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Abstract. Consensus patterns, like motifs and tandem repeats, are highly
conserved patterns with very few substitutions where no gaps are al-
lowed. In this paper, we present a progressive hierarchical clustering tech-
nique for discovering consensus patterns in biological databases over a
certain length range. This technique can discover consensus patterns with
various requirements by applying a post-processing phase. The progres-
sive nature of the hierarchical clustering algorithm makes it scalable and
efficient. Experiments to discover motifs and tandem repeats on real bio-
logical databases show significant performance gain over non-progressive
clustering techniques.

1 Introduction

A consensus pattern is a highly conserved pattern with very few substitutions
where no gaps are allowed within the pattern. Discovering consensus patterns
has several applications especially in biological databases for the case of motifs
and tandem repeats. Motifs are highly conserved patterns that appear in the
upstream region of genes. Motifs are regulatory elements that regulate the ex-
pression of genes and hence the functionality of the cell. Tandem repeats are
highly conserved patterns too. They appear several times after each other in a
DNA sequence. The regions in which tandem repeats appear are called repeat
regions. Tandem repeats are considered DNA signatures, and have an impor-
tant evolutionary role [30]. Discovering motifs and tandem repeats in biological
databases is crucial for understanding the genetics of the cell. Discovering con-
sensus patterns raises several challenges that make applying data mining tools
such as clustering techniques a nontrivial task. In particular, the patterns that
we are looking for are usually unknown, the length of the consensus patterns is
unknown.

In this paper, we propose a progressive hierarchical clustering technique,
called Bio-CP, for discovering consensus patterns. Bio-CP discovers consensus
patterns by clustering similar patterns together over a range of fixed lengths.
Each cluster represents a candidate set of consensus patterns. The processing of
Bio-CP is divided into phases. In each phase, we discover the candidate consensus
patterns for a certain length. Then, we proceed to the next phase in an incre-
mental manner to obtain the candidate patterns with the subsequent length. At
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the end of each phase, we perform a post-processing phase to apply any domain
specific requirements over the candidate patterns. Bio-CP is applicable to a wide
range of applications since it allows any domain specific requirements to be ap-
plied independently in a post-processing phase. Furthermore, Bio-CP executes
progressively and hence significantly reduces the processing overhead compared
to non-progressive clustering techniques. However, in its original form, Bio-CP
involves a high overhead in the first phase due to computing and storing a large
distance matrix. To address this issue, we propose several scalability techniques
to reduce both the storage and CPU overheads.

The rest of the paper is organized as follows. We discuss the related work in
Section 2. In Section 3, we present Bio-CP concepts and methods. Scalability
issues are discussed in Sections 4. The experimental results are presented in
Section 5. We conclude in Section 6.

2 Related Work

Pattern similarity is studied in several application domains. In data mining, fre-
quent pattern mining is the problem of discovering similar patterns that appear a
number of times above a certain threshold in the database, e.g., [2, 4]. Frequent
pattern mining techniques cannot handle efficiently the problem of discover-
ing consensus patterns for the following reasons: (1) Consensus patterns allow
approximate matching, whereas frequent pattern mining techniques (even the
techniques that allow gaps) usually search for only exact matches. (2) Frequent
pattern mining techniques involve high overhead in the early phases in which too
many short frequent patterns are discovered. The length of these short patterns
can be out of the interesting range of the consensus patterns. Similarity search
techniques aim at searching for a query string in a database of sequences, e.g., [1,
3, 5, 17]. Several data structures are developed for searching string and sequence
data, e.g., suffix trees, e.g., [28, 29], and suffix arrays, e.g., [27, 29]. While these
techniques and data structures are related to our targeted problem, they cannot
be applied directly for discovering consensus patterns since we do not have a
query string to search for in the first place.

