
Phenomenon-aware Sensor Database Systems

M. H. Ali

Department of Computer Science, Purdue University
mhali@cs.purdue.edu

Abstract. Recent advances in large-scale sensor-network technologies
enable the deployment of a huge number of sensors in the surround-
ing environment. Sensors do not live in isolation. Instead, close-by sen-
sors experience similar environmental conditions. Hence, close-by sensors
may indulge in a correlated behavior and generate a “phenomenon”. A
phenomenon is characterized by a group of sensors that show “simi-
lar” behavior over a period of time. Examples of detectable phenomena
include the propagation over time of a pollution cloud or an oil spill
region. In this research, we propose a framework to detect and track
various forms of phenomena in a sensor field. This framework empow-
ers sensor database systems with phenomenon-awareness capabilities.
Phenomenon-aware sensor database systems use high-level knowledge
about phenomena in the sensor field to control the acquisition of sen-
sor data and to optimize subsequent user queries. As a vehicle for our
research, we build the Nile-PDT system, a framework for Phenomenon
Detection and Tracking inside Nile, a prototype data stream manage-
ment system developed at Purdue University.

1 Introduction

A large body of research in the database systems area focuses on handling mas-
sive amounts of data that is streamed from sensor networks, e.g., see [7, 9, 10, 12,
19, 20, 29]. The main goal is to provide efficient query processing techniques for
sensor data. However, emerging sensor-network applications call for new capabil-
ities that are beyond traditional online query processing techniques. Examples
of these applications include surveillance [24], object tracking [12], and environ-
mental monitoring [25]. Mainly, these applications go past simple data retrieval
to show their evolving interest in data analysis and field understanding.

In this research, we focus on extending sensor database systems with
phenomenon-awareness capabilities as a step towards the understanding of sen-
sor data. A phenomenon appears in a sensor field if a group of sensors show
“similar” behavior over a period of time. In particular, phenomenon-aware sen-
sor databases (or PhenomenaBases, for short) have two major tasks: First, it
detects and tracks various forms of phenomena in space. Second, it utilizes the
knowledge about phenomena in the space to optimize subsequent user queries.
Although individual sensor readings can be useful by themselves, phenomenon
detection exploits various notions of correlation among sensor data and pro-
vides a global view of the underlying environment. Then, phenomenon tracking



monitors the propagation of detected phenomena to reflect the changes in the
surrounding environmental conditions. Given the knowledge about phenomena
in the surrounding space, phenomenon-aware optimizers bridge the gap between
the low-level sensor readings and the high-level understanding of phenomena to
answer user queries efficiently.

1.1 Motivation

In this section, we identify five major points through which sensor-network ap-
plications benefit from Phenomenon Detection and Tracking (PDT, for short)
techniques. These points can be summarized as follows:

1. High-level description of the sensor field. With the aid of PDT tech-
niques, an application may ask for “What is going on in a sensor field?”
instead of asking “What are the sensor readings?” PDT techniques describe
the underlying sensor field using a higher level of knowledge (e.g., report a
fire alarm instead of a bunch of high temperature readings).

2. Phenomenon-guided data acquisition. Data acquisition can be guided
by detected phenomena in the sense that we reduce the sampling rate of
non-interesting sensors (i.e., sensors that do not contribute to any phenom-
ena). Also, we reduce the sampling rate of sensors that are (and will remain)
involved in a phenomenon. Such sensors with persistent phenomena are tem-
porarily turned off with the assumption that their phenomena will not disap-
pear instantaneously. Sensors on the boundaries of a phenomenon tend to be
more interesting and are likely to change their values quickly. We increase
the sampling rate of boundary sensors such that we capture the possible
change in their state as quickly as possible. Reducing the sampling rate of a
sensor will result in a general reduction in the sensor’s energy consumed in
sampling, processing, and communication. Also, the processing load over the
centralized DSMS (or the sink node of the sensor network) will be reduced.

