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ABSTRACT
Scalability and energy management issues are crucial for
sensor network databases. In this paper, we introduce the
Sharing and PArtitioning of Stream Spectrum (SPASS) pro-
tocol as a new approach to provide scalability with re-
spect to the number of sensors and to manage the power
consumption efficiently. The spectrum of a sensor is the
range/distribution of values read by that sensor. Close-by
sensors tend to give similar readings and, consequently, ex-
hibit similar spectra. We propose to combine similar spectra
into one global spectrum that is shared by all contributing
sensors. Then, the global spectrum is partitioned among the
sensors such that each sensor carries out the responsibility
of managing a partition of the spectrum. Spectrum sharing
and partitioning require continuous coordination to balance
the load over the sensors. Experimental results show that
the SPASS protocol relieves a sensor database system from
the burden of data acquisition in large-scale sensor networks
and reduces the per-sensor power consumption.

1. INTRODUCTION
The recent advances in large-scale sensor network tech-

nologies enabled the deployment of a huge number of sensors
in the surrounding environment. Each sensor consists of a
small node with sensing, computing, and communication ca-
pabilities. Due to the limited processing capabilities of sen-
sor nodes, the sensor readings are minimally processed at the
sensor network level. Then, the sensor data is transmitted
through a multi-hop communication route to a centralized
sensor database system for further processing. As sensor
networks get larger, sensor databases are burdened with the
massive amount of data that is streamed out of the sensors.
Recent research focuses on sampling [10, 13, 17, 19, 20],
communication [7, 15, 16], and query processing [5, 9, 11,
18, 25] techniques for sensor data. Scalability with respect
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to the size of the sensor network and energy-management
issues have been major challenges in these techniques.

Sensors are deployed densely in the space to increase the
reliability of monitoring the surrounding environment. The
dense distribution of sensors achieves reliability via redun-
dancy to decrease the likelihood of losing sensor readings.
However, much redundancy results in overhearing the envi-
ronmental measurements and, consequently, overloading the
data stream management system. Things get worse if sen-
sors indulge in a correlated behavior where sensors transmit
the same readings successfully while other readings are not
delivered by any sensor. As a result, the system receives du-
plicates of the same value while losing other values totally.

A crisp observation of the sensor data reveals similarities
in the distribution of the sensor readings that are coming
from close-by sensors. This fact is understandable because
close-by sensors are exposed to the same environmental con-
ditions. We refer to the distribution of readings from a sen-
sor as the sensor’s spectrum (A formal definition of the sen-
sor’s spectrum is given in Section 2). The similarities in the
sensors’ spectra bear redundant information allowing a wide
room for optimizations.

1.1 Approach
Motivated by similarities in the spectra of sensors, we pro-

pose to cluster close-by sensors into groups as illustrated in
Figure 1. The spectra of sensors in the same group are
merged to form one global spectrum. The global spectrum
is partitioned among the sensors in the group to assign each
sensor the responsibility of transmitting a partition of the
spectrum to the sensor database. A sensor gives its own
partition the highest priority and processes other partitions
based on the availability of resources.

To detect similarities in the sensors’ spectra, we push some
of the data stream management system functionalities to
the sensor network level. In particular, we move the sum-
mary manager [1] in part from the data stream management
system to the sensor network level to provide early summa-
rization of the sensor data and to discover the associated
sensor spectrum. In general, summaries at the core of the
data stream management system reduce the processing cost
by providing approximate answers in lieu of the exact ones.
We propose to shift some of the summarization tasks to the
sensor network level to provide an early approximation of the
sensor data and to reduce the transmission cost as well as the
processing cost. The proposed protocol (SPASS) saves en-
ergy by reducing the number of transmitted readings across
the network. The reduction in the number of transmitted
readings comes with the advantage of reducing the load over



the sensor database and achieves scalability. Example ap-
plications that benefit from our work include surveillance,
tracking, and environmental monitoring [12, 21, 22].

1.2 Contributions
The contributions of this paper can be summarized as

follows:

1. We propose a new data acquisition protocol, the Shar-
ing and PArtitioning of Stream Spectrum (SPASS)
protocol, that acquires a faithful representation of sen-
sor data and handles energy management and scala-
bility issues.