Clustering techniques rely on grouping similar patterns or objects together [10,
14]. MOPAC [13] is an agglomerative clustering technique to discover motif con-
sensus patterns in biological databases. MOPAC solves the problem for a specific
motif length. For a length range, MOPAC needs to be re-executed for each can-
didate motif length. Usually, using existing clustering techniques to discover
consensus patterns is limited to discovering such consensus for a specific length,
which is not general enough since the length of such patterns is not known a
priori. In contrast, our techniques extend clustering techniques to work over a
range of lengths in a scalable way.

Several statistical and non-statistical approaches have been proposed in bi-
ological databases. Most of these approaches target either motifs or tandem
repeats but not both. Examples of statistical techniques for discovering motif
patterns can be found in [7, 8, 16, 20]. A statistical technique for finding tandem
repeats in DNA sequences is proposed in [9]. Other non-statistical techniques in-
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cludes PROJECTION [11], COPIA [21], and WINNOWER [24] for discovering
motifs and one technique [19, 22] for discovering tandem repeats.

3 Bio-CP Concepts and Methods

Bio-CP is a progressive technique for discovering consensus patterns for a given
database of sequence, a length range, and a threshold for clustering patterns to-
gether at a certain length. More precisely, given (1) a database D of N sequences,
i.e., D={S1, S2,..., SN} where each sequence Si (1≤i≤N) has length Li, (2) a
length range [min len · · · max len] over which consensus patterns need to be dis-
covered, and (3) a user-specified threshold ε, 0≤ε≤1, that specifies the distance
threshold beyond which no further patterns can be clustered together (a small
value indicates tighter clusters and higher similarity among the discovered con-
sensus patterns), Bio-CP returns a set of clusters; each cluster represents a group
of consensus patterns for a given length within the user-specified length range.
The distance between a pair of patterns can be measured using the Hamming
Distance [15] or any distance metric that does not allow insertions or deletions
like the substitution matrix. In this paper, we use the Hamming Distance.

Bio-CP proceeds in phases where each phase discovers the clusters for a
certain length within the specified range. In the first phase (Pmin len), we dis-
cover the clusters for patterns of length min len, and in the subsequent phases
(Pmin len+1, Pmin len+2, · · ·, Pmax len), we incrementally extend existing pat-
terns to discover the subsequent clusters corresponding to each length. Initially,
Bio-CP divides the sequences in the database D into sliding windows of length
min len. Each sliding window Wk

ij is identified by three indexes i, j, and k, where
i specifies the sequence identifier, j specifies the start position within sequence
Si, and k specifies the length of the sliding window. The index k is initially set
to min len and k increases by one as we move from one phase to the next one.
We build a list Q that contains all possible sliding windows (Figure 1(a)). Each
node in the list represents a pattern or sliding window, and consists of four fields:
index i, index j, a pointer to the pattern, and a pointer to the next pattern in
the list. These nodes will form the leaf level of a clustering hierarchy that will
be built on top of them. In the rest of the paper, we use the terms ‘window’ and
‘pattern’ interchangeably to refer to the sliding window pattern.

 
 
 
                                           (a)  
 

Pointer to 
first obj. 

Pointer to 
second obj. 

Ref_distance Distance Cluster_pointer 

Oi Oj Di-j Di-j NULL 
--- --- --- --- --- 

                                       (b) 

Pointer to 
object’s tree 
root              

Index i Index j 

Link to next object 

Fig. 1. (a) Patterns list structure (Q). (b) Sorted list structure (S)
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In phase Pmin len, Bio-CP starts by measuring the distance between each
possible pair of patterns on length min len, and then inserting an entry for this
pair into a sorted list S. List S is maintained in an ascending order of distance
values such that the pairs that are the closest to each other will be at the top
of the list and will be the first to be merged together. The structure of list S

consists of five columns (see Figure 1(b)): The first column holds a pointer to
a pattern in Q, the second column holds also a pointer to a pattern in Q, the
third and fourth columns hold distance values, and if that entry will create a
new node in the clustering hierarchy, then the fifth column will hold a pointer
to this new node, otherwise it is NULL. The values in the Ref distance column
serve as reference values and will not change while proceeding from one phase
to another. However, the values in the Distance column will be updated as we
progress in the algorithm.

