
SNJoin – A Scalable Join in Sensor-Network PhenomenaBases

Mohamed. H. Ali1 Mourad Ouzzani2 Walid G. Aref1 Ibrahim Kamel3

1Dept. of Computer Science, Purdue University, West Lafayette, IN

2Cyber Center, Purdue University, West Lafayette, IN

3Dept. of Electrical and Computer Engineering, University of Sharjah, Sharjah, U.A.E.

{mhali, mourad, aref}@cs.purdue.edu kamel@sharjah.ac.ae

Abstract

A phenomenon appears in a sensor network when a group of sensors continuously generate a simi-

lar behavior over a period of time. PhenomenaBases (or databases of phenomena) are equipped with

Phenomena Detection and Tracking(PDT) techniques that continuously run in the background of a sen-

sor database system to detect and track phenomena. The process of phenomena detection and tracking

depends mainly on a multi-way join operator which is at the core of PDT techniques to report similar

sensor readings. With the increase in the sensor network size and to address periods of heavy loads, the

join operator and, consequently, query processing in the PhenomenaBase face several challenges. In

this paper, we present a new join operator for PhenomenaBases calledSNJointhat is specially-designed

for dynamically-configured large-scale sensor networks with distributed processing capabilities. In par-

ticular, SNJoin introduces a new concept of join called variable-arity join that is best suited for Phe-

nomenaBases. Variable-arity join reduces the number of probes that would have been necessary in a

multi-way join. SNJoin allows the join to be performed at thesensor level and integrates query process-

ing with relevance feedback to prune further the sensors to be probed to those only that are relevant to
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the join. Experimental studies illustrate the scalabilityand the performance gains of the proposed join

operator in PhenomenaBases with respect to the number of detected phenomena and the output delay.

1 Introduction

With the evolution of large-scale sensor-network technologies, emerging sensor-network applications

call for new online query processing techniques. Such techniques go beyond the traditional sampling,

transmission, and processing of sensor data to the more complex paradigm of analyzing, understand-

ing, and acting upon various forms of phenomena that developin a sensor field. A phenomenon can

be a pollution cloud in the air, an oil spill at the ocean surface, or a fire in a building. In general, a

phenomenon [3] is a region of sensors generating similar behavior over a period of time. Various tech-

niques have been developed to detect phenomena [3], estimate their boundaries [15], and utilize them in

sophisticated data analysis [12].

A sensor-networkPhenomenaBase[1] is a sensor database system that handles phenomena that de-

velop in a sensor field. More specifically, a PhenomenaBase has two basic functionalities: First, it

continuously executesPhenomena Detection and Tracking(PDT) techniques [3] at the background of

a sensor database system to detect new phenomena and track the propagation of already-detected phe-

nomena. Second, it uses the knowledge about detected phenomena to optimize subsequent user queries.

A key component inPDT techniques is anouter multi-wayjoin operator that detectssimilarities

among streams of sensor data over a sliding window of sizeω. This join operation is “multi-way”

because it detects similarities among multiple sensors andit is an “outer” join because phenomena are

usuallylocalized. Out of the large number of sensors in the space, only subsetsof sensors generate the

same values. Other sensors do not participate in the join output and are replaced by NULLs.

Usually, a multi-way join over data streams can be performedusing trees of non-blocking binary joins

(e.g.,symmetric hash join[20], XJoin [18], or hash merge join[14]). Binary join trees perform the

multi-way join in multiple steps (i.e., tree levels) and mayincur several delays. Also, the output rate
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of binary-join trees is sensitive to the join order. For thisreason, binary-join trees are usually equipped

with a dynamic scheme for tree reorganization (e.g., [5]). To overcome the shortcomings of binary-

join trees, [19] introduces theMJoin operator, asingle-stepmulti-way join operator that is symmetric

with respect to all input streams.MJoin produces early output, maximizes the output rate, and avoids

reorganization of the query plan at execution time. Based onthese features, we used an outerMJoin

operator in the previous design ofPDT techniques [3].

MJoin has satisfactory performance for moderate system loads. However, with the increase in the

network size, the sensor sampling rates, and the number of propagating phenomena,PDT techniques

start losing many phenomena updates. A phenomena update is reported if a phenomenon appears, dis-

appears, or changes its location. The number of detected phenomena updates per second reflects how

fast the system is in tracking phenomena as they move in space. To tackle periods of heavy system loads,

we identify three basic challenges that the current design of PhenomenaBases withMJoin faces:

1. Scalability– sensor networks are typically deployed in large scale withthousands of sensors.

2. Dynamic-configuration– Sensors can be dynamically added and removed from the sensor field

based on the network conditions, the sensors’ life time, andthe availability of additional sensors.

3. Distributed-execution– the join operation should be performed in a distributed fashion to eliminate

the bottlenecks of a centralized system.

In this paper, we introduce a novel join operator for PhenomenaBases, calledSNJoin(or Sensor-

Network Join) operator. In a nutshell,SNJoinhandles the distributed execution ofcontinuous multi-way

window joinqueries overdynamically-configured large-scalesensor networks. In contrast toMJoin,

SNJoinis not an outer multi-way join.SNJoinintroduces a new concept of join calledvariable-arity

join. Variable-arity join produces variable-size join output in response to the variable number of sen-

sors contributing to a phenomenon. It exploits thelocality characteristics of phenomena to reduce the

number of streams that need to be joined. Moreover, the performance ofSNJoinimproves over time
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through arelevance feedback(RFB) mechanism.RFBmonitors the contribution of each sensor to the

output. Then,RFB issues afeedback noteto the join operator to indicate the relevance of each sensor

to the output. This feedback note tunes query processing towards sensors that maximize the join output

rate. With these two new notions of variable-arity join andRFB, SNJoinscales well with respect to the

number of sensors and easily adapts to the dynamic configuration of the network. These two features

makeSNJoina perfect match for the join operation in environments wherea small number of sensors

(relative to the huge number of sensors in the sensor field) are likely to join. Although not limited to

PhenomenaBases,SNJoinsuits the process of phenomenon detection since phenomena are usually lo-

calized in small portions of the sensor field. Fire, smoke, and oil spills usually span small portions of

the sensor field. Other environments where such locality is expected call for the deployment ofSNJoin

over its streaming sources.