2. We implement the proposed SPASS protocol inside
Nile [14], a research prototype that is currently be-
ing developed at Purdue University. Nile extends re-
lational database management systems with the data
streaming functionalities.

3. We provide experimental evidence that the SPASS
protocol represents sensor data faithfully and enhances
the performance of sensor databases in terms of scala-
bility and power consumption.

The rest of the paper is organized as follows: Section 2
gives the definition of the stream spectrum and its prop-
erties. Section 3 introduces the proposed SPASS protocol
while Section 4 presents a variation of the SPASS protocol
that is optimized for adaptivity. Experimental results that
are based on a real implementation of the proposed SPASS
protocol inside Nile are presented in Section 5. Section 6
highlights related work. Finally, the paper is concluded in
Section 7.

2. STREAM SPECTRUM AND ITS PROP-
ERTIES

The term spectrum refers to the distribution of a physi-
cal characteristic. The spectrum of a certain characteristic is
the value ranges over which this characteristic is distributed.
For example, the spectrum of the visible light is the contin-
uous frequency ranges of its components. In the context of
data streams, we define broadly the stream spectrum as the
value ranges from which the stream tuples are drawn.

Before we proceed to a formal definition of the stream
spectrum, we discuss the underlying structure of sensor
databases (Section 2.1) and how the stream summaries can
be partially pushed to the sensor-network level to help derive
the stream spectrum of each sensor (Section 2.2). We give
a formal definition of the stream spectrum and how it can
be derived from various summarization techniques in Sec-
tion 2.3. By the end of this section, we highlight the benefits
of merging the individual spectra of close-by sensors to form
one global shared spectrum. Then, we provide mathemati-
cal bounds on the amount of savings that can be obtained
by sharing the global stream spectrum (Section 2.4).

2.1 Sensor Network Support Layer
A data stream management system (DSMS) comes at the

core of a sensor database system (Figure 1). The DSMS
provides a pipelined query execution of continuous queries
over the data streams that are generated by the sensors.
We extend data stream management systems with an ad-
ditional layer, the Sensor Network Support Layer (SNSL),
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to support the functionalities of sensor networks. The main
purpose of the Sensor Network Support Layer (SNSL) is (1)
to reduce the processing load at the system’s side for the
sake of scalability, and (2) to reduce the power consumption
at the sensors’ side.

The SNSL accepts feedback from the DSMS about the
sensor data and sends control signals to the sensors to con-
trol their behavior. The SNSL instructs the sensors on how
to sample, aggregate, and transmit their readings. As one
of the SNSL components, we propose the Sharing and PAr-
titioning of Stream Spectrum (SPASS) protocol to provide
scalable and energy-efficient acquisition of sensor readings
that faithfully represent the sensor-network data.

2.2 Sensor-network Level Summarization
We propose two levels of summarization: sensor-network

level summarization and system level summarization.
Sensor-network level summarization guides the sensors to
the tuples that are worth transmission while system level
summarization guides query processing. In our work, sensor-
network summarization is conducted at each sensor to cap-
ture the sensor spectrum. Guided by the sensor spectrum,
we prioritize the stream tuples for transmission.

Each sensor has four basic components, as illustrated in
Figure 2. The functionalities of these components can be
summarized as follows:

1. The sampler has the capability of sensing the sur-
rounding environment.

2. The receiver receives control signals from the sensor
network support layer (SNSL) and forwards these sig-
nals to the processing unit.

3. The processor performs various tasks based on the
SNSL signals. For example, the processor instructs
the sampler on how to control its sampling rate. Data
aggregation and filtration are performed at the proces-
sor to reduce data size. In addition, the processor per-
forms the following SPASS functions: (a) build sum-
maries over the incoming stream of tuples, (b) generate



the stream spectrum from the summaries, (c) share the
spectrum among other sensors, and (d) prepare tuples
to be sent by the transmitter.

4. The transmitter is responsible for the physical trans-
mission of (a) sensor data, (b) sensor spectrum, and
(c) information about the sensor’s transmission rate.
The information about the transmission rate helps
the SNSL coordinate the partitioning of the sensors’
shared spectrum based on the load of each sensor.