Our target is to generate clusters over a range of lengths. Thus, it is important
to normalize the distance values relatively to the patterns lengths (the distance
between any pair is always between 0 and 1.) Furthermore, generating the dis-
tance matrix as a sorted list (S) does not involve additional overhead. Indeed,
since we have prior knowledge of the possible values that will be inserted into
the list, (the Hamming Distance between two patterns of length L is between 0
and L) then each new entry can be directly hashed to its proper sorted location
in the list. We maintain a linked list for each distance value. After all the entries
are inserted into their corresponding lists, we link these lists together to form list
S. Bio-CP is applied over two clustering metrics, single-link [26], presented in
Section 3.1 and complete-link [18] presented in Section 3.2. Typically, single-link
clustering involves less processing overhead than complete-link clustering. How-
ever, in the case of large databases, single-link clustering generates poor quality
clusters due to the chaining effect [23].

3.1 Progressive Single-link Clustering

In single-link clustering, the distance between two clusters is the distance be-
tween the closest pair of patterns in these clusters. The objective is to merge in
each step the closest pair of clusters into one cluster. We refer to Bio-CP with
single-link clustering by Bio-CP/S. In the first phase Pmin len, we scan the list S
until we reach the first entry with distance larger than or equal to ε. Any entry
after that entry has a distance value larger than or equal to ε. For each entry,
say e, we check if the two patterns in e belong to the same cluster; If this is
the case, then e is skipped, otherwise, the corresponding two clusters, say Ci

and Cj , are merged into a new cluster Ck. The merge operation involves three
steps: (1) Create a new cluster Ck in the clustering hierarchy. Make Ci and
Cj children for Ck. (2) Traverse clusters Ci and Cj to reach all their members
at the leaf level. Update the pointer associated with each member to point to
cluster Ck instead of Ci or Cj . (3) Add a pointer in entry e to point to the
newly created cluster Ck. Figure 2 shows an example of clustering five patterns.
Note that the fourth entry in list S does not create a new cluster node, therefore
its Cluster pointer value remains NULL. Recall that each window is initially in
a separate cluster and the pointer associated with it points to itself. Also all
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(c) Creating cluster C2 after processing the    
     second entry 

Fig. 2. Updating the clustering hierarchy and S after processing the first four entries

the pointers in the sorted list S are initially NULL. Maintaining the pointers in
steps (2) and (3) is crucial for efficient processing in the subsequent phases. For
example the pointer associated with each window, and maintained in step (2),
allows us to detect if two members belong to the same cluster in a constant time.

Now that we generated the clusters of the consensus patterns of length
min len, we can start generating the clusters for the subsequent phases Pmin len+1,
Pmin len+2, · · ·, Pmax len in an incremental way. Since the windows are sorted
in S based on length min len, then all the subsequent phases will reference these
windows for further extensions. In addition, these subsequent phases will refer-
ence the distance values measured in phase Pmin len. For this reason, each entry
in S keeps a copy of this reference distance value (Ref Distance).

Generally speaking, generating the clusters in any phase Pmin len+t involves
extending the windows in phase Pmin len by t letters. Our progressive processing
is based on two key observations.

Observation 1 The change in the distance values among the windows due to
extending them by t letters is bound. The bound is computed using the Equation
∆max t = t

min len+t
.

Observation 2 The value of ∆max t increases monotonically with respect to t;
the size of C(t) is always increasing: C(t-1) ⊆ C(t); where 2 ≤ t.