The contributions of this paper can be summarized as follows:

1. We introduce the new concept of variable-arity join and adopt it in the context ofSNJoin.

2. We enhanceSNJoinwith distributed processing capabilities by performing the join at the sensor

level.

3. We extendSNJoinwith the ability to accept and process relevance feedbacks.

4. We provide an analytical study and an experimental study that is based on a real implementation of

SNJoininsideNile-PDTto prove its efficiency both in terms of the number of detectedphenomena

updates and the output delay.

The remainder of this paper is organized as follows: Section2 gives an overview of PhenomenaBases

andNile PDT, a framework for Phenomenon Detection and Tracking insideNile. Section 3 gives an

outline of SNJoinand investigates the underlying sensor platform. Section 4presents the variable-

arity notion ofSNJoin. Section 5 empowersSNJoinwith distributed processing capabilities. Section 6

describes the relevance feedback mechanism ofSNJoin. Section 7 presents a mathematical analysis of
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Figure 1. The architecture of Nile.

various join techniques and provides an experimental studyof these techniques’ performance. Section 8

overviews related join techniques and compares them toSNJoin. Finally, Section 9 concludes the paper.

2. PhenomenaBases

PhenomenaBases extend sensor database systems with phenomenon-awareness capabilities as a major

step towards the understanding of sensor data. A phenomenonappears in a sensor field if a group

of sensors show “similar” behavior over a period of time. In particular, phenomenon-aware sensor

databases or PhenomenaBases, have two major tasks: First, detecting and tracking various forms of

phenomena. Second, utilizing the knowledge about phenomena to optimize subsequent user queries.

Although individual sensor readings can be useful by themselves,phenomenon detectionexploits various

notions of correlation among sensor data and provides actionable and meaningful information about

the underlying environment.Phenomenon trackingmonitors the propagation of detected phenomena to

reflect the changes in the surrounding environmental conditions. Given the knowledge about phenomena

in the surrounding space, phenomenon-aware optimizers bridge the gap between the low-level sensor

readings and the high-level understanding of phenomena to answer user queries efficiently.

There are five major conduits through which sensor-network applications can benefit fromPDT tech-
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niques: (1)High-level description of the sensor field– With the aid ofPDT techniques, an application

may ask for “What is going on in a sensor field?” instead of asking “What are the sensor readings?” (2)

Phenomenon-guided data acquisition– Data acquisition can be guided by detected phenomena, hence

reducing the sampling rate ofnon-interestingsensors that do not contribute to any phenomena. (3)Data

compression– where we maintain the boundaries of exiting phenomena (along with a brief summary

of the phenomenon content) instead of maintaining every single reading from every single sensor. (4)

Prediction – Tracking a phenomenon movement and predicting its future trajectory foresees the next

state of the sensor field. (5)Phenomenon-guided query processing– Given a query and given a set of

phenomena, query processing can be guided to regions with phenomena that satisfy the query predicates.

Hence, the query space is reduced.

As an effort in the direction of phenomenon-aware systems, we have augmented an existing data

stream management system, namelyNile [11], with the concept of PhenomenaBases. Figure 1 illus-

trates the architecture ofNile. Nile has three basic components: the query admission controller, the

query plan generator, and the query executer. These basic components decide whether to accept or reject

a query based on system resources, generate a query plan, anddeploy the query plan over the sensor net-

work for execution, respectively. To empowerNile with PhenomenaBase capabilities, we add two new

components to the system: (1) TheNile-PDT (or Nile Phenomena Detection and Tracking) module [2]

that continuously detects phenomena at the background of the Nile engine. (2) A phenomenon-aware

optimizer that interacts withNile-PDT to optimize user queries based on Nile-PDT’s knowledge about

the sensor field. In this paper, we focus on theSNJoinalgorithm that comes at the core of theNile-PDT

module.

3. Outline of the SNJoin Algorithm

In this section, we describe the underlying sensor platformover whichSNJoinoperates and outline

the basic steps of the proposed join algorithm. As illustrated in Figure 2, the sensor platform ofNile is
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Figure 2. The sensor platform.

an ad-hoc network with resource-constrained sensor nodes.Each sensor generates a stream of readings.

Stream tuples are timestamped at the source nodes before they are transmitted over the network to a sink

node. However, tuples may arrive late or out-of-order due tonetwork conditions.

Several techniques can be used to dynamically configure the network topology like those proposed

in [4, 6, 23]. These techniques involve message exchange among sensors to acquire knowledge about

their locations and energy levels. Based on the acquired knowledge, sensors are grouped into clusters.

Within each cluster, a specific node, usually one with a high-energy level, is designated to serve as the

cluster head(theCH ′
is in the figure). Cluster heads communicate with each other to achieve a distributed

execution of various queries over the sensor network. A cluster head receives partial results from sensors

in its cluster or from other cluster heads. Then, the clusterhead performs additional query processing

and forwards the result to another cluster head or to the sinknode, possibly through a multi-hop route.

The sink node is assumed to be a node with high processing capabilities. The sink node analyzes the

query result, assesses its relevance to the query, and returns relevance feedback to cluster heads seeking

further optimizations.

We now lay down the basic steps of the algorithm that implements the proposedSNJoinalgorithm:

Step1.Each sensor forwards its readings to its corresponding cluster head.

Step2.At each cluster head, a variable-arity join is performed among the readings of its cluster members
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to generate join tuples of variable sizes (Section 4) where the size of the join output depends on the

number of joining sensors.SNJoinhandles late and out-of-order tuples in this step.

Step3.A distributed processing phase is initiated by cluster heads (Section 5). Each cluster head decides

on aprobing sequenceto probe other cluster heads looking for matching tuples among members in their

respective clusters. At the end of the probing sequence, thejoin result is shipped to the sink node.

Step4. The sink node measures the weight or contribution of each cluster in the output and returns a

relevancefeedback noteto the cluster head that initiated the probing sequence. Based on the feedback,

the cluster head adjusts future probing sequences by assigning high probability of being included to

clusters with similar values (Section 6).