2.3 Definition of a Stream Spectrum
In this section, we provide a formal definition of the

stream spectrum and give examples of how the stream spec-
trum can be derived from stream summaries. The stream
spectrum can be defined as follows:

Definition 1. For a data stream S that consists of an
infinite tuple sequence {x1, x2, x3, · · · } that arrive at time
instants {t1, t2, t3, · · · }, respectively, a stream spectrum
SS, at time instant τ , is a finite set of stream representatives
R = {r1, r2, · · · , rL} such that R is obtained using a summa-
rization function φ(xτ−w+1, xτ−w+2, · · · , xτ ) → R, where w

is a sliding time-window. For any stream tuple x, ∃ r ∈ R

such that M(x) → r, where M is a mapping function that
maps a stream tuple to one of the stream representatives.

The stream spectrum is generated using a summarization
function φ that captures the stream behavior over the most
recent time-window w and produces a finite set of stream
representatives. Notice that the stream spectrum is asso-
ciated with a time instant τ because the stream spectrum
may change with the slide of the summarization function
window. A newly incoming tuple in the stream updates the
stream summaries and is mapped to one of the stream rep-
resentatives. All tuples that map to the same representative
are processed and transmitted in the same way. A stream
representative provides a unified processing and transmis-
sion interface for all tuples that map to that representative.

To give an example of how the stream spectrum can be ex-
tracted from stream summaries, we first consider histograms
as our summarization technique. In histograms, the stream
representatives are the histogram buckets. The summariza-
tion function φ updates the bucket frequencies based on the
incoming tuples over the last w time-window. The tuple is
mapped by the mapping function M to the bucket it falls in
(M(x) → bucket(x)). All the tuples in the same bucket are
treated, i.e., processed and transmitted, uniformly.

Maintaining the topk list of a stream is another summa-
rization technique. In the topk approach, the stream is sum-
marized using its k most frequent elements. The summa-
rization function φ updates the topk list based on the tuple
count over the last w time-window. The stream representa-
tives (R) are the most frequent k elements themselves plus
the NULL value. The mapping function M maps an element
to itself (M(x) → x) if its frequent or ignores it otherwise
(M(x) → NULL).

Similarly, the stream spectrum can be extracted from
other forms of stream summaries by defining their corre-
sponding φ and M functions. The proposed SPASS proto-
col is general and can accommodate various summarization
techniques. However, the mathematical analysis and the ex-
perimental evaluation assume that the sensor data follows
the Zipfian distribution and is summarized using the topk
list approach as presented in [8].

Li
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Figure 3: Individual sensor spectra versus a global

sensor spectrum.

2.4 Global Stream Spectrum
In real life, close-by sensors are exposed to similar environ-

mental conditions. Hence, close-by sensors produce readings
that share similar distributions over almost identical value
ranges. The closer a sensor to its neighbors, the more corre-
lated its spectrum to the neighbors’ spectra. The correlation
coefficient, ρij , assesses how much the readings of a sensor
(Si) vary in response to the variation in the readings of
another sensor (Sj). Equation 1 gives the correlation coeffi-
cient between the readings of two sensors, Si and Sj , where
µ and σ are the mean and the standard deviation of the
stream tuples, respectively.

ρij =
E[(Xi − µi)(Xj − µj)]

σiσj

(1)

A correlation matrix is a two-dimensional matrix that
records the correlation coefficient between every two sen-
sors, Si and Sj . By observing the correlation matrix of real
sensor data, we find out that the correlation matrix contains
ones along the diagonal because a sensor is fully correlated
with itself. Also, the correlation coefficient between two sen-
sors gets higher as they get closer to each other. The high
correlation among a group of close-by sensors over time is
our target area of optimization.

Figure 3a shows the spectra of a group of n sensors. Each
sensor has a spectrum of length Li. A gray box represents
a value that appears in the spectra of all sensors. Figure 3b
suggests to maintain only one global spectrum of length LG

that is shared by all sensors. The global spectrum accom-
modates all the items that appear in all sensors. Each sensor
sees a spectrum of length li that accommodates its private
non-shared spectrum elements plus the shared global spec-
trum.

