJoinconsume sys-
tem resources in processing partial results. Considengjoibing sequence éftables 1, ha, - - - , hy).
The partial result up to table; is the result of f;XhyX- - - XA;). In binary join trees oMJoin, partial
results have to be maintained (and padded with NULLs if nochiag tuples are found) with every
probe until the probing sequence is exhausted. The cost ofmglete traversal over the partial-result
tuples to pad them with NULLs becomes significant with the@ase in the partial result size and with
the increase in the number of sensors. In the variablejaiitywe retrieve tuples (and only tuples) that

contribute to the output with a single traversaMs)L.

Third, the variable-arity join accommodates the dynameondiguration of a sensor network at no ad-
ditional cost. Since all sensor readings are hashed to the global table, the addition and/or deletion
of sensors affect neither the data structure nor the algoraf the join. In contrast, binary-join trees
require a reorganization of the join tree. Also, in respaiesehanges in the number of sensdvkloin

creates and/or removes hash tables and adjusts the joimgs#Enuence of incoming tuples accordingly.

5 Distributed Processing in SNJoin

Up to this point,SNJoinaddressed the demands of large-scale dynamically-coatiggensor networks
through the notion of variable-arity join. HoweverSNJoinrequires all sensors to transmit their read-
ings to a centralized sink node, the sink node will be a bogtbé, especially with the increase of the net-

work size. Scalable query processing requirestireouteprocessing of sensor readings, i.e., while they
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PROCEDURE Distributed-Insert-Probe

Upon receiving a new input tuple:
INPUT: a new input tuplef([.S, #]).

OUTPUT: the join output produced by tupfeplus a cluster-head probing sequence.

1. r=insert-probe{,[S, #])

2. Choose a cluster-head probing sequen@él(,,,, CHoy, -+ -, CHop)
3. SeqNo =1

4. ship GeqNo, [£,7], [CHoy, CHoy, -+, CHopl, 7) TOCHog,  nos1

Upon receiving a probe request:
INPUT: a probe request PRSeqNo, [, 7], [CHo,, CHo,, - - -, CH,p], R).

OUTPUT: the join output produced by PR and a an updated PR.

1. r=probe(, 7)
2. SeqNo = SeqNo+ 1

3. Ship GeqNo, [£,#],[CHoy, CHoy, -+, CHopl, R4+7) TOCHog, o n ot

Figure 5. The distributed SNJoin algorithm.

are being transmitted to the sink node. Examples of sucleiwark query processing include [7, 16, 22].
We now present a distributed variant ®NJointhat shifts the join operation from the sink node to the

sensor-network level.

As illustrated in Figure 2, we model the sensor network asdaha network of sensor nodes grouped
into clusters based on their energy level and spatial lonatiSNJoindecomposes the entire join oper-
ation into multiple smaller join operations that are peried separately over each cluster at the cluster
head. Then, each cluster head choosehister-head probing sequente probe other cluster heads

looking for matches. The probing sequence will then end lyypshg the join result to the sink node.

Figure 5 gives the distributeé8NJoinalgorithm. A cluster head receives either an input tuplenfane

of its cluster members or a probing request from anothetaliead. Upon receiving a new input tuple,
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SNJoinprobes the cluster head’s local hash table to retrieve & jloicaresult () (Step 1). The cluster
head ("H,,) decides on a probing sequence (either arbitrarily or basegklevance feedbacks as we
will show in the next section) that spassmeor all of the other cluster heads,'#,,, CH,,,---,CH,,)
such thatl<o;<D whereD is the total number of clusters (Step 2). The cluster healassequence
number to onefeqNo = 1) since the cluster head is the initiator of the join opera(®tep 3). Finally,
the cluster head ships the probing request to the next hamp Qluster head numbeélgNo + 1) (Step

4). A probing request consists of a sequence number thatated the last cluster head that processed
the request, the probing tuplethe tuple’s timestamp, a sequence of cluster heads, and the partial join

resultr computed from Step 1.