3. Data compression. Voluminous sensor data can be compressed using PDT
techniques. Instead of maintaining the readings of each individual sensor, we
maintain phenomenon pairs (R, B), where R is the region that bounds a
phenomenon with behavior B.

4. Prediction. Tracking a phenomenon movement and predicting its future
trajectory foresees the next state of the sensor field. Based on the bound-
aries of a phenomenon and their trajectories, we can predict the movement
of various phenomena in the space. Prediction of phenomenon-movement
enables us to decide which sensors to turn on and off in order to conserve
energy without losing useful information.

5. Phenomenon-guided query processing. Given a query and given a set
of phenomena, query processing can be guided to regions with phenomena
that satisfy the query predicates. Hence, the query space is reduced. All
phenomena in the space are maintained and their contributing sensors are
indexed. Then, a user query is mapped to a set of system-detected phenom-
ena. Regions that are covered by this set of phenomena are processed to
answer the query.



QueryQuery Result

Nile Engine

Executer
Query Plan

Generator
Query Plan

Control
Query Admission

Nile−PDT

Sensor Network

SNSL

Control

Sensor

Signals

Readings

Module
Ph. awarePDT
Optimizer

Execution

Ph. aware
Feedback

Plan

Fig. 1. Nile-PDT architecture.

1.2 Applications

Several applications benefit from the detection and tracking of various phenom-
ena in the sensor field. Examples of these applications include:

1. Tracing pollutants in the environment, e.g., oil spills, or gas leakage.
2. Reporting the excessive purchase of an item at different branches of a retail

store.
3. Detecting computer worms that strike various computer sub-networks.

Notice that a phenomenon may or may not have spatial properties. The
phenomenon in the first example has spatial properties, where an oil spill is a
contiguous portion of the ocean surface. If a phenomenon has spatial properties,
it is referred to by the term cloud. Retail store applications may not have the
notion of spatial attributes, where retail stores can be spread arbitrary over the
region. In the third application, the notion of spatial distance is relative to the
network connectivity. Also, to generalize the concept of phenomena, a sensor
may be a physical device that acquires readings from the environment, (e.g.,
temperature, light, humidity, or substance identifiers as in the first example) or
a virtual sensor like the cashier machine that reads item identifiers as in the
second example. A sensor may even be a piece of software that detects computer
worms as in the third example.

This Ph.D. research is done in the context of Nile [14], a prototype data
stream management system developed at Purdue University. We extend Nile
with a Sensor Network Support Layer (SNSL) where a Phenomenon Detection



and Tracking (PDT) module is placed. PDT monitors phenomena as they prop-
agate in the sensor field and returns feedback to a phenomenon-aware query
optimizer which, in turn, controls the generation and execution of query plans.
Figure 1 illustrates the architecture of Nile-PDT.

2 Research Plan

In this section, we identify the major challenges in the design and the imple-
mentation of phenomenon-aware systems. In particular, we address the following
challenges:

1. The phenomenon-extraction challenge, where we separate sensors that
participate in a phenomenon from sensors that participate in no phenomena.

2. The sensor-network processing requirements challenge, where we
develop algorithms that comply with the requirements of large-scale
dynamically-configured sensor-networks with distributed processing capa-
bilities.

3. The similarity-notion challenge, where we define various notions of sim-
ilarity among sensors’ behavior and develop techniques that comply with
these notions.

4. The phenomenon-interpretation challenge, where we develop a query
optimizer that makes use of knowledge about detected phenomena to answer
user queries.

In the remainder of this section, we devote a subsection to explore each challenge,
emphasize its associated research tasks, and propose preliminary ideas.