Combining the common parts of the spectra of various
sensors into one global spectrum reduces the overhead of
processing the same value at different sites. The stream com-
pression ratio (SCR) is the amount of savings achieved by
merging the sensors’ common spectra into one global spec-
trum. The (SCR) is given by Equation 2. Equation 2 cal-
culates the ratio of the global spectrum size plus the sizes
of private spectra to the summation of the sizes of the indi-
vidual non-shared spectra, then subtracts this value from 1
to yield the compression ratio.

SCR = 1 −

Pn

i=1
li + LG

Pn

i=1
Li

(2)

The stream compression ratio (SCR) is of great signifi-
cance because it denotes the amount of processing overhead
that can be distributed and balanced among sensors. In the



remainder of this section, we give a mathematical bound
on the SCR that can be achieved for sensor data that fol-
lows the Zipfian distribution. We derive the sensors’ spectra
from summaries that are based on the most frequent item
list (the topk list) as discussed in [8]. In this case, the shared
spectrum will contain the k most frequent elements that are
common to all sensors (Equation 3).

LG = k (3)

For simplicity, assume that (1) sensors are close enough to
each other such that they have a common k most frequent
item list, and that (2) sensors maintain spectra that are of
the same length (i.e., Li = Lj ∀i, j, and consequently, li = lj
because li = Li − LG). The SCR in Equation 2 reduces to
Equation 4.

SCR = 1 −
nl + LG

nL
(4)

The technique in [8] captures the k most frequent items
using a list of length L such that the most frequent item that
is not captured in the list (element number L + 1) occurs
with a frequency that is less than (1− ǫ) of the frequency of
the k most frequent element (Equation 5).

fL+1 < (1 − ǫ)fk (5)

To capture the k most frequent element, we have to main-
tain a list of length L = O(k). In particular L is given by
Equation 6, where z is the Zipfian distribution parameter.

L =
k

(1 − ǫ
1

z )
(6)

The non-shared part of the stream spectrum at each sen-
sor, l, is given by subtracting the shared spectrum length
from original spectrum length as in Equation 7.

l = L − LG =
k

(1 − ǫ
1

z )
− k (7)

Substitute for both L (Equation 6) and l (Equation 7) in
Equation 4, we obtain Equation 8 that expresses the stream
compression ratio in terms of the number of sensors (n),
the summarization technique parameter (ǫ), and the Zipfian
distribution parameter (z).

SCR =
n − 1

n
(1 − ǫ)

1

z (8)

Notice that the SCR that is obtained in practice can be
less than the value of Equation 8 because sensors may not
share all the topk elements during the life time of the exper-
iment.

3. THE SPASS PROTOCOL
The SPASS protocol coordinates the sharing and the par-

titioning of the global spectrum among a cluster of close-by
sensors. Sensors may be clustered by the nature of the prob-
lem. For example, sensors that read the temperature of the
same room are exposed to similar conditions and are consid-
ered one cluster. Otherwise, clustering techniques that aim
at minimizing the power consumption due to packet routing
among sensors are deployed to cluster the sensors, e.g., [2,
4]. In our work, we are interested in sharing the spectrum
of sensors that fall within the same cluster. This makes the
clustering problem orthogonal to our work. Any clustering
technique can be applied as a preprocessing phase to our
protocol. For the sake of implementation, we use the HEED
clustering technique as presented in [26].
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for four sensors.

Clustering techniques select a dedicated sensor among the
sensors that fall in the same cluster to be the cluster head.
All communication messages that go out of a sensor are
forwarded to the cluster head as their next hop. The cluster
head is responsible for the coordination among the sensors in
its cluster as well as routing their messages to the centralized
sensor database.

The goal of the SPASS protocol is to maintain a global
spectrum over each cluster of sensors as shown in Figure 4.
Each sensor maintains a small list of its unique items that
are not shared among other cluster members. This por-
tion of the spectrum is given the highest priority, MaxPrior-
ity, because no other sensors are expected to transmit these
items. The shared spectrum is divided into n partitions of
equal sizes (i.e., shares) where n is the number of sensors
in the cluster. Each sensor takes the responsibility of trans-
mitting one share. The sensor gives its own share the next
highest priority, MaxPriority-1, and reduces the priority of
other sensors’ shares by one in a circular fashion. The prior-
ity of partition PNo at sensor SNo is given by Equation 9.