4 Variable-arity Join

In this section, we elaborate on the new variable-arity jointhat would produce variable-size join output in

response to the variable number of sensors contributing to aphenomenon. We also compare it to the outer

multi-way join that was initially implemented in previous versions ofNile-PDT [2]. In sliding-window

multi-way join, upon the arrival of a new tuple, sayt̂, from streamŜ, t̂ probes other streams looking for

matching tuples.̂t joins with tuples that have the same value from other streamsprovided that matching

tuples are withinω time-window fromt̂. Deriving an outer join variant of an already existinginner join

technique is straightforward. If the probing tuple is missing in one of the streams, simply append NULL

in lieu of the missing stream and proceed to the next stream. This approach applies to binary-join trees

and toMJoin. In a tree of binary joins, we propagate partial join resultsup the tree even if no matching

values are found at some tree levels. InMJoin, the join probing sequence spans all streams. The join

probing sequence does not terminate if no matching values are found in any of the streams.

¿From a performance point of view, deploying outer joins over large-scale sensor networks is cost pro-
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hibitive. To detect subsets of joining sensors using outer join, every sensor in the network has to be

probed. Given the fact that phenomena are usually localized(e.g., an oil spill in a specific area), we may

end up probing thousands of sensors to find out that only tens of sensors have a similar behavior. To re-

duce the number of probes involved in an outer multi-way join, we propose the concept of variable-arity

join as given by Definition 1.

Definition 1 Givenm input streams,S1, S2, · · · , andSm, each streamSi generates tuples of the form

(ti, [Si, τi]), whereti is the tuple value generated by streamSi at timeτi. For a newly arriving tuple

(t̂, [Ŝ, τ̂ ]), a variable-arity join over windowω produces an outputO={(t̂, [Ŝ, τ̂ ], [ So1
, τo1

], [ So2
, τo2

],

· · · ), whereSoi
is one of the joining streams,oi ∈ 1 · ·m, such that̂t=toi

and |τ̂ − τoi
| ≤ ω, Soi

6= Ŝ,

Soi
6= Soj

∀i 6= j }.

We should notice that variable-arity join is different fromouter join both at the conceptual and imple-

mentation levels. At the conceptual level, variable-arityjoin omitsstreams that do not participate in the

join to produce a variable-size tuple. The variable-size tuple contains (1) the join valuêt, (2) the source

stream and the timestamp of the tuple [Ŝ, τ̂ ], and (3) a variable-size list of streams that produce matching

tuples along with the timestamps of the matching tuples ([So1
, τo1

], [So2
, τo2

], · · · ). In contrast, outer

join produces a fixed-size tuple withNULL values in lieu of missing streams (even in the presence of

many of these NULL values). At the implementation level, variable-arity join probes only streams that

participate in the join. Streams with no matching tuples do not infer any additional cost. However, outer

join probes every stream to check the existence of the join value (even in the presence of many of such

streams.)

4.1 Data Structures

Usually, hash-based join techniques maintain one hash table per stream. A new input tuple is inserted,

based on a hash function, into its own stream’s hash table anda probe is then launched to look for
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matches in other streams’ hash tables. With the increase in the number of streams, managing a large

number of hash tables becomes costly. To avoid a lengthy joinprobing sequence, the variable arity join

uses a single global hash table where all incoming tuples arehashed and inserted regardless of their

streaming sources. Grouping tuples of the same value from various streams in the same partition of a

hash table prepares candidates for the join output in advance.

Figure 3 illustrates the proposed SNJoin hash table that is used by the variable arity join. The hash table

is divided into partitions based on a suitable hash functionH. The hash function is only applied over the

value of the join attribute in case the tuple has multiple attributes. In each partition, all tuple values that

appear in the current windowω are chained in atuple-value list(TVL), one entry per value. An entry in

TVL is of the form:

1. t: the tuple’s value of the join attribute. Notice that a single entry is created per value even ift

appears multiple times, whether in a single stream or in multiple streams.

2. V OL− ptr: a pointer to theValue-Occurrence List(or VOL). VOLstores every occurrence of the

valuet. An entry inVOL contains the following:

(a) S: an identifier of the stream that produced the valuet.
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(b) τ : the timestamp at whicht was produced.

VOL is reverse-ordered based on timestamp (i.e.,τ ). A newly-incoming tuple is appended at the

head ofVOL.

Finally, every single occurrence of a tuple (t,[S, τ ]) is chronologically chained, i.e., based on timestamp,

in a globalClean-Sweep List(or CSL)). CSLspans all partitions of the hash table to link all tuples from

all streams (with the oldest at the head of the list). The purpose ofCSLis to expire tuples once they get

outside the sliding windowω.

4.2 Variable-Arity Join Algorithm

The algorithm for the proposed variable-arity join is givenin Figure 4. This algorithm is executed by

the cluster head whenever it receives a readings from one of its cluster members. In Step 1, with the

arrival of a new tuplêt from streamŜ at timestamp̂τ , the hash functionH is applied over̂t to determine

the partition where the tuple should go. Then, the partition’s tuple value list (TVL)is searched to return

a handle to the tuple’s entry inTVL. If the tuple is not found, a new entry inTVL is created. In Step

2, the stream that generated the tuple (Ŝ) and the tuple’s timestamp (τ̂ ) are inserted at the head of the

value occurrence list (VOL)that is associated withTVLEntry to denote a new occurrence oft̂. Step

3 appends the tuple’s occurrence to theclean-sweep list (CSL)that maintains all tuples based on their

arrival order for later clean-up purposes. In Step 4, we traverse thevalue occurrence list (VOL(t̂)) until

we reach its end (temp=NULL) or until we reach a tuple that is far in the past by more than the window

size (̂τ − temp.τ > ω). As we traverseV OL, we form the join output from the value occurrences in

other streams (i.e.,̂S 6= temp.S). The join output is formed by separating the values inVOL based on

their source stream intok sublists, i.e., a sublist per stream. Then, we compute the Cartesian product of

k + 1 sublists: thek sublists plus a sublist of one tuple, the probing tuplet̂. The Cartesian product of

the sublists is equivalent to the join output since the join condition (i.e., equality on the tuple value) has
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PROCEDURE Insert-Probe

INPUT: (1) a new input tuple (̂t,[Ŝ, τ̂ ]) and (2) an SNJoin hash table

OUTPUT: (1) an updated SNJoin hash table (2) the join output producedby tuplet̂

1. TVLEntry=TVL[(H(t̂)].Search(̂t)

2. VOLEntry=TVLEntry.vol-ptr.Insert(̂S , τ̂ )

3. CSL.Append(VOLEntry)

4. temp=TVLEntry.vol-ptr.first;

while(temp6=NULL andτ̂ − temp.τ ≤ ω)

begin

if Ŝ 6= temp.S Appendtemp.τ to Sublisttemp.s

temp=temp.next

end

Output← t̂, Cartesian product([Ŝ , ˆtau], Sublisti∀i = 1..k), wherek is the total number of sublists

5. TraverseCSL to delete expired tuples

Figure 4. The SNJoin algorithm.
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been already fulfilled bypre-groupingtuples by value in the sameVOL. Finally, in Step 5, we traverse

theclean sweep list (CSL)to delete any tuple with a timestamp that is outside the most recent sliding

time-window, i.e.,Current time − CSL.τ > ω. Although we choose to perform the clean-sweep step

with the arrival of every tuple, the clean-sweep step can be performed periodically or in a lazy fashion

when there is plenty of system resources.