Upon receiving a probing request, the cluster head probemih hash table (Step 1). Then, the cluster
head increases the probing sequence number (Step2). yiithalcluster head accumulates its local

resultr to the partial resulf computed so far and forwards the probing request to the rogxt h

5.1 Early, Late and Out-of-order Arrival

Due to network delays and un-synchronized clocks in thesdfit cluster heads, three issues need to
be addressed: late and early arrivals, out-of-order dstiand generation of duplicates in the output.
Late tuple arrivals may occur when a tuple arrives at a dilstad’s buffer past the cluster head’s local
clock timestamp. Early tuple arrivals may occur when a t@leses at a cluster head’s buffer before
the cluster head’s local clock timestamp. In the case obdwtrder arrivals, not only tuples are late but
their order has been also altered. Finally, duplicates ncayrovhen the same tuple is reported twice in
the output due to two different cluster heads starting tvif@dint probing sequences for the same tuple

simultaneosuly.

To handle late, early, and out-of-order tuple arrivals, wédy all tuples and probing requests for some

time (i.e., safety factor) before they get processe®hyoin Let us assume thats the maximum delay
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in tuple arrival from a given sensor areklay is the maximum delay of a probing sequence to go from
one cluster head to another. Whenever a tuple arrives tordeegsing node, i.e., cluster head or sink
node, it is added to a buffer based on its timestamp (i.etdezed relative to other tuples). A tuple is
then sent to its usual processing ste@NdJoin(i.e., inserted in the hash table) as soon as its timestamp
goes beyond with respect to the current time in the processing node. I8iipi a probing request is
buffered fore time units to give a chance for all late tuples to be insentethe hash table before the
actual probing takes place. Thus, the probing tuple or ppBequence is delayed byntil all late
tuples are inserted, hence, processed in order with regpetiter inoming tuples. In addition, tuples in
VOL are expired only if they fall outside a window of size { maz(e, Delay)). The idea is to avoid
expiring tuples that may eventually join with delayed tgldelayed by time units) or delayed probing
requests (delayed bielay time units). By increasing the window size, we ensure thatdélayed

probe will find all the tuples that are supposed to be retdeared joined.

To avoid duplicates from appearing in the join output, werretsthe processing of a probing request to
only tuples that came before wherer is the timestamp of the tuple that initiated the probing esju
When a cluster head receives a probing request with a timestér, the cluster head probes its internal
hash table starting from timestamackward, i.e., reterieve all tuples with timestamg¥that are less
thanr. This precaution places an ordering on the timestamps gbthe@utput components and avoids
generating the same output tuple twice, i.e., once in eaddtarl head. For example if cluster he@d/,
generates valueat timestamp- while cluser head' H, generates the same value later on at timestamp
7o (11 < 72). Regardless of the time at which their associated prol@ggests travelled in the network,
the output join tuple is supposed to reported®i/;. When the probing request comes frant/, to
CH,, CH, will scan its value occurrence list starting from backward and will join the value at
timestampr;. For equal time stamps, ties are broken using the clustef idedor example, the cluster

head with a smaller id is responsible for enerating the joitpot.
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6 Query Processing with Relevance Feedback

A major challenge in multi-way join queries over sensor reis is that usually only a small fraction
of the thousands of sensors in the network join with eachrotfiéis challenge is exacerbated in a
distributedenvironment where a probe between two cluster heads rscusgnificant communication
cost. Ideally, the cluster-head probing sequence spartdualier heads in the network to produce as
much output results as possible. However, due to the larmgeadithe network and its associated com-
munication cost, it is more efficient to probe only clustetseve it is more likely to find matches. The
possibility of missing few matches from clusters with lowntiibuting probabilities should not have a
major impact on the process of detecting and tracking phenamThe objective of the proposed query
processing withielevance feedbadk to guide the join operation to process only relevant eluseads,
i.e., clusters that are more likely to generate the sameesallihis selective probing reduces both the
processing and communication costs at the price of losingessireams that could have participated in

the join if they were included in the probing sequence.