P = (SNo + PNo) mod n (9)

We refer to the global spectrum as presented in Figure 4
by the term circular telescopic spectrum because each sensor
processes its own share and extends the processing telescop-
ically to other partitions based on the availability of time.
The scope of a sensor is the average depth of items being
transmitted by that sensor. The depth of an item is the
difference between the item’s index in the shared spectrum
vector and the index of the beginning of the sensor’s share,
given the circular direction of movement. The scope param-
eter of a sensor provides information about how much of the
global spectrum is covered by that sensor.

The SPASS protocol is divided into two major compo-
nents: (1) the summarize and transmit procedure, which is
placed at all sensor nodes to build their individual spectrum
and to control the transmission of their sensor readings, and
(2) the share and partition procedure, which is placed at the
cluster head to form the shared global spectrum of the clus-
ter and to coordinate the partitioning of the global spectrum
among sensors.

Figure 5 summarizes the processing at each sensor node.
A sensor either (1) generates a sensor reading or (2) receives
a global spectrum from the cluster head. Upon receiving
a new reading, the sensor uses this reading to update the



procedure Summarize and Transmit

Input: (1) a stream of sensor readings x1, x2, x3, · · · and (2) A
global spectrum (GS)
Output: continuously maintain (1) the sensor individual spectrum
and (2) the priority transmission queue.

Description:

Upon receiving a sensor reading xi

1. UpdateSummaries(xi).

2. UpdateSpectrum().

3. if |NewSpectrum − OldSpectrum| > α then
transmit the spectrum to the cluster head.

4. P=GetPrio(xi)

5. Transmit(xi,P )

Upon receiving the global spectrum
update the circular teslescopic spectrum

Figure 5: The SPASS protocol at each sensor node.

summaries (Step 1) and update the local individual spec-
trum based on the change in the summaries (Step 2). If
the distance between the new spectrum and the spectrum
at the cluster head exceeds α, a fresh copy of the spectrum
needs to be transmitted to the cluster head (Step 3). The
sensor probes the spectrum to find the partition where the
sensor reading falls and, consequently, retrieves its transmis-
sion priority (Step 4). The sensor places the reading in the
transmission priority queue to compete for the transmission
bandwidth based on the priority (Step 5). Upon receiving a
new version of the global spectrum, the sensor updates the
transmission priorities based on the notion of the circular
telescopic spectrum.

Figure 6 describes the role of the cluster head in sharing
and partitioning the global spectrum. The cluster head re-
ceives from each sensor either (1) a sensor reading or (2) a
sensor’s local spectrum. When the cluster head receives a
sensor reading, it forwards the reading to the next hop on
its way to the sensor database. When the cluster head re-
ceives a sensor’s spectrum, it merges this spectrum with the
spectra of other sensors in the cluster to compute the global
spectrum (GS) (Step 1). Merging the spectrum is simply
to find the common items in all sensors’ spectra. Then, the
common items are partitioned into n partitions of equal sizes
(Step 2). Finally, the cluster head updates each sensor with
a copy of the shared item list (Step 3).

4. THE SPASS+: AN ADAPTIVE VERSION
OF THE PROTOCOL

The SPASS+ promotes adaptivity by balancing the load
among sensors in the same cluster based on their relative
loads. In this section, we define the sensor load and develop
an adaptive technique to partition the global spectrum dy-
namically among sensors. Each sensor is assigned a share of
the spectrum that is inversely proportional to the load over
that sensor. We define the sensor load as follows:

Definition 2. The sensor load is defined to be the total
time required to transmit all items that are queued in the
sensor’s buffer.

Two major parameters formulate the sensor load: (1) the
throughput, which refers to the achieved transmission rate

procedure Share and Partition

Input: Given a cluster of n sensors S0, S2, · · · , Sn−1. Each sensor
generates: (1) a stream of readings and (2) an individual sensor
spectrum SSi.

Output: (1) the global spectrum of the cluster and (2) the share of
each individual sensor.