4.2.1 Support for Multiple Window Sizes

Up to this point, we assumed that the join operation is performed over a sliding windowω such thatω

is fixed for all sensors. However, some applications requirea different window size for each sensor (i.e.,

ωi is the sliding window over streamSi). In literature, binary join is performed over two streams such

that each stream has its own window size [17]. The generalization of having multiple window sizes in

the multi-way join is legitimate as well. Allowing multiplewindow sizes gives the flexibility to vary the

memory overhead over different regions of the sensor field and accommodates variable sensor rates and

sensitivity to the occurrence of various events in the environment.

In the variable-arity join, it is straightforward to support multiple window sizes; We just need to change

Step 4 of Figure 4 as follows:

temp=TVLEntry.vol-ptr.first;

while(temp 6=NULL and τ̂ − temp.τ ≤ ωMAX ) begin

if Ŝ 6= temp.S andτ̂ − temp.τ ≤ ωtemp.S

includetemp.τ in the join output of̂t

temp=temp.next

end

We make two modifications. First, we traverse the value occurrence list (V OL) till we reach the maxi-

mumω ( i.e., τ̂ − temp.τ ≤ ωMAX). Second, for each entry in theV OL, the timestamp of an element

of streamSi is tested against its own window sizeωtemp.S instead ofω, i.e., τ̂ − temp.τ ≤ ωtemp.S.
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4.3 Variable-arity Join Versus Outer Join

The concept of variable-arity join has three major advantages over outer join. First, the variable-arity

join avoids unnecessary long chains of probing sequences. Other techniques, i.e., binary join trees or

MJoin, need to probe large numbers of sensors that may produce no output.

Second, the variable-arity join avoids partial-result processing. Binary join tress orMJoinconsume sys-

tem resources in processing partial results. Consider a join probing sequence ofk tables (h1, h2, · · · , hk).

The partial result up to tablehi is the result of (h11h21· · ·1hi). In binary join trees orMJoin, partial

results have to be maintained (and padded with NULLs if no matching tuples are found) with every

probe until the probing sequence is exhausted. The cost of a complete traversal over the partial-result

tuples to pad them with NULLs becomes significant with the increase in the partial result size and with

the increase in the number of sensors. In the variable-arityjoin, we retrieve tuples (and only tuples) that

contribute to the output with a single traversal ofVOL.

Third, the variable-arity join accommodates the dynamic reconfiguration of a sensor network at no ad-

ditional cost. Since all sensor readings are hashed to the same global table, the addition and/or deletion

of sensors affect neither the data structure nor the algorithm of the join. In contrast, binary-join trees

require a reorganization of the join tree. Also, in responseto changes in the number of sensors,MJoin

creates and/or removes hash tables and adjusts the join probing sequence of incoming tuples accordingly.

5 Distributed Processing in SNJoin

Up to this point,SNJoinaddressed the demands of large-scale dynamically-configured sensor networks

through the notion of variable-arity join. However, ifSNJoinrequires all sensors to transmit their read-

ings to a centralized sink node, the sink node will be a bottleneck, especially with the increase of the net-

work size. Scalable query processing requires theen-routeprocessing of sensor readings, i.e., while they
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PROCEDURE Distributed-Insert-Probe

Upon receiving a new input tuple:

INPUT: a new input tuple (̂t,[Ŝ, τ̂ ]).

OUTPUT: the join output produced by tuplêt plus a cluster-head probing sequence.

1. r=insert-probe(̂t,[Ŝ, τ̂ ])

2. Choose a cluster-head probing sequence (CHo2
, CHo3

, · · · , CHoD
)

3. SeqNo = 1

4. Ship (SeqNo, [ t̂, τ̂ ], [ CHo1
, CHo2

, · · · , CHoD
], r) ToCHoSeqNo+1

Upon receiving a probe request:

INPUT: a probe request PR:(SeqNo, [ t̂, τ̂ ], [ CHo1
, CHo2

, · · · , CHoD
], R).

OUTPUT: the join output produced by PR and a an updated PR.

1. r=probe(̂t, τ̂ )

2. SeqNo = SeqNo + 1

3. Ship (SeqNo, [ t̂, τ̂ ], [ CHo1
, CHo2

, · · · , CHoD
], R + r) ToCHoSeqNo+1

Figure 5. The distributed SNJoin algorithm.

are being transmitted to the sink node. Examples of such in-network query processing include [7, 16, 22].

We now present a distributed variant ofSNJointhat shifts the join operation from the sink node to the

sensor-network level.

As illustrated in Figure 2, we model the sensor network as an ad-hoc network of sensor nodes grouped

into clusters based on their energy level and spatial locations.SNJoindecomposes the entire join oper-

ation into multiple smaller join operations that are performed separately over each cluster at the cluster

head. Then, each cluster head chooses acluster-head probing sequenceto probe other cluster heads

looking for matches. The probing sequence will then end by shipping the join result to the sink node.

Figure 5 gives the distributedSNJoinalgorithm. A cluster head receives either an input tuple from one

of its cluster members or a probing request from another cluster head. Upon receiving a new input tuple,
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SNJoinprobes the cluster head’s local hash table to retrieve a local join result (r) (Step 1). The cluster

head (CHo1
) decides on a probing sequence (either arbitrarily or basedon relevance feedbacks as we

will show in the next section) that spanssomeor all of the other cluster heads, (CHo2
, CHo3

, · · · , CHoD
)

such that1≤oi≤D whereD is the total number of clusters (Step 2). The cluster head sets a sequence

number to one (SeqNo = 1) since the cluster head is the initiator of the join operation (Step 3). Finally,

the cluster head ships the probing request to the next hop (i.e., Cluster head numberSeqNo + 1) (Step

4). A probing request consists of a sequence number that indicates the last cluster head that processed

the request, the probing tuplêt, the tuple’s timestampτ , a sequence of cluster heads, and the partial join

resultr computed from Step 1.