Observation 1 implies that the maximum change in the distance value due to
appending t letters is ±∆max t. Therefore, the only entries in S that may cross
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the threshold ε in phase Pmin len+t, and thus may change the clustering hierarchy
are within ±∆max t from ε. Let C(t) be the set of entries that are within ±∆max t

from ε; entries in C(t) are the only entries that need to be updated in phase
Pmin len+t. This would simply consist in comparing the newly appended t letters
and modifying the distance value. Finding the entries in S that belong to C(t)
is performed by scanning S in both directions starting from the last processed
entry in phase Pmin len (i.e., the last entry that has Ref Distance < ε). All
entries that have Ref Distance value within ±∆max t from ε will be in C(t).

Observation 2 implies that the entries in C(t) that need to be updated in
phase Pmin len+t can be divided into two types: (1) the entries that were in C(t-
1) in the previous phase Pmin len+t−1 and (2) the entries that are added during
the current phase Pmin len+t. The entries in the latter type require comparing
the newly appended t letters to update their distances. In contrast, the entries in
the former type require only one letter comparison (the last appended letter) to
update their distances. In summary, Observation 1 determines which entries to
update and Observation 2 allows for an efficient update of these entries’ distance
values. The main framework for progressive processing is given in Figure 3. Note
that the equation for ∆max t is general for the Hamming distance as well as for
any substitution matrix having values ranging from 0 to any positive number. 
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Fig. 3. Progressive processing for the candidate entries

The next step is to identify which of these entries trigger a change over the
existing hierarchy; i.e., split or merge operations:

– If the distance before the update is less than ε and the distance after the
update is still less than ε, then this entry will not trigger any change.

– If the distance before the update is larger than or equal to ε and the distance
after the update is still larger than or equal to ε, then this entry will not
trigger any change.

– If the distance before the update is less than ε and the distance after the
update is larger than or equal to ε, then this entry will trigger a split to take
place only if the entry has a cluster attached to it.
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– If the distance before the update is larger than or equal to ε and the distance
after the update is less than ε, then this entry will trigger a merge to take
place only if the windows in this entry belong to different clusters.

If none of the entries in C(t) triggers splits or merges, then the clusters in
the current phase Pmin len+t will be the same as the clusters generated in the
previous phase Pmin len+t−1. If there are entries in C(t) that trigger splits or
merges, then the entries in C(t) need to be scanned to perform the required
changes.

Performing a split operation, triggered by an entry e in list S, on a cluster C
involves three steps: (1) Traverse the left child cluster of C, i.e., C1, to reach all
its members in the leaf level. Update the pointer associated with each member
to point to cluster C1 instead of C. (2) Traverse the right child cluster of C,
i.e. C2, to reach all its members in the leaf level. Update the pointer associated
with each member to point to cluster C2 instead of C. (3) Invalidate the pointer
attached to entry e by setting it to NULL.

Recall that the pointers maintained at the leaf members of the hierarchy and
the entries in the sorted list allow performing the identification process efficiently.
Detecting whether an entry in the sorted list has a cluster attached to it is
performed in constant time by checking the pointer associated with this entry.
Also, detecting whether two windows belong to different clusters is performed in
constant time by checking the pointers associated with these windows. Finally,
performing a merge or split operation is performed, as explained previously, in
the order of the cluster size. The issue of maintaining the hierarchy pointers
is thightly related to the union-find problem [25]. For example, another way of
maintaining the pointers is to make each node points to its direct parent only.
In that case, detecting whether two windows belong to different clusters or not
is performed in order of the cluster size (in the worst case), however a merge or
split operation is performed in a constant time.

It is important to keep the clustering hierarchy consistent while performing
the splitting and merging operations. To achieve this consistency, all the split
operations are performed before any merge operations in the backward direction
(i.e., we process the entries of C(t) in a bottom-up fashion), and then all the
merge operations are performed in the forward direction (i.e., we process the
entries of C(t) in a top-down fashion). Algorithm 1 describes the incremental
processing for discovering the clusters at phase Pmin len+t. The following lemma
states that Bio-CP/S produces exactly the same clusters as a non-progressive
single link technique. We omit the proof due to the lack of space.