With the arrival of a new tuplé at a cluster head, a join probing sequence has to be detetniméhis
case, the probing sequence will k¥, , CH,,, ---, CH,,) such that.<D, whereD is the number
of clusters. Each cluster head along the probing sequemfpe the join operation over its data, then
ships the result to the next cluster head in the probing sexpuentil the join result is received at the sink
node. Based on the join result, the sink node decides on theilmation of each sensor to the output,
i.e., how much each sensor along the probing sequence ®iedlly relevant to the output. The sink
node forms a feedback array{, ws, - - -, wi] (wherek is the arity of the join result) to represent the
contribution weighof each sensor in the output and sends the array to the chesdrthat initiated the
probing sequence (i.&;H,,). For simplicity, let us assume that is the percentage of the output tuples
in which cluster head’ H; appears. Each cluster head maintaifetevance Feedback Matrix (RFBM)

to record the relevance of all other cluster heads to its oyntituples. The&RFBMis used to guide
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future probing sequences. TREBMis defined as follows:

Definition 2 Given a hash functiorf{ () — [hy, hy, ---, h,] and D cluster headsC'H;, CH,,
.-+, CHp, a Relevance Feedback Matrix (RFBNY a two dimensional matrixn( x D) such that
RFBM{[H(t),C H;] represents the relevance of cluster h&ad; to the join probing sequence of tuple

.

UsingRFBM, the join probing sequence (Step 2 in Figure 5) for an inppittiis formed such that the
probability of including a cluster head in the probing semeeis proportional to its relevancetoThe

relevance probing sequence is defined as follows:

Definition 3 GivenD cluster head€' H,, CH,, - - -, CHp and an input tuple, theRelevance Probing

Sequence (RPS)ft is a sequence of cluster headdi,,, CH,,, - - -, CH,, such thatt < D and the

probability Pr{C'H; € RPS}= Zé%fgﬁgﬁ([%gfgm}'

TheRFBMentries are initially set to a base value (e59% to denote that each cluster head has an equal
probability of being included/excluded from the probingjsence). Then, the entries of tRi-BM

change dynamically with the arrival of relevance feedbamies based on the following equation:

k

RFBMIH(f),CH;J=RFBM[H(f),CH;]- =5 + w;

The RFBM entries are affected by the cluster head weight in the outpptrelative to the average
weights of all cluster heads in the outptﬁ—flﬁ). The algorithm of processing relevance feedback
notes that are received from the sink node is given in Figurddice that as cluster heads contribute
to the output, thegraduallyget a higher probability to be included in the probing segeersimilarly,

if cluster heads do not participate in the join output tigegdually lose theirgood reputatiorand are

excluded from the probing sequence.
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Upon receiving a relevance feedback note:

INPUT: a relevance feedback noté:{(C's, ,ws, ), (Csy,ws,), - -+ (Cs,, ws,)])-

OUTPUT: an updated relevance feedback matrix.

fori=1to k
Z_’;:l W
k

]+wSi

RFBM[H (), s;]=RFBM[ H (%), s;] -

Figure 6. Processing of relevance feedback.

7 Evaluation

7.1 Analytical Analysis

The time required to generate the output tuples is the kegiftitat differentiates among the performance
of various join techniques. In this section, we analyze amdmare the output delays for bo8iNJoin
and outeMJoin. The output delay is defined as the time difference betweemthval of a tuple and
the time its effect appears in the output. We now estimatavbeage time required by both ouddoin

andSNJointo generate the output in the centralized case.

Outer MJoin SNJoin
Hash/Insert (&5 Cy
Probe Ca(k—1) -
Collision || C5(k — 1)(£52etL) Oy (dinctz)
Separation — Cy2k_oimy
Form Cs(ITF =t oing) x k| Cs(TTFZ) oun) x 2kk

Figure 7. Cost estimates of both MJoinand SNJoin

The time required to process a tuple, gayrom an input stream is the accumulated times taken to
hasHinsertt into its corresponding hash tablerobe other streams’ hash tables (this applies only to
MJoinsince there is only one hash table &XJoir), resolve collisionsn the hash tables (only one table
for SNJoir), separatethe different encountered tuples into their respectiveastrs, this applies only to

SNJoinsince the tuples for all streams are in the same hash taluldiretly form the output join tuples.
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Givenk input streams, Figure 7 provides the different formulasaimpute the time estimate for each of
the above components for both oukddoin andSNJoin The hashing and insertion steps for both joins
are achieved in constant time, i.€};. OuterMJoin probes all other hash tables théstable ¢ — 1)
looking for matches even if the tuple value is missing in ohthe hash tables. As a result, theobe
cost corresponds to the product of a constanby (£ — 1). In contrast, sinc&NJoinmaintains only
one hash table, all potentially joining tuples are accésslivectly for the current entry in this hash table

and thus the cost gfrobeis null.