Upon receiving a probing request, the cluster head probes its own hash table (Step 1). Then, the cluster

head increases the probing sequence number (Step2). Finally, the cluster head accumulates its local

resultr to the partial resultR computed so far and forwards the probing request to the next hop.

5.1 Early, Late and Out-of-order Arrival

Due to network delays and un-synchronized clocks in the different cluster heads, three issues need to

be addressed: late and early arrivals, out-of-order arrivals, and generation of duplicates in the output.

Late tuple arrivals may occur when a tuple arrives at a cluster head’s buffer past the cluster head’s local

clock timestamp. Early tuple arrivals may occur when a tuplearrives at a cluster head’s buffer before

the cluster head’s local clock timestamp. In the case of out-of-order arrivals, not only tuples are late but

their order has been also altered. Finally, duplicates may occur when the same tuple is reported twice in

the output due to two different cluster heads starting two different probing sequences for the same tuple

simultaneosuly.

To handle late, early, and out-of-order tuple arrivals, we buffer all tuples and probing requests for some

time (i.e., safety factor) before they get processed bySNJoin. Let us assume thatǫ is the maximum delay
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in tuple arrival from a given sensor andDelay is the maximum delay of a probing sequence to go from

one cluster head to another. Whenever a tuple arrives to the processing node, i.e., cluster head or sink

node, it is added to a buffer based on its timestamp (i.e., reordered relative to other tuples). A tuple is

then sent to its usual processing step bySNJoin(i.e., inserted in the hash table) as soon as its timestamp

goes beyondǫ with respect to the current time in the processing node. Similarly, a probing request is

buffered forǫ time units to give a chance for all late tuples to be inserted in the hash table before the

actual probing takes place. Thus, the probing tuple or probing sequence is delayed byǫ until all late

tuples are inserted, hence, processed in order with respectto other inoming tuples. In addition, tuples in

V OL are expired only if they fall outside a window of size (w + max(ǫ, Delay)). The idea is to avoid

expiring tuples that may eventually join with delayed tuples (delayed byǫ time units) or delayed probing

requests (delayed byDelay time units). By increasing the window size, we ensure that the delayed

probe will find all the tuples that are supposed to be retrieved and joined.

To avoid duplicates from appearing in the join output, we restrict the processing of a probing request to

only tuples that came beforeτ , whereτ is the timestamp of the tuple that initiated the probing request.

When a cluster head receives a probing request with a timestamp ofτ , the cluster head probes its internal

hash table starting from timestampτ backward, i.e., reterieve all tuples with timestamps (τ ′) that are less

thanτ . This precaution places an ordering on the timestamps of thejoin output components and avoids

generating the same output tuple twice, i.e., once in each cluster head. For example if cluster headCH1

generates valuev at timestampτ1 while cluser headCH2 generates the same value later on at timestamp

τ2 (τ1 < τ2). Regardless of the time at which their associated probing requests travelled in the network,

the output join tuple is supposed to reported byCH1. When the probing request comes fromCH2 to

CH1, CH1 will scan its value occurrence list starting fromτ2 backward and will join the valuev at

timestampτ1. For equal time stamps, ties are broken using the cluster head id. For example, the cluster

head with a smaller id is responsible for enerating the join output.
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6 Query Processing with Relevance Feedback

A major challenge in multi-way join queries over sensor networks is that usually only a small fraction

of the thousands of sensors in the network join with each other. This challenge is exacerbated in a

distributedenvironment where a probe between two cluster heads requires a significant communication

cost. Ideally, the cluster-head probing sequence spans allcluster heads in the network to produce as

much output results as possible. However, due to the large size of the network and its associated com-

munication cost, it is more efficient to probe only clusters where it is more likely to find matches. The

possibility of missing few matches from clusters with low contributing probabilities should not have a

major impact on the process of detecting and tracking phenomena. The objective of the proposed query

processing withrelevance feedbackis to guide the join operation to process only relevant cluster heads,

i.e., clusters that are more likely to generate the same values. This selective probing reduces both the

processing and communication costs at the price of losing some streams that could have participated in

the join if they were included in the probing sequence.

With the arrival of a new tuplêt at a cluster head, a join probing sequence has to be determined. In this

case, the probing sequence will be (CHo1
, CHo2

, · · · , CHok
) such thatk≤D, whereD is the number

of clusters. Each cluster head along the probing sequence performs the join operation over its data, then

ships the result to the next cluster head in the probing sequence until the join result is received at the sink

node. Based on the join result, the sink node decides on the contribution of each sensor to the output,

i.e., how much each sensor along the probing sequence is effectively relevant to the output. The sink

node forms a feedback array [w1, w2, · · · , wk] (wherek is the arity of the join result) to represent the

contribution weightof each sensor in the output and sends the array to the clusterhead that initiated the

probing sequence (i.e.,CHo1
). For simplicity, let us assume thatwi is the percentage of the output tuples

in which cluster headCHi appears. Each cluster head maintains aRelevance Feedback Matrix (RFBM)

to record the relevance of all other cluster heads to its own input tuples. TheRFBM is used to guide
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future probing sequences. TheRFBM is defined as follows:

Definition 2 Given a hash functionH(t̂) → [h1, h2, · · · , hn] and D cluster headsCH1, CH2,

· · · , CHD, a Relevance Feedback Matrix (RFBM)is a two dimensional matrix (n × D) such that

RFBM [H(t̂), CHi] represents the relevance of cluster headCHi to the join probing sequence of tuple

t̂.

UsingRFBM, the join probing sequence (Step 2 in Figure 5) for an input tuple t̂ is formed such that the

probability of including a cluster head in the probing sequence is proportional to its relevance tot̂. The

relevance probing sequence is defined as follows:

Definition 3 GivenD cluster headsCH1, CH2, · · · , CHD and an input tuplêt, theRelevance Probing

Sequence (RPS)of t̂ is a sequence of cluster headsCHo1
, CHo2

, · · · , CHok
such thatk ≤ D and the

probability Pr{CHi ∈ RPS}= RFBM [H(t̂),CHi]
PD

i=1
RFBM [H(t̂),CHi]

.