Lemma 1. Bio-CP/S produces exact results in all phases compared to the re-
sults generated by the non-progressive technique.

3.2 Progressive Complete-link Clustering

Bio-CP/S has two advantages: (i) it produces exact results and (ii) the single-
link clustering it employs has less processing overhead than that of complete-link
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Algorithm 1 Progressive clustering at phase Pmin len+t

Inputs From the Previous Phase:

-Sorted list S
- The Clustering hierarchy from the previous phase Pmin len+t−1

-∆max t−1 from the previous phase Pmin len+t−1

Computations at the Current Phase:

-Compute ∆max t

-Entries within ±∆max t−1 from ε are updated
by comparing the last letter appended to the patterns

-Entries within ±∆max t but outside ±∆max t−1 from ε

are updated by comparing the last t letters appended to the patterns
-Identify the entries that cross ε and trigger

split or merge operations
-Perform the required split operations in the backward

direction (process the entries bottom-up)
-Perform the required merge operations in the forward

direction (process the entries top-down)

clustering. However, for large databases, Bio-CP/S produces clusters with poor
quality due to the chaining effect. In this section, we propose Bio-CP/C where
we apply Bio-CP using the complete-link metric for clustering. In complete-
link clustering, the distance between two clusters is measured as the distance
between the farthest pair in the two clusters. Therefore, the diameter of any
resulting cluster is always less than the user specified threshold ε.

Building the clustering hierarchy in the first phase, Pmin len, is similar to
building the hierarchy using the single-link metric, except in the merging condi-
tion. After constructing the sorted list S, S is scanned until we reach the first
entry with a distance larger than or equal to ε. For each entry e in S, if the two
patterns in that entry, i.e., W1 and W2, belong to the same cluster then e is
skipped, otherwise if W1 and W2 belong to different clusters, i.e., C1 and C2,
then Bio-CP/C checks whether W1 and W2 are the farthest pair in C1 and C2.
If this is the case, then C1 and C2 are merged into a new cluster C, otherwise,
entry e is skipped. The merge step in Bio-CP/C is similar to the merge step
in Bio-CP/S except that we do not need to maintain the pointers attached to
the entries in list S (Step 3 in the merge procedure). These pointers are used in
Bio-CP/S to identify efficiently which entries will trigger splits in the subsequent
phases. However, in Bio-CP/C, the splitting condition is different and does not
depend on these pointers.

After generating the clusters of the consensus patterns of length min len

in phase Pmin len, Bio-CP/C generates the clusters for the subsequent phases
Pmin len+1, Pmin len+2, · · ·, Pmax len. In each phase, i.e., Pmin len+t, Bio-CP/C
computes C(t) (the set of entries to be updated) and then updates their distance
values in the same way as that of single-link clustering. Identifying which entries
will trigger splits or merges is performed as follows:
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– If the distance before the update is less than ε and the distance after the
update is still less than ε, then this entry will not trigger any change.

– If the distance before the update is larger than or equal to ε and the distance
after the update is still larger than or equal to ε, then this entry will not
trigger any change.

– If the distance before the update is less than ε and the distance after the
update is larger than or equal to ε, then this entry will trigger a split to take
place whenever the windows in this entry belong to the same cluster.

– If the distance before the update is larger than or equal to ε and the distance
after the update is less than ε, then this entry will trigger a merge to take
place only if the windows in this entry belong to different clusters and are
the farthest in their clusters.

The splitting condition in Bio-CP/C is less strict than that in Bio-CP/S.
In Bio-CP/S, the only entry that can split an existing cluster is the one that
created the cluster. However, in Bio-CP/C, any pair of windows that belong to
the same cluster will split the cluster if their distance becomes larger than or
equal to ε. This is why Bio-CP/C does not maintain pointers with the entries in
the sorted list S. In addition, the merging condition in Bio-CP/C is more strict
than in Bio-CP/S; a pair of windows will merge two clusters only if this pair is
the farthest pair in these clusters.