Both joins are subject to collisions in the hash table, thet b these collisions corresponds to the
average number of possible distinct values in the hash tibiged by the number of buckets in this
hash tableqizey). Notice that the number of distinct values in outer MJalix{inct,) is different from

the number of distinct values in SNJoidi {tinct;) because the SNJoin hash table receives tuples from
all streams while, in MJoin, each hash table maintains th#egahat are coming from a single stream.
For the outeMJoin, this cost is repeated: (— 1) times, i.e., for probing all the hash tables except the

hash table of the stream that is producing the value.

Since SNJoingroups all tuples in one single hash table it needs to sepénattuples coming from
different streams int& lists to be able to join them afterward. This cost is equivile a single traversal
of the value occurrence lisVQOL). The size of thevOL on average for a specific value equals the
summation of the average number of tuples per stregimfultiplied by the average selectivity of this
value in that streanv() for all & streams which results i,>%_ o;n;. The outerJoinis not subject to

this separation cost since tuples from the same stream #re same table.

The tuple formation cost is computed based on the size ofutmiowhich is the product of the number
of output tuplest:1 o;n; for both joins, by the tuple size, which corresponds to thalner of streams
k for the outerMJoin, and2kk’ for SNJoin The parametek’ < 1 is usually very small. It represents

the fact that only a small percentage of streams will joicgldy of phenomena). This is what will
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reduce the size of the output which will be limited to only$kastreams that contribute to the join. The
factor2 in the formula is needed since the variable-arity join reggiboth the tuple’s timestamp and its
corresponding stream id, i.€[5, 7]), to be reported in the output join tuple. The experimentadpt

will show how this analysis compare to the actual experiment

In the distributed cas&SNJoinperforms the join oveP clusters of input streams. The output delay is
dominated by the communication cost incurred by the prokeguence that needs to travel through-
out all cluster heads or a subset of them if we are using te¥aate feedback. This communication
cost is proportional to the size of the probing sequence s;Ttwevaluate the output delay for the dis-
tributed case, we compute the size of the probing sequemcedeh cluster head, the information that
is generated locally, and added to the probing sequencaladslated using the same formula as in the
tuple formation phase in the centralized case. Thus, if tmeber of sensors in a clustgis k; and the
percentage of joining streams/$, then the size of the local output tuples2ig; £’ fil o;n;, where
2k;K’; is the average number of columns dﬂ(ﬁil o;n; 1S the average number of rows in the partial join
output at clustel. Subsequently foP clusters, the size of the output tuples corresponds to aglem
ing the output of each cluster all the way along the probirgueace till we reach the last cluster (i.e.,
cluster numbe). Accumulating the output means concatenating the coluofrike partial results
and computing the cartesian product of the partial reswisrorhe total output size is estimated to be
(B8, 2k;K)) < (]'[]’.:’:1 Hfil o;n;). This cost is calculated by adding the number of columns aniti-m
plying the number of rows in each cluster head probe alongthkister sequence. Again, the reduction
in size is mainly due to the parametérthat reflects the locality characteristic of phenomena ebety
very few streams contribute the the join. This is in conttaghe outeMMJoin where we need to carry
tuples abouall streams throughout all cluster heads even if those streamstdcontribute to the join.
In addition,SNJoincan achieve better performance through relevance feedbvaukh will reduces the
number of clusters that need to be visited, hence reducangdahameteb in the formula that computes

the size of the probing sequence.
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Figure 8. Performance under

7.2 Experimental Analysis

We now present the experimental study we conducted to exfilerperformance of the proposgeNJoin
operator. We base our study on two experimental setups fn@Nite-PDT system [2]; a real small-
scale sensor board and a simulated large-scale sensorrketWwbe first setup is aeal small-scale
sensor board with a grid fx 5 temperature sensors. Due to hardware limitations, the punftsensor

is limited to 25. However, we overload the system by increasing the sampéitegof each sensor to
one reading every0 milliseconds-seconds. We run each experiment for 10 msnaiel we move a
heat effect back and forth over the sensor board to genehatieopnena. The second setup simulates

a large-scale sensor network (up2@)0 sensors). Each sensor generates a stream of 10,000 tuples
where the tuple values follow the Zipfian distribution [2Bpr each stream, the Zipfian parameter is an

integer value chosen randomly betwdeand5. The inter-arrival time between two consecutive tuples