TheRFBMentries are initially set to a base value (e.g.,50% to denote that each cluster head has an equal

probability of being included/excluded from the probing sequence). Then, the entries of theRFBM

change dynamically with the arrival of relevance feedback notes based on the following equation:

RFBM [H(t̂), CHi]=RFBM [H(t̂), CHi]-
Pk

j=1
wj

k
+ wi

The RFBM entries are affected by the cluster head weight in the output(wi) relative to the average

weights of all cluster heads in the output (
Pk

j=1
wj

k
). The algorithm of processing relevance feedback

notes that are received from the sink node is given in Figure 6. Notice that as cluster heads contribute

to the output, theygraduallyget a higher probability to be included in the probing sequence. Similarly,

if cluster heads do not participate in the join output theygradually lose theirgood reputationand are

excluded from the probing sequence.
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Upon receiving a relevance feedback note:

INPUT: a relevance feedback note:(t̂, [(Cs1
,ws1

), (Cs2
,ws2

), · · · , (Csk
,wsk

)]).

OUTPUT: an updated relevance feedback matrix.

for i=1 to k

RFBM[H(t̂), si]=RFBM[H(t̂), si] -
Pk

j=1 wsj

k
+ wsi

Figure 6. Processing of relevance feedback.

7 Evaluation

7.1 Analytical Analysis

The time required to generate the output tuples is the key factor that differentiates among the performance

of various join techniques. In this section, we analyze and compare the output delays for bothSNJoin

and outerMJoin. The output delay is defined as the time difference between the arrival of a tuple and

the time its effect appears in the output. We now estimate theaverage time required by both outerMJoin

andSNJointo generate the output in the centralized case.

Outer MJoin SNJoin

Hash/Insert C1 C1

Probe C2(k − 1) −

Collision C3(k − 1)( distinct1
sizeH

) C3(distinct2
sizeH

)

Separation − C4Σk
i=1

σini

Form C5(
Qk−1

i=1
σini) × k C5(

Qk−1

i=1
σini) × 2kk′

Figure 7. Cost estimates of both MJoinand SNJoin.

The time required to process a tuple, sayt, from an input stream is the accumulated times taken to

hash/insert t into its corresponding hash table,probeother streams’ hash tables (this applies only to

MJoinsince there is only one hash table forSNJoin), resolve collisionsin the hash tables (only one table

for SNJoin), separatethe different encountered tuples into their respective streams, this applies only to

SNJoinsince the tuples for all streams are in the same hash table, and finally form the output join tuples.
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Givenk input streams, Figure 7 provides the different formulas to compute the time estimate for each of

the above components for both outerMJoin andSNJoin. The hashing and insertion steps for both joins

are achieved in constant time, i.e.,C1. OuterMJoin probes all other hash tables thant’s table (k − 1)

looking for matches even if the tuple value is missing in one of the hash tables. As a result, theprobe

cost corresponds to the product of a constantC2 by (k − 1). In contrast, sinceSNJoinmaintains only

one hash table, all potentially joining tuples are accessible directly for the current entry in this hash table

and thus the cost ofprobeis null.

Both joins are subject to collisions in the hash table, the cost of these collisions corresponds to the

average number of possible distinct values in the hash tabledivided by the number of buckets in this

hash table (sizeH ). Notice that the number of distinct values in outer MJoin (distinct1) is different from

the number of distinct values in SNJoin (distinct2) because the SNJoin hash table receives tuples from

all streams while, in MJoin, each hash table maintains the values that are coming from a single stream.

For the outerMJoin, this cost is repeated (k − 1) times, i.e., for probing all the hash tables except the

hash table of the stream that is producing the value.

SinceSNJoingroups all tuples in one single hash table it needs to separate the tuples coming from

different streams intok lists to be able to join them afterward. This cost is equivalent to a single traversal

of the value occurrence list (VOL). The size of theVOL on average for a specific value equals the

summation of the average number of tuples per stream (ni) multiplied by the average selectivity of this

value in that stream (σi) for all k streams which results inC4Σ
k
i=1σini. The outerJoin is not subject to

this separation cost since tuples from the same stream are inthe same table.

The tuple formation cost is computed based on the size of the output which is the product of the number

of output tuples,
∏k

i=1 σini for both joins, by the tuple size, which corresponds to the number of streams

k for the outerMJoin, and2kk′ for SNJoin. The parameterk′ < 1 is usually very small. It represents

the fact that only a small percentage of streams will join (locality of phenomena). This is what will
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reduce the size of the output which will be limited to only those streams that contribute to the join. The

factor2 in the formula is needed since the variable-arity join requires both the tuple’s timestamp and its

corresponding stream id, i.e.,([Ŝ, τ̂ ]), to be reported in the output join tuple. The experimental study

will show how this analysis compare to the actual experiments.

In the distributed case,SNJoinperforms the join overD clusters of input streams. The output delay is

dominated by the communication cost incurred by the probingsequence that needs to travel through-

out all cluster heads or a subset of them if we are using the relevance feedback. This communication

cost is proportional to the size of the probing sequence. Thus, to evaluate the output delay for the dis-

tributed case, we compute the size of the probing sequence. For each cluster head, the information that

is generated locally, and added to the probing sequence, is calculated using the same formula as in the

tuple formation phase in the centralized case. Thus, if the number of sensors in a clusterj is kj and the

percentage of joining streams isk′
j , then the size of the local output tuples is2kjk

′
j

∏kj

i=1 σini, where

2kjk
′
j is the average number of columns and

∏kj

i=1 σini is the average number of rows in the partial join

output at clusterj. Subsequently forD clusters, the size of the output tuples corresponds to accumulat-

ing the output of each cluster all the way along the probing sequence till we reach the last cluster (i.e.,

cluster numberD). Accumulating the output means concatenating the columnsof the partial results

and computing the cartesian product of the partial result rows. The total output size is estimated to be

(ΣD
j=12kjk

′
j) × (

∏D

j=1

∏kj

i=1 σini). This cost is calculated by adding the number of columns and multi-

plying the number of rows in each cluster head probe along theD cluster sequence. Again, the reduction

in size is mainly due to the parameterk′
j that reflects the locality characteristic of phenomena where only

very few streams contribute the the join. This is in contrastto the outerMJoin where we need to carry

tuples aboutall streams throughout all cluster heads even if those streams do not contribute to the join.