2.1 The phenomenon-extraction challenge

As a first step towards phenomenon detection, we propose a concrete definition of
a phenomenon. Two parameters control the phenomenon definition, the strength
(α) and the time span (w). The strength of a phenomenon indicates that a
certain phenomenon should occur at least α times to qualify as a phenomenon.
(This measure is similar to the notion of support in mining association rules, e.g.,
see [1].) Reading a value less than α times is considered noise, e.g., impurities that
affect the sensor readings. The time span w limits how far a sensor can be lagging
in reporting a phenomenon. w can be viewed as a time-tolerant parameter, given
the common delays in a sensor network. (This measure is similar to the notion
of gaps in mining generalized sequential patterns [23].) In the light of these two
parameters, a phenomenon can be defined as follows:

Definition 1. In a sensor network SN , a phenomenon P takes place only when
a set of sensors S ⊂ SN report similar reading values more than α times within
a time window w.



In [5], we simplify the definition by considering the discrete case of the phe-
nomenon where the notion of similarity reduces to equality. (In Section 2.3, we
consider other notions of similarity.) The process of phenomenon detection and
tracking (PDT) is divided into three phases:

1. The joining that applies an in-memory multi-way join over the entire sensor
network to detect sensors with the same value within a time frame of length
w from each other.

2. The candidate selection phase that enforces the (α) and (w) constraints on
join pairs to report phenomenon candidate members.

3. The grouping/output phase that groups phenomenon candidate members and
investigates the application semantics to form and report phenomena to the
user.

2.2 The sensor-network processing requirements challenge

To implement a phenomenon-aware sensor database system, we need to shift
the phenomenon detection phases to the sensor-network level. Distributed algo-
rithms need to replace the centralized ones. We address five major challenges in
sensor network processing:

1. Scalability, to face the excessive deployment of sensors in the space.
2. Adaptivity, to handle the gradual/abrupt appearance/disappearance of

phenomena.
3. Distributed processing, to relieve the centralized system from possible

congestions and to reduce the communication cost by filtering irrelevant
data as early as possible.

4. Dynamic configuration, where sensors may be added or removed from
the network based on the network conditions, the sensor’s lifetime, and the
availability of additional sensors.

5. Limited energy, to reduce the frequency of battery replacement in envi-
ronments where the existence of a human being is either tough or dangerous,
e.g., habitat monitoring [25].

To address the above challenges, we place a new operator (the SNJoin oper-
ator [3]) at the core of the PDT module. SNJoin is a distributed multi-way join
operator that is specially designed for large-scale dynamically-configured sensor
networks.

2.3 The similarity-notion challenge

In this section, we generalize our work to include continuous phenomena. Con-
tinuous phenomena are generated by sensors whose values are drawn from con-
tinuous ranges. The major challenge in continuous phenomena comes from the
fact that similarity among sensors’ behavior does not necessarily mean equality.
Instead, various notions of similarity need to be explored. We plan to examine
the following notions of similarity:



1. Similar values, where similarity is assessed based on a distance function
“dist”. Two values v1 and v2 are considered similar if dist(v1, v2) < D.

2. Similar behavior, where we extract summaries from the sensor data (e.g.,
histograms, count sketches, or user-defined summaries) that capture the sen-
sors’ behavior over a window of time. Similarity is assessed based on the
distance between the summaries.

3. Similar trend, where the increase/decrease in one sensor readings implies
the increase/decrease of another sensor’s readings. Generally, the change in
the readings of one sensor is related to the change in the other sensor’s
readings by a function f (i.e., △v1 = f(△v2)). For example, the increase in
the readings of smoke detectors is usually accompanied by an increase in the
readings of temperature sensors.

We investigate two approaches to handle continuous phenomena: First, as
a preprocessing phase, we group sensor readings into clusters, represent each
reading by its cluster identifier, and apply discrete PDT techniques over cluster
identifiers. Second, we replace the equality join by a similarity join, where the
similarity function is a user-defined function that is provided as part of the query
syntax. Initial implementation of PDT using similarity join is conducted in [2].