Drop rate (%)

Phenomena update/sec

HMJ-tree ——
MJoin
SNJoin - Hewwe

5 10 15 20 25
Number of sensors

(b) Input drop rate

HMJ-tree ——
MdJoin =)= 3
SNJoiN oY KK

5 10 15 20 25
Number of sensors

(d) Phenomena updates

real small-scalejata sets.
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Figure 9. Performance under Synthetic large-scal@ata sets.

coming from the same source follows the exponential distidim with an average of second. In both
setups, the join techniques are triggered through a mayijwin query with a sliding window of size

10 seconds.

Three sets of experiments are performed. The first set ofrempets (Section 7.2.1) investigates the
performance under the real sensor-platform setup. Thendeset of experiments (Section 7.2.2) ad-
dresses the large-scale simulated sensor-network sedigxamines the dynamic reconfiguration of the
network. In Sections 7.2.1 and 7.2.2, we compare the pedoce of acentralizedimplementation of

the following three techniques:

1. HMJ-tree where an outer join is performed using a binary tree of lyihash merge joilmperators.

2. MJoin, where an outer join is performed using the single-step sgtricMJoin operator.
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configuration. processing.

3. SNJoin where a variable-arity join is performed as described is paper.

The third set of experiments (Section 7.2.3) highlightsd@mthe simulated setup) the advantages of
guery processing with relevance feedback and comparestifigrmance of distribute§NJoinwith a

distributed variant oMJoin.

The overall system performance is measured in terms of thrdauofdetected phenomena updates per
second Other measures of performance include dligput delay theinput drop rate and theoutput
rate. The output delay is the time difference between the arafaltuple and the time its effect appears
in the output. Due to the system’s limited CPU time and thetiooous arrival of stream data, some
input tuples are dropped randomly from the system’s butie@ccommodate new tuples (i.e., random
load shedding). In all experiments, we assume that tupleging occurs due to limited CPU time and
not to limited memory. We allocate enough memory to acconmatedll tuples in the sliding window.
We measure the number of dropped input tuples relative ttotaénumber of input tuples as the input
drop rate. The output rate is measured in terms of the nunflmrtput join tuples per second. All the
experiments in this section are based on a real implementafithe join operators insiddile [11].

TheNile engine executes on a machine with Intel Pentium 1V, CPU 2 2@kd 512MB RAM running
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Windows XP.

7.2.1 Performancevalues Using Real Data Sets

The performance od HMJ tree MJoin, and SNJoinunder the real sensor-platform setup is given in
Figure 8. As illustrated in Figure 88 NJoinreduces the output delay by upi6% over theHMJ tree
and by up tal9% overMJoin (in case of20 sensors). The output delay reflects the per-tuple proagssin
time (i.e., from the time a tuple arrives at the operatorduifl its effect appears in the output). Notice
that operators with lower per-tuple processing time, exl@dower input drop rate (Figure 8b), and
consequently produce a higher output rate (Figure 8c). Rtmroverall-performance point of view,
SNJoindetects up t@5% more phenomena updates thdMJ treesand up to43% more phenomena

updates thaMJoin (Figure 8d).

7.2.2 Performance Using Synthetic Data Sets

Performance gains &NJoinbecome more significant for large-scale sensor networkgoihtrast to
binary join trees antJoin, SNJoinavoids unnecessary probes to a huge number of separate, tatde
therefore, reduces its per-tuple processing time. The speriments of Section 7.2.1 are repeated
using the 2000 sensor simulated setup. Figure 9 illusttiefficiency ofSNJoinin terms of the
output delay, the input drop rate, and the output r&B.Joindoublvalueses the output rate ofHdJ
treeand increases the output rate by ug®d: overMJoin. Moreover,SNJoindetects up td80% more

phenomena updates theilJ treesand up to35% more phenomena updates thddoin.