Bio-CP/C and Bio-CP/S use the progressive technique in almost the same
way. However, the results from Bio-CP/C are approximate in comparison with
the non-progressive technique as stated in the following lemma. We omit the
proof due to the lack of space.

Lemma 2. Bio-CP/C produces approximate results in comparison to the results
produced by the non-progressive technique. However, the generated clusters still
satisfy the condition that the diameter of any generated cluster is less than ε.

3.3 Post-Processing Phase

The post-processing phase allows to apply any available domain-specific require-
ments to refine the discovered consensus patterns. Here are some examples of
biological requirements that can be applied for discovering motifs and tandem
repeat. (a) The user may specify a minimum size for the desired clusters, such
that any cluster that contains fewer patterns than the specified minimum size
will be ignored. (b) The user may specify any position requirements for the
discovered patterns. For example, whether the desired tandem repeats should
appear immediately after each other or a gap is allowed between the repeats.
(c) A DNA palindrome [8] is a sequence whose inverse complement is the same
as the original sequence. The user may specify that the desired motif patterns
should have at least a certain palindrome degree. In this case, we check each pat-
tern against the specified palindrome threshold and we qualify only the patterns
with higher palindrome degree. (d) The user may specify whether the desired
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consensus patterns can overlap or not. For example, the occurrences of real mo-
tifs usually do not overlap each other. In biological databases, although motifs
and tandem repeats have different post-processing requirements, Bio-CP allows
both types of patterns to be discovered in a single run.

4 Scalability Issues in Bio-CP

While Bio-CP shows significant improvement compared to non-progressive clus-
tering techniques, it still involves a high overhead in the first phase due to
computing and storing the distance matrix. In this section, we propose a top-
k nearest-neighbor method to reduce the storage overhead and a heuristic to
significantly reduce the number of comparisons needed to get the top-k nearest-
neighbors for each pattern. We call the new algorithm Bio-CP/K. Another issue
with Bio-CP is that at some point the overhead to process and maintain the
entries in C(t) may become comparable to the overhead of resorting the entries
in list S. Bio-CP may need to reset the computations for list S. Due to space
limitations, we do not discuss the possible solutions for this issue.

4.1 Storage Reduction using Top-k Nearest-neighbor

The top-k nearest-neighbor method is well known to reduce the size of the dis-
tance matrix [12]. In this method, only the top-k nearest-neighbors for each
pattern are stored and clustering techniques are applied over these stored pat-
terns only. While suing the top-k nearest-neighbor method with hierarchical
clustering techniques is straightforward, using it with Bio-CP is nontrivial. Due
to progressive processing, the lengths of the patterns increase from one phase to
the next. Hence, the top-k nearest-neighbors for each pattern may change across
phases. Bio-CP/K ensures that, in each phase, every pattern will have its top-k
nearest-neighbor patterns among the patterns being processed.

Since patterns expand across the phases, Bio-CP/K stores for each pattern
the union of the pattern’s top-k nearest-neighbors over the different phases. For
example, if the set of top-k nearest-neighbors for pattern x in phase Pmin len+t

is Kt, then Bio-CP/K stores for x the union set ∪x = ∪(Kt); where 0 ≤ t ≤
max len − min len. In this case, while x expands over the different phases,
Bio-CP/K ensures that x’s top-k nearest-neighbors are among the patterns be-
ing processed. Bio-CP/K computes the nearest-neighbors for each pattern while
constructing the sorted list S and before any of the processing phases. Con-
structing the union of the top-k nearest-neighbors for pattern x is performed
incrementally as follows:

1. Initially ∪x is empty

2. Compare pattern x with the remaining patterns based on length min len.
The result from the comparison is a list L sorted based on the distance
values.