2.4 The phenomenon-interpretation challenge

A phenomenon-aware system implies that the phenomenon detection and track-
ing process is always running in the background to detect new phenomena and to
track the propagation of already-detected phenomena. Based on the understand-
ing of surrounding phenomena, phenomenon-aware systems answer user queries.
The ultimate goal of our research is to build a sensor database system that op-
timizes user queries on a “phenomenon detection guides query processing” basis.
We view phenomenon-aware query optimization as a rich area of research where
phenomenon understanding alters the construction/execution of query plans. We
explore phenomenon-aware query optimization along two directions:

1. Increasing the sampling rate of sensors that contribute to phenomena asso-
ciated with active queries.

2. Controlling the join probing sequence such that a reading coming from one
sensor probes only sensors where a match is likely to be found. The join
probing sequence is tuned to favor the joins that affect the appearance or
the disappearance of a phenomenon.

3 Experiments

As a proof of concept, we conduct an experimental study to show the perfor-
mance gains a phenomenon-aware optimizer may achieve. We generate a set of
2000 sensors using the Nile-PDT simulator [2]. Each sensor generates a stream of



 

Fig. 2. Performance of Nile-PDT.

readings at a rate of 1 reading per second. We detect and track discrete phenom-
ena as discussed in [5]. Detected phenomena are fed into a naive phenomenon-
aware query optimizer. The naive optimizer searches the list of detected phe-
nomena, determines interesting phenomenon regions (i.e., phenomenon regions
that satisfy the query predicates), and deploys the query only over regions of its
interesting phenomena. We process a set of 100 selection query with predicate
selectivities that range from 1% to 20% of the whole space.

Two experiments are conducted. First, we measure the energy saved (in terms
of the number of transmitted messages) using a phenomenon-guided data acqui-
sition. Sensors that contribute to phenomena are sampled more frequently than
sensors that contribute to no phenomena. The number of transmitted sensor
readings is reduced by up to 65%. Second, we measure the accuracy of the query
result in terms of the average number of output tuples. Figure 2 illustrates the
performance of the query processor in the following cases:

1. No-PDT, where no PDT-capabilities are used.

2. Exact, where infinite resources are given to calculate the answer.

3. Naive-PDT, where a naive PDT phenomenon-aware optimizer is used.

4. Target-PDT, which is an imaginary curve that reflects where we expect
the performance of a non-naive optimizer will fall.

The Target-PDT curve is somewhere between the naive-PDT and the Exact
curves (i.e., the target zone in the figure).



4 Related Work

Sensors are devices that are capable of sampling, processing, and transmitting
readings from the surrounding environment. Various techniques have been pro-
posed to handle the sampling [4, 6, 10, 20], processing [9, 29], and transmission [8,
16, 18] tasks. In this section, we overview other techniques that analyze sensor
data to track objects and/or regions as they move in the space. We also highlight
the join operation over data streams due to its important role in the process of
phenomenon detection and tracking.

To reduce the overall power consumption of the sensor network while object
tracking, [28] proposes a prediction-based strategy that focuses on regions where
the moving object is likely to appear. In [30], the tree-like communication struc-
ture of the sensor network is reconfigured dynamically to reduce the number
of hops between a sensor and the sink node as the sensor comes closer to the
moving object. Instead of tracking a single object, [2, 5] provide a framework to
detect and track phenomena in a sensor field once a region of sensors exhibit a
common behavior. The work in [22] investigates how to detect boundaries that
separate homogeneous regions. In [15], continuous regions with similar values
are grouped into homogeneous regions called isobars.

The join operation detects similarities in value among sensors along the tra-
jectory of a moving object or among sensors in the same phenomenon region.
For example, [12] tracks moving objects in a sensor field through a window join
algorithm (w-join). The join operation has been studied thoroughly in the litera-
ture, e.g., [11–13]. Symmetric Hash Join [27] is the first algorithm that takes care
of the infiniteness of the data source. XJoin [26] provides disk management to
store overflowing tuples on disk for later processing. An asymmetric window join
over two data streams with different arrival rates is discussed in [17]. The Hash-
Merge Join (HMJ) [21] is a recent non-blocking join algorithm that produces
early join results. In our work, we propose the SNJoin operator [3], a multi-way
join operator that is specially designed for large-scale dynamically-configured
sensor networks.