Figure 10 gives the behavior of the join techniques with eespo the dynamic configuration of the
network. Every minute, a group of sensors (randomly chosémden 1 and 100 sensors) is either added
or removed from the sensor set. Comparing Figure 9d and &ibirnotice that the dynamic behavior

of the network reduces the number of detected phenomenaaspolaup ta80% in case of eHMJ tree
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and by up to50% in case ofMJoin. However, the performance &NJoinis reduced by onl®0% (at

2000 sensors).

7.2.3 Performance of Distributed SNJoin

In this Section, we study the distributed executiorsdfJoinover clusters otiniformly-distributedsen-
sors in the space. Clusters of sensors are obtained usimgudation of theHEED clustering tech-
nigue [23] with the cluster range being set1t@ of the total sensor space (the number of clusters
is decided by the algorithm based on the cluster range). Westaat a one-level clustering hierar-
chy where cluster heads communicate through a multi-hoproamcation link. The number of hops
between two communicating cluster heads is determined dyatting protocol [21]. Cluster heads
receive the sensor readings of their cluster members,petfee join operation, and communicate with
other cluster heads to perform remote probes. Figure 1k giv@mparison between the performance
of a distributed variant oMJoin and the performance of two distributed variantsSdfJoin one with
relevance feedback and the other without relevance fe&dbiwe distributed variant a¥Join is ob-
tained by performing th#Join operation among members of the same cluster at the clustdr fiden,
each cluster head probes other clusters in a descendingafittie average selectivity of their members.
From Figure 11, notice th&NJoinincreases the number of detected phenomena changes by to
overMJoin. Moreover, query processing with relevance feedback erdsatie performance &NJoin

by up t090% (for 2000 sensors).

The relevance feedback allows the join operation to focusemsors with similar behavior, and hence,
reduces the number of probed streams. Consequently, tHeglerprocessing time is reduced. As a
negative effect of relevance feedback, not all cluster s@ae probed and, consequently, the output join
tuple may miss some streams that could otherwise partecipahe join. Hence, the arity of the output

join tuple is reduced. Experimentally, this reduction ie #rity of the tuple does not exceéd’ (at
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Percentage reduction in

No of noof | output | drop | O/P | tuple | comm.
sensors || probes | delay rate | rate | width cost
200 0 0 0 0 0 0
400 29.1 23.6 3.5 2.2 3.4 25.3
600 41.2 30.4 51 4.7 6.8 38.6
800 50.3 37.7 6.2 6.0 7.2 46.3

1000 60.8 47.5 7.4 6.9 7.9 57.3

1200 65.2 54.1 14.0 | 12.0 8.1 62.3

1400 69.6 58.8 33.6 | 29.1 8.6 64.9

1600 74.4 65.4 43.7 | 42.6 9.3 72.2

1800 77.4 67.6 51.0 | 47.3 9.9 73.8

2000 79.4 70.1 52.3 | 50.3 | 11.5 75.5

Figure 12. The effect of relevance feedback.

2000 sensors). Figure 12 illustrates the effect of the relevdeedback on the performance $NJoin
with respect to the reduction in the number of probed stredhgsoutput delay, the input drop rate,
the tuple width, and the communication cost (measured mgesf the number of bytes transmitted
per second). In general, if we compare the full fled@oinoperator (i.e. SNJoinwith relevance
feedback) to its predecessor insidége-PDT (i.e., MJoin), we find out thatSNJoinreduces the output

delay by70% and increases the number of detected phenomena updat&gy

7.2.4 Comparison of Analytical and Experimental Studies Rsults

In this section, we compare the output delay obtained fraenatialytical study presented earlier with
the output delay obtained through experiments. The val@iekfferent constants that appear in the
analytical analysis are summarized in Table 13. These sateebased on the real sensor platform setup
that is presented earlier in Section 7.2.1. In this setupsamg the number of sensork)(from 5 through

25. We consider 000 readings from each sensot«{erage,) such that the domain from which these

readings are drawn is of siz®0 (Distinct;). We set the number of buckets in all hash table$3o
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(Size of hash table). All the constants( - - - C5) along with the selectivity among sensor data are
assessed experimentally based on the generated valuase Nhatt the selectivity varies for each value
of k& (the number of sensors). Similarly, the paramédestinct,, which represents the total number of
distinct elements in the global hash tableSiJoin has a different value for each value /af If each
sensor has a00 distinct value in its own hash table, the global hash tabRuposed to contain less
thank x 100 distinct values due to the overlap of these values among femsor readings. Finally, the

average number of joining streamnis)(is obtained experimentally and is found to41¥%.