Description:

Upon receiving a sensor reading
forward the sensor reading to next hop

Upon receiving a sensor spectrum SSi

1. MergeSpectrum(GS, SSi)

2. PartitionSpectrum(GS)

3. for i=0 to n − 1 SendtoSensor(Si, GS)

Figure 6: The SPASS protocol at the cluster head.

in terms of the number of transmitted messages per second
and (2) the queue length, which specifies how many items
are still queuing in the buffer waiting for transmission. The
sensor load is computed as follows:

Load =
Queuelength

throughput
(10)

Let Ldi be the load at sensor Si. The share of sensor Si in
the global spectrum is calculated at the cluster head using
Equation 11. Notice that the more the sensor is loaded, the
smaller the share it gets. To achieve this adaptive behav-
ior, each sensor is required to report its load periodically to
the cluster head. The cluster head keeps track of the load
over each sensor in its cluster and continuously repartitions
the spectrum among sensors to balance the load within the
cluster.

Sharei =

1

Ldi
Pn−1

j=0

1

Ldj

× SpectrumLength (11)

SPASS+ requires two major modifications over the SPASS
protocol. In the Summarize and Transmit procedure (Fig-
ure 5), each sensor transmits information about its current
load periodically to the cluster head. In the Share and Par-
tition procedure (Figure 6), the Partition Spectrum function
(Step 2) is modified to divide the spectrum into non-equal
partitions. The length of each partition is given by Equa-
tion 11.

5. EXPERIMENTS
In this section, we perform an experimental study to ex-

plore the performance of the proposed SPASS protocol. Two
sets of experiments are conducted. The first set of experi-
ments (Section 5.1) addresses the performance of the SPASS
protocol in terms of scalability and power consumption. The
second set of experiments (Section 5.2) is concerned with
the SPASS internal parameters, e.g., the correlation and the
spectrum compression ratio, with respect to different cluster
sizes. We study three protocols:

1. SIMPLE, where each sensor simply transmits, based
on the allowed bandwidth, a uniform sample of its own
readings to the sensor database.

2. SPASS, where the SPASS protocol is deployed to man-
age the transmission of data as described in Section 3.

3. SPASS+, where the SPASS protocol is optimized for
adaptivity as described in Section 4.



Our major measure of performance is Hist-MSE (Equa-
tion 12), which represents the mean square error between
the global histogram of all the generated sensor data (at the
sensor side) and the global histogram of the transmitted sen-
sor data (at the system side) after they are normalized by the
data set size. A global histogram includes the streams com-
ing from all sensors to give a global view of the whole sensor
network. We do not care about the individual histogram
of each sensor. Instead, we care about the collaboration of
sensors to transmit a faithful view of the entire sensor field
being investigated.

Let H1 be the histogram of the original data and let H2

be the histogram of the transmitted data. Each histogram
is an equi-width histogram of n intervals (n is set to 100).
H1 is divided into H11, H12, · · · , H1n and H2 is divided into
H21, H22, · · · , H2n. Let N1 be the size of the original data
set and let N2 be the size of the transmitted data set (N1 ≥
N2). Hist-MSE is defined as follows:

Hist-MSE =

Pn

i=1
(h1i

N1
− h2i

N2
)2

n
(12)

Unless mentioned otherwise, we maintain 1000 sensors
uniformly distributed in the space. Each sensor generates
a stream of 10,000 tuples where the tuple values follow the
Zipfian distribution. The sensors are grouped into clusters,
each cluster is of size 5. The interarrival time of sensor
data follows an exponential distribution with an average of
one second. To model the scarcity of resources, the sensor
database is capable of processing a bandwidth that is up
to 200 tuples per second. The bandwidth is shared fairly
among the 1000 sensors, which means that each sensor is
granted to transmit a bandwidth that is up to 0.2 samples
every second (i.e., the allowed bandwidth carries around
20% of the sensor readings). In other words, instead of
reading a value per sensor every second, we read a value
per cluster. All the experiments in this section are based
on a real implementation of the SPASS protocol inside the
Nile data stream management system [14]. The Nile engine
executes on a machine with Intel Pentium IV, CPU 2.4GHZ
with 512MB RAM running Windows XP.