5 Conclusions

In this paper, we proposed a framework for phenomenon-aware sensor database
systems. We provided a concrete definition for the phenomenon and explored var-
ious notions of similarity among sensors’ behavior. In a phenomenon-aware sen-
sor database system, the knowledge gained through detected phenomena guides
query processing to regions of interest in the sensor field. The proposed research
plan has four phases. The first phase is concerned with detecting and track-
ing discrete phenomena (i.e., the notion of similarity reduces to equality) in a
centralized data stream management system. The second phase pushes the de-
tection and tracking of phenomena to the sensor-network level in a distributed-
processing fashion. The third phase addresses various notions of similarity among
sensors’ behavior and generalizes the phenomenon concept to include continuous



phenomena. The fourth phase achieves, through a phenomenon-aware optimizer,
the ultimate goal of answering user queries efficiently based on the knowledge
about phenomena in the space.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proc. of VLDB, 1994.

2. M. H. Ali, W. G. Aref, R. Bose, A. K. Elmagarmid, A. Helal, I. Kamel, and M. F.
Mokbel. Nile-pdt: A phenomena detection and tracking framework for data stream
management systems. In Proc. of VLDB, 2005.

3. M. H. Ali, W. G. Aref, and I. Kamel. Multi-way joins for sensor-network databases.
Technical Report CSD-05-21, Department of Computer Science, Purdue University,
2005.

4. M. H. Ali, W. G. Aref, and C. Nita-Rotaru. Spass: Scalable and energy-efficient
data acquisition in sensor databases. In Proc. of the International ACM Workshop
on Data Engineering for Wireless and Mobile Access (MobiDE), 2005.

5. M. H. Ali, M. F. Mokbel, W. G. Aref, and I. Kamel. Detection and tracking of
discrete phenomena in sensor-network databases. In Proc. of SSDBM, 2005.

6. B. Babcoc, M. Datar, and R. Motwani. Sampling from a moving window over
streaming data. In Proc. of the Annual ACM-SIAM Symp. on Discrete Algorithms,
2002.

7. P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards sensor database systems. In
Proc. of MDM, 2001.

8. A. Cerpa and D. Estrin. Ascent: Adaptive self-configuring sensor networks topolo-
gies. In Proc. of INFOCOM, 2002.

9. J. Considine, F. Li, G. Kollios, and J. W. Byers. Approximate aggregation tech-
niques for sensor databases. In Proc. of ICDE, 2004.

10. A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-
driven data acquisition in sensor networks. In Proc. of VLDB, 2004.

11. L. Golab and M. T. Ozsu. Processing sliding window multi-joins in continuous
queries over data streams. In Proc. of VLDB, 2003.

12. M. A. Hammad, W. G. Aref, and A. K. Elmagarmid. Stream window join: Tracking
moving objects in sensor-network databases. In Proc. of SSDBM, 2003.

13. M. A. Hammad, M. Franklin, W. G. Aref, and A. K. Elmagarmid. Scheduling for
shared window joins over data streams. In Proc. of VLDB, 2003.

14. M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C. Catlin, A. K. Elma-
garmid, M. Eltabakh, M. G. Elfeky, T. Ghanem, R. Gwadera, I. F. Ilyas, M. Mar-
zouk, and X. Xiong. Nile: A query processing engine for data streams. In Proc. of
ICDE, 2004.

15. J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: Toward
sophisticated sensing with queries. In Proc. of IPSN, 2003.

16. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable
and robust communication paradigm for sensor networks. In Proc. of MOBICOM,