In addition,SNJoincan achieve better performance through relevance feedbacks which will reduces the

number of clusters that need to be visited, hence reducing the parameterD in the formula that computes

the size of the probing sequence.
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Figure 8. Performance under real small-scaledata sets.

7.2 Experimental Analysis

We now present the experimental study we conducted to explore the performance of the proposedSNJoin

operator. We base our study on two experimental setups from the Nile-PDT system [2]; a real small-

scale sensor board and a simulated large-scale sensor network. The first setup is areal small-scale

sensor board with a grid of5×5 temperature sensors. Due to hardware limitations, the number of sensor

is limited to 25. However, we overload the system by increasing the samplingrate of each sensor to

one reading every10 milliseconds-seconds. We run each experiment for 10 minutes and we move a

heat effect back and forth over the sensor board to generate phenomena. The second setup simulates

a large-scale sensor network (up to2000 sensors). Each sensor generates a stream of 10,000 tuples

where the tuple values follow the Zipfian distribution [24].For each stream, the Zipfian parameter is an

integer value chosen randomly between1 and5. The inter-arrival time between two consecutive tuples
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Figure 9. Performance under synthetic large-scaledata sets.

coming from the same source follows the exponential distribution with an average of1 second. In both

setups, the join techniques are triggered through a multi-way join query with a sliding window of size

10 seconds.

Three sets of experiments are performed. The first set of experiments (Section 7.2.1) investigates the

performance under the real sensor-platform setup. The second set of experiments (Section 7.2.2) ad-

dresses the large-scale simulated sensor-network setup and examines the dynamic reconfiguration of the

network. In Sections 7.2.1 and 7.2.2, we compare the performance of acentralizedimplementation of

the following three techniques:

1. HMJ-tree, where an outer join is performed using a binary tree of binary hash merge joinoperators.

2. MJoin, where an outer join is performed using the single-step symmetricMJoinoperator.
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3. SNJoin, where a variable-arity join is performed as described in this paper.

The third set of experiments (Section 7.2.3) highlights (under the simulated setup) the advantages of

query processing with relevance feedback and compares the performance of distributedSNJoinwith a

distributed variant ofMJoin.

The overall system performance is measured in terms of the number ofdetected phenomena updates per

second. Other measures of performance include theoutput delay, the input drop rate, and theoutput

rate. The output delay is the time difference between the arrivalof a tuple and the time its effect appears

in the output. Due to the system’s limited CPU time and the continuous arrival of stream data, some

input tuples are dropped randomly from the system’s buffersto accommodate new tuples (i.e., random

load shedding). In all experiments, we assume that tuple dropping occurs due to limited CPU time and

not to limited memory. We allocate enough memory to accommodate all tuples in the sliding window.

We measure the number of dropped input tuples relative to thetotal number of input tuples as the input

drop rate. The output rate is measured in terms of the number of output join tuples per second. All the

experiments in this section are based on a real implementation of the join operators insideNile [11].

TheNile engine executes on a machine with Intel Pentium IV, CPU 2.4GHZ and 512MB RAM running
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Windows XP.

7.2.1 Performancevalues Using Real Data Sets

The performance ofa HMJ tree, MJoin, andSNJoinunder the real sensor-platform setup is given in

Figure 8. As illustrated in Figure 8a,SNJoinreduces the output delay by up to36% over theHMJ tree

and by up to19% overMJoin (in case of20 sensors). The output delay reflects the per-tuple processing

time (i.e., from the time a tuple arrives at the operator buffer till its effect appears in the output). Notice

that operators with lower per-tuple processing time, exhibit a lower input drop rate (Figure 8b), and

consequently produce a higher output rate (Figure 8c). Fromthe overall-performance point of view,

SNJoindetects up to75% more phenomena updates thanHMJ treesand up to43% more phenomena

updates thanMJoin (Figure 8d).

7.2.2 Performance Using Synthetic Data Sets

Performance gains ofSNJoinbecome more significant for large-scale sensor networks. Incontrast to

binary join trees andMJoin, SNJoinavoids unnecessary probes to a huge number of separate tables, and

therefore, reduces its per-tuple processing time. The sameexperiments of Section 7.2.1 are repeated

using the 2000 sensor simulated setup. Figure 9 illustratesthe efficiency ofSNJoinin terms of the

output delay, the input drop rate, and the output rate.SNJoindoublvalueses the output rate of aHMJ

treeand increases the output rate by up to60% overMJoin. Moreover,SNJoindetects up to180% more

phenomena updates thanHMJ treesand up to85% more phenomena updates thanMJoin.

Figure 10 gives the behavior of the join techniques with respect to the dynamic configuration of the

network. Every minute, a group of sensors (randomly chosen between 1 and 100 sensors) is either added

or removed from the sensor set. Comparing Figure 9d and Figure 10, notice that the dynamic behavior

of the network reduces the number of detected phenomena updates by up to80% in case of aHMJ tree
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and by up to50% in case ofMJoin. However, the performance ofSNJoinis reduced by only20% (at

2000 sensors).

7.2.3 Performance of Distributed SNJoin

In this Section, we study the distributed execution ofSNJoinover clusters ofuniformly-distributedsen-

sors in the space. Clusters of sensors are obtained using a simulation of theHEED clustering tech-

nique [23] with the cluster range being set to10% of the total sensor space (the number of clusters

is decided by the algorithm based on the cluster range). We construct a one-level clustering hierar-

chy where cluster heads communicate through a multi-hop communication link. The number of hops

between two communicating cluster heads is determined by the routing protocol [21]. Cluster heads

receive the sensor readings of their cluster members, perform the join operation, and communicate with

other cluster heads to perform remote probes. Figure 11 gives a comparison between the performance

of a distributed variant ofMJoin and the performance of two distributed variants ofSNJoin: one with

relevance feedback and the other without relevance feedback. The distributed variant ofMJoin is ob-

tained by performing theMJoinoperation among members of the same cluster at the cluster head. Then,

each cluster head probes other clusters in a descending order of the average selectivity of their members.

From Figure 11, notice thatSNJoinincreases the number of detected phenomena changes by up to30%

overMJoin. Moreover, query processing with relevance feedback enhances the performance ofSNJoin

by up to90% (for 2000 sensors).