3. Add the first k patterns in L to ∪x. Let the distance value of the last pattern
of these k patterns be K Dist.
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4. To expand pattern x and re-compute x’s top-k nearest-neighbors, we repeat
the following steps for t from 1 to (max len − min len):

– The maximum change in the distance value due to appending t letters
is ∆max t=

t
min len+t

– Check the patterns in L that are within ±2∆max t from K Dist by
appending and comparing t letters to the patterns with pattern x. These
patterns are the only ones that may substitute each other as the top-k
nearest-neighbors.

– If any pattern of the new top-k nearest-neighbors is not in ∪x, we add
it to ∪x.

The reason for considering ±2∆max t instead of ±∆max t as in Bio-CP is
that we do not care about the absolute value of K Dist. Instead, we care about
the relative order among the patterns around the K Dist point.

After computing x’s nearest-neighbors ∪x, Bio-CP/K inserts pairs (x, y)
∀y ∈ ∪x in the sorted list S. Then the progressive processing is applied over S

as discussed in Section 3. Comparing Bio-CP/K to the non-incremental tech-
nique, we observe the following. First, Bio-CP/K involves some overhead in con-
structing ∪x. However, the non-incremental technique has to perform steps (2)
and (3) independently for each pattern in each length, which clearly involves a
much higher overhead. Second, since each pattern will have at least its top-k
nearest-neighbors in S in each phase, then the results from Bio-CP/K are at
least as good as the non-incremental technique.

4.2 Processing Time Reduction

In this section, we propose a heuristic to reduce the average number of compar-
isons needed to find the nearest neighbors for each pattern in Bio-CP/K. The
main idea is that from comparing a given pattern x with the other patterns
in the database, we can obtain the top-k nearest-neighbors for several patterns
other than x in an efficient and less expensive way.

When pattern x is compared with other patterns in the database and list L is
constructed (see Section 4.1), the list is logically partitioned into groups G0, G1,
..., Gmin len; where group Gi contains the patterns that have i mismatches with
pattern x. It is clear that we can directly get the nearest neighbors for all the
patterns that belong to group G0. They will have the same nearest neighbors
as pattern x. Similarly, for any pattern y in group G1, y’s nearest neighbors
can be obtained efficiently because we know to a large extent in which groups
these nearest neighbors will be. For example, the number of mismatches between
pattern y and any pattern in group G0 is one, the number of mismatches between
pattern y and any pattern in group G1 is either zero, one or two, and the number
of mismatches between pattern y and any pattern in group G2 is either one, two
or three, and so on. Therefore, the comparisons can be performed incrementally
based on the need for more patterns to be added to the nearest neighbor list.
In that case we avoid many unnecessary comparisons. We should note that the
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patterns that match exactly with pattern y exist only in group G1 and these
patterns will have the same nearest neighbor list as y. The same idea applies
for the other groups. However, the power of the heuristic relies on processing
only the first few groups since the uncertainty in the number of mismatches is
very small for these groups. Most of the comparisons will lead to patterns in
the nearest neighbor list. Using the proposed heuristic allows one scan to the
database to generate the required nearest neighbors for several patterns. As a
result, the overall number of comparisons is reduced significantly.

5 Experimental Results

We evaluate the performance of Bio-CP for discovering motifs and tandem re-
peats using real datasets from the E.coli genome sequence. We consider two mea-
sures of performance; the processing time and the cluster validity. For the latter,
we use Jaccard and Rand coefficients [14] to measure the similarity among the
clusters generated from Bio-CP and the non-progressive clustering techniques.
All measures for the non-progressive techniques are cumulative values to gen-
erate the desired clusters over multiple lengths. The non-progressive single-link

 
Fig. 4. Processing time of Bio-CP/S and the non-progressive technique

technique simulates the MOPAC algorithm [13]. In the first experiment, we mea-
sure the performance of Bio-CP/S. A file of size 25,000 bases is used, ε is assigned
a value of 0.3, and two length ranges are evaluated. Figure 4 illustrates that Bio-
CP/S and the non-progressive technique take almost the same time in the first
phase in which the hierarchy is generated. However, in the subsequent phases,
Bio-CP/S takes much less time than the non-progressive technique that rebuilds
the hierarchy from scratch. Figure 4 shows that the processing time for building
the hierarchy in the first phase in the case of the range [40...50] is higher than
in the case of the range [10...20]. However, the time needed to progress from one
phase to the next one in the case of the range [40...50] is less than in the case of
the range [10...20]. The reason being that the effect of extending longer patterns
is less than the effect of applying the same extension over shorter patterns. The
clusters generated from both techniques in this experiment are exactly the same
since we are using the single-link metric.