Figure 14 shows the result of the comparison. The analydicdlexperimental output delays exhibit the
same trend for botBNJoinand outeMJoin. We notice thaBNJoinperforms better than the outgiJoin
even with a relatively large value fdr, 40% in this case. The more the phenomena are localized, the

smaller thet’ is and the better performnace ®NJoinis.

Parameter Value Computed/Assumed
k (5,10, 15, 20, 25] Assumed
Averagen, 1000 Assumed
Distincty 100 Assumed
Size of hash table 13 Assumed
C1 26.25 Obtained experimentally
Co 06.93 Obtained experimentally
Cs3 0.24 Obtained experimentally
Cy 2.72 Obtained experimentally
Cs 5.7 Obtained experimentally
Selectivity [0.00130, 0.00129, 0.00122, 0.00116, 0.00112] | Obtained experimentally for each valuefof
Distincta (210, 372, 455, 485, 494] Obtained experimentally for each valuekof
k' 40% Obtained experimentally

Figure 13. Parameter and Constant Values for the Comparison

29



240

220 e K
200 1 T

O ——F
1 60 -~

140 1 X SO R *K
120 | T B e

Total time

MdJoin(Analytically) —+—
MJoin(Experimentally) ---->¢----- 8
SNJoin(Analytically) - HKovoens
SNJoin(Experimentally) =z

5 10 15 20 25
Number of sensors

Figure 14. Comparison of Analytical and Experimental Outpu t Delay for outer MJoin and SNJoin

8 Related Work

A large body of research in the data streaming area focus#segnin operation, e.g., [8, 9, 10, 13]. To

highlight the reasons that makiNJoinapplicable in PhenomenaBases, we overview related malgi-w
join techniques and compare themSbdlJoin Multi-way join can be achieved through a tree of binary
joins (eithersymmetric hash joif20], XJoin[18], or hash merge joiil4]), a singleMJoinoperator [19],

or a singleSNJoinoperator. Based on the experiments in Section 7.2, Figuprdbdes a comparison

among various multi-way join techniques based on a key seistihguishing features.

Trees of binary joins are not scalable due to their mulfpsten-symmetric processing. For the same
reason, trees of binary joins do not allow the dynamic com&igon of sensor networks (unless query
plan reorganization is performed). On the other havidpin and SNJoinare symmetric, scalable, and
dynamically configurable. Also, the output delay in binasinjtrees increases with the increase in the
number of tree levels. The single-step processinglddin and SNJoinresults in a lower output delay.
Moreover,SNJoinis specially designed for large-scale dynamically-cormgusensor networks. Trees
of binary joins are sensitive to variable input rates andimegeorganization of the query plan operators

(e.g., see [5]) to increase the output rate. All techniq@eslte outer joins by traversing the join probing
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Binary join | MJoin | SNJoin
Trees

Scalability X v vV

Dynamic configuration X v 24
Symmetric Join X VA Vv
Reduction in output delay X V4 Vv
Sensitivity to variable i/p rates v X X
Query plan reorganization Vv X X
variable-arity join support X X Vv

Figure 15. Comparison among various multi-way join technig ues (x: feature not supported/: feature

supported,/,/: feature supported and enhanced)

sequence completely. On the other ha®NJoinsupports, by design, variable-arity joins to avoid long

chains of probing sequences.

9 Conclusions

In this paper, we presented tB&lJoin(or Sensor-Network Join) operator, a variable-arity jope@tor
for sensor-network PhenomenaBases. To meet the demanéssirsnetworksSNJoinis designed
to scale with respect to the number of sensors in the netwd@Hout sacrificing the output rate. We
introduced the notion of query processing wigevance feedbadio adjust the join probing sequence
based on the selectivity between sensor paBslJoinsupports the distributed execution of the join

operation with the capability to accept and process relevéeedback.

Experimental studies that are based on a real implementatine join operators insidgile-PDT show
the scalability ofSNJoin SNJoinincreases the output rate over binary join trees Eldain. Once
SNJoinis adopted by PhenomenaBases, the number of detected pbeaapdates is increased while

the output delay is reduced.
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