The relevance feedback allows the join operation to focus onsensors with similar behavior, and hence,

reduces the number of probed streams. Consequently, the per-tuple processing time is reduced. As a

negative effect of relevance feedback, not all cluster heads are probed and, consequently, the output join

tuple may miss some streams that could otherwise participate in the join. Hence, the arity of the output

join tuple is reduced. Experimentally, this reduction in the arity of the tuple does not exceed12% (at
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Percentage reduction in

No of no of output drop O/P tuple comm.

sensors probes delay rate rate width cost

200 0 0 0 0 0 0

400 29.1 23.6 3.5 2.2 3.4 25.3

600 41.2 30.4 5.1 4.7 6.8 38.6

800 50.3 37.7 6.2 6.0 7.2 46.3

1000 60.8 47.5 7.4 6.9 7.9 57.3

1200 65.2 54.1 14.0 12.0 8.1 62.3

1400 69.6 58.8 33.6 29.1 8.6 64.9

1600 74.4 65.4 43.7 42.6 9.3 72.2

1800 77.4 67.6 51.0 47.3 9.9 73.8

2000 79.4 70.1 52.3 50.3 11.5 75.5

Figure 12. The effect of relevance feedback.

2000 sensors). Figure 12 illustrates the effect of the relevancefeedback on the performance ofSNJoin

with respect to the reduction in the number of probed streams, the output delay, the input drop rate,

the tuple width, and the communication cost (measured in terms of the number of bytes transmitted

per second). In general, if we compare the full fledgedSNJoinoperator (i.e.,SNJoinwith relevance

feedback) to its predecessor insideNile-PDT (i.e., MJoin), we find out thatSNJoinreduces the output

delay by70% and increases the number of detected phenomena updates by150%.

7.2.4 Comparison of Analytical and Experimental Studies Results

In this section, we compare the output delay obtained from the analytical study presented earlier with

the output delay obtained through experiments. The values of different constants that appear in the

analytical analysis are summarized in Table 13. These values are based on the real sensor platform setup

that is presented earlier in Section 7.2.1. In this setup, wevary the number of sensors (k) from 5 through

25. We consider1000 readings from each sensor (Averagen) such that the domain from which these

readings are drawn is of size100 (Distinct1). We set the number of buckets in all hash tables to13
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(Size of hash table). All the constants (C1 · · ·C5) along with the selectivity among sensor data are

assessed experimentally based on the generated values. Notice that the selectivity varies for each value

of k (the number of sensors). Similarly, the parameterDistinct2, which represents the total number of

distinct elements in the global hash table ofSNJoin, has a different value for each value ofk. If each

sensor has a100 distinct value in its own hash table, the global hash table issupposed to contain less

thank × 100 distinct values due to the overlap of these values among thek sensor readings. Finally, the

average number of joining streams (k′) is obtained experimentally and is found to be40%.

Figure 14 shows the result of the comparison. The analyticaland experimental output delays exhibit the

same trend for bothSNJoinand outerMJoin. We notice thatSNJoinperforms better than the outerMJoin

even with a relatively large value fork′, 40% in this case. The more the phenomena are localized, the

smaller thek′ is and the better performnace ofSNJoinis.

Parameter Value Computed/Assumed

k [5, 10, 15, 20, 25] Assumed

Averagen 1000 Assumed

Distinct1 100 Assumed

Size of hash table 13 Assumed

C1 26.25 Obtained experimentally

C2 06.93 Obtained experimentally

C3 0.24 Obtained experimentally

C4 2.72 Obtained experimentally

C5 5.7 Obtained experimentally

Selectivity [0.00130, 0.00129, 0.00122, 0.00116, 0.00112] Obtained experimentally for each value ofk

Distinct2 [210, 372, 455, 485, 494] Obtained experimentally for each value ofk

k′ 40% Obtained experimentally

Figure 13. Parameter and Constant Values for the Comparison .
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8 Related Work

A large body of research in the data streaming area focuses onthe join operation, e.g., [8, 9, 10, 13]. To

highlight the reasons that makeSNJoinapplicable in PhenomenaBases, we overview related multi-way

join techniques and compare them toSNJoin. Multi-way join can be achieved through a tree of binary

joins (eithersymmetric hash join[20], XJoin[18], orhash merge join[14]), a singleMJoinoperator [19],

or a singleSNJoinoperator. Based on the experiments in Section 7.2, Figure 15provides a comparison

among various multi-way join techniques based on a key set ofdistinguishing features.

Trees of binary joins are not scalable due to their multi-step non-symmetric processing. For the same

reason, trees of binary joins do not allow the dynamic configuration of sensor networks (unless query

plan reorganization is performed). On the other hand,MJoin andSNJoinare symmetric, scalable, and

dynamically configurable. Also, the output delay in binary join trees increases with the increase in the

number of tree levels. The single-step processing ofMJoin andSNJoinresults in a lower output delay.

Moreover,SNJoinis specially designed for large-scale dynamically-configured sensor networks. Trees

of binary joins are sensitive to variable input rates and require reorganization of the query plan operators

(e.g., see [5]) to increase the output rate. All techniques handle outer joins by traversing the join probing
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Binary join MJoin SNJoin

Trees

Scalability × √ √√

Dynamic configuration × √ √√

Symmetric Join × √ √

Reduction in output delay × √ √

Sensitivity to variable i/p rates
√ × ×

Query plan reorganization
√ × ×

variable-arity join support × × √

Figure 15. Comparison among various multi-way join techniq ues (×: feature not supported,
√

: feature

supported,
√√

: feature supported and enhanced).

sequence completely. On the other hand,SNJoinsupports, by design, variable-arity joins to avoid long

chains of probing sequences.

9 Conclusions

In this paper, we presented theSNJoin(or Sensor-Network Join) operator, a variable-arity join operator

for sensor-network PhenomenaBases. To meet the demands of sensor networks,SNJoinis designed

to scale with respect to the number of sensors in the network without sacrificing the output rate. We

introduced the notion of query processing withrelevance feedbackto adjust the join probing sequence

based on the selectivity between sensor pairs.SNJoinsupports the distributed execution of the join

operation with the capability to accept and process relevance feedback.

Experimental studies that are based on a real implementation of the join operators insideNile-PDTshow

the scalability ofSNJoin. SNJoinincreases the output rate over binary join trees andMJoin. Once

SNJoinis adopted by PhenomenaBases, the number of detected phenomena updates is increased while

the output delay is reduced.
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