In Figure 5, we present the results of applying Bio-CP/C over the same
file of size 25,000. The ε threshold is assigned a value of 0.5. The behavior of
Bio-CP/C and non-progressive techniques is very similar to that in the case of
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Fig. 6. Clustering validation degree

Bio-CP/S. However, the generated clusters from Bio-CP/C in this experiment
are approximate clusters. Figures 6(a) and 6(b) give the validity degree of the
clusters generated in the case of the ranges [10...20] and [40...50], respectively.
The figure illustrates that the coefficient values are very close to 1, which means
that the clusters generated from incremental processing are very similar to the
ones generated from the non-progressive technique. In addition, the figure il-
lustrates that the Rand coefficient detects higher similarity degree among the
clusters than the Jaccard coefficient. The reason for this difference is that the
Jaccard coefficient does not take into account one similarity factor, namely the
number of pairs, say (w1, w2), for which both clustering techniques assign w1

and w2 patterns to different clusters. The Rand coefficient takes this factor into
account.

In Figure 7, we present the results of applying Bio-CP/KC, (Bio-CP using
complete-link metric and the top-k nearest-neighbors method). We use a file of
size 150,000 bases, with ε assigned to 0.5. In this experiment, we store the top
0.1% nearest-neighbors for each pattern. Figure 7(a) gives the processing over-
head of the various techniques. The figure illustrates that the non-progressive
technique involves infeasible processing overhead in the case of relatively large
files. In Figure 7(b), we present the effect of applying Bio-CP/KC along with
the proposed heuristic in computing the nearest-neighbors when compared to
the naive way. The figure illustrates significant reduction in the processing time
due to reducing the number of comparisons. The validity measure for the clusters
generated in this experiment is given in Figure 6(c). Note that the coefficient
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Fig. 7. (a) Processing time of Bio-CP/KC and the non-progressive technique. (b)
Heuristic versus naive method

values for the patterns of length 10 are no longer equal to 1. This slight dissim-
ilarity in the first phase is due to the difference between the nearest-neighbor
sets maintained by Bio-CP/KC and the non-progressive techniques.

We run several experiments to compare Bio-CP/C with the MEME algo-
rithm [6]. The closeness of the discovered motifs is highly affected by the ε

threshold. With ε assigned to 0.3 or 0.4, Bio-CP/C usually splits the motifs
discovered by MEME into multiple motifs. However, with ε assigned to 0.6, the
motifs discovered by MEME are a subset of the motifs discovered by Bio-CP/C.
This indicates that 0.6 is reasonable value for ε. Bio-CP/C always produces more
candidate motifs than MEME. However, MEME annotates each motif with more
information such as the E-value and background probabilities due its statistical
nature.

6 Conclusions

In this paper, we proposed Bio-CP, a progressive hierarchical clustering tech-
nique for discovering consensus patterns, namely motifs and tandem repeats,
in biological databases over a range of possible lengths. The progressive nature
of the hierarchical clustering algorithm makes it scalable and efficient. Bio-CP
is also applicable to a wide range of applications since any domain-specific re-
quirements are applied in a post-processing phase. We also proposed several
scalability techniques to enhance the performance of Bio-CP in terms of pro-
cessing time and storage. Our experiments illustrated that Bio-CP scales very
well with respect to the processing time, and the clustering validation degrees.
In particular, Bio-CP has more than 500% processing time improvement.
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