5.1 Scalability and Power Consumption
In this section, we study the performance of the proposed

SPASS protocol with respect to the Hist-MSE measure of
performance under various conditions of the sensor network.
We provide an experimental evidence that the SPASS pro-
tocol: (1) reduces the power consumption of the sensors, (2)
is scalable in terms of the stream rates, and (3) is scalable
in terms of the size of the sensor network.

The sensor’s bandwidth denotes the maximum number of
transmitted messages per unit time. The energy consump-
tion of a sensor decreases with the decrease in its utilized
bandwidth. In Figure 7, we vary the total system band-
width (which is shared among the 1000 sensors) from 100
to 1000 tuples per second and compare the performances of
the SPASS protocol, its SPASS+ variation, and the SIM-
PLE protocol. For the same bandwidth, the SPASS proto-
col gives a better representation of the sensors’ readings as
indicated by the Hist-MSE measure of performance. The op-
timized SPASS+ protocol gives a better Hist-MSE over the
SPASS protocol because of its capability to balance the load
among sensors dynamically. The SPASS+ protocol reduces
the Hist-MSE by up to 70% over the SIMPLE protocol and
by up to 55% over the SPASS protocol (at 100 samples per
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second bandwidth). Notice that as we increase the band-
width to 1000 samples per second, each sensor transmits its
readings completely to the sensor database and Hist-MSE
drops to zero.

In Figure 8, we control the stream rate by varying its
average tuple interarrival time and measure Hist-MSE of
various protocols. As we increase the average interarrival
time, the system load decreases and Hist-MSE drops till
it reaches zero. Increasing the stream’s average interarrival
time has a similar effect to increasing the bandwidth because
an increased bandwidth implies more system resources while
increasing the interarrival time implies less system load.

Figure 9 illustrates the performance of the SPASS pro-
tocol under various sensor-network sizes. The size of the
sensor network is expressed in terms of the number of sen-
sors in the sensor network. We vary the number of sensors
in the sensor network from 200 to 2000 sensors. In terms of
Hist-MSE, the SPASS protocol gives a better performance
over the SIMPLE protocol while its SPASS+ variation is still
capable of providing further reduction in the Hist-MSE. As
the number of sensors increases, the performance gain of the
SPASS protocol and its SPASS+ variation becomes more
significant. The SPASS+ protocol reduces the Hist-MSE by
up to 65% over the SIMPLE protocol and by up to 35% over
the SPASS protocol (at network of size 2000 sensors).
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Figure 9: The effect of the number of sensors.

5.2 Cluster Size
In this section, we study the effect of the cluster size on

two internal parameters of the protocol, the average corre-
lation coefficient between sensor pairs (ρ) and the spectrum
compression ratio (SCR). The correlation coefficient as-
sesses the similarities in the sensors’ spectra while the spec-
trum compression ratio estimates how much saving can be
obtained by combining their spectra into one global spec-
trum. We vary the cluster size from 1, which means no
clustering is in effect, to 10 sensors per cluster. The cor-
relation coefficient (ρ) and the spectrum compression ratio
(SCR) are calculated offline based on the average of (ρ) and
(SCR) in a one-minute sliding window over the sensor data.

Figure 10 gives the effect of the cluster size on the cor-
relation coefficient and the spectrum compression ratio pa-
rameters. The maximum value of the correlation coefficient
is one, which corresponds to full correlation among sensors.
A cluster of size one is fully correlated because one sensor
is 100% correlated with itself. As we increase the cluster
size, fewer items tend to be shared among all streams and,
consequently, the correlation coefficient decreases.

The spectrum compression ratio (SCR) represents the ra-
tio of the reduction in size of the global sensor spectrum
relative to the summation of the sizes of individual spectra.
With the increase in the cluster size, the global spectrum
benefits from the shared items among individual spectra.
The size of the global spectrum gets reduced relative to the
summation of the sizes of individual spectra. The size reduc-
tion in the global spectrum affects SCR positively. However,
as we keep increasing the cluster size, the number of shared
items decreases, the size of the global spectrum increases,
and the SCR is affected negatively by the increase in the
global spectrum size. The best SCR equals to 0.645 and is
achieved for a cluster of size 5 (Figure 10).

Hist-MSE is measured for various cluster sizes in Fig-
ure 11. The SPASS protocol and its SPASS+ variation give
the same Hist-MSE as the SIMPLE protocol for a cluster
of size 1 (no clustering). Hist-MSE decreases till we reach a
cluster of size 5, then increases again with the increase in the
cluster size. This behavior is accounted for by the behavior
of SCR. For large cluster sizes, the benefit of sharing the
sensors’ spectrum is ruined by the overhead of maintaining
a large global spectrum. A good tuning of the cluster size
is the one that has the best SCR.

Cluster size ρ SCR

1 1 0
2 0.851 0.285
3 0.68 0.42
4 0.58 0.54
5 0.483 (0.645)
6 0.382 0.62
7 0.325 0.546
8 0.275 0.428
9 0.24 0.24
10 0.218 0.078

Figure 10: The effect of cluster size on the internal

paremeters of SPASS.
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6. RELATED WORK
Sensors are battery-equipped devices that are capable of

sampling, processing, and transmitting readings from the
surrounding environment.Various techniques have been pro-
posed to save the sensor battery life at the sampling, pro-
cessing, and transmission phases. In the remainder of this
section, we give a brief overview of these techniques.

Research has been conducted to reduce the sampling rate,
i.e., sampling power, of the sensors. Statistical models have
been utilized recently in [10] to provide estimates of the
sensors’ readings and to assess the uncertainty of these es-
timates. A fresh sample is acquired from the sensors that
exhibit high levels of uncertainty to refine their estimates.
The SPASS protocol addresses a similar problem but with-
out the requirement of a statistical model.

A framework to support an acquisitional query language
is proposed in [19]. The proposed acquisitional query pro-
cessor decides which sensors to query and how often to sam-
ple from each sensor. The work in [17] suggests the use
of quality-aware samplers to regulate the data rate at var-
ious levels of the system. Some work, e.g., [3], extends the
traditional reservoir sampling [23] to fit in the streaming
environment.

In-network processing is carried over at the sensor nodes
to reduce the size of the data transmitted to the sensor
database [25]. Data aggregation, e.g., max, min, and aver-
age, collapses a set of readings to one representative. Notice
that our work aims at transmitting the actual sensor read-



ings without performing any data aggregation. The work
in [9] proposes approximate in-network aggregation using
sketches. Sensors are clustered into groups and one member
of the group, the cluster head, is responsible for collecting
and managing the data of its cluster members. The cluster
head is elected based on energy requirements as in [26].

The transmission energy is conserved by techniques that
configure the network topology dynamically [6, 24]. In these
techniques, sensor nodes exchange messages among each
other to acquire knowledge about their locations. Nodes are
self-organized based on the acquired location information
to reduce the communication cost. The routing decisions
among nodes optimize power consumption [7, 15, 16].

7. CONCLUSIONS AND DIRECTIONS
FOR FUTURE RESEARCH

In this paper, we addressed the scalability and energy
management issues in sensor networks. We introduced the
Sharing and PArtitioning of Stream Spectrum (SPASS) pro-
tocol as a part of the Sensor Network Support Layer (SNSL).
The SNSL extends the functionalities of data stream man-
agement systems to support sensor networks.

We defined the spectrum of a sensor to be the distribu-
tion of values that are read by that sensor. Close-by sensors
generate similar spectra because they are exposed to sim-
ilar environmental conditions. In SPASS, we proposed to
group close-by sensors and to combine their spectra into
one global spectrum that is shared among all sensors in the
group. The global spectrum is partitioned among sensors
such that each sensor transmits the data of its partition with
a higher priority. Spectrum partitioning is continuously co-
ordinated to balance the load over the sensor network in the
SPASS+ adaptive version of the protocol. According to the
Histogram Mean Square Error (Hist-MSE) measure of per-
formance, SPASS+ achieves up to 70% improvement over
the SIMPLE protocol for the same level of power consump-
tion.

In future work, we plan to compare the SPASS protocol
with in-network aggregation and model-based data acquisi-
tion techniques. Also, we plan to explore the behavior of
the SPASS+ protocol under various load imbalance condi-
tions. The deployment and testing of the SPASS protocol
in real-life applications will be our next goal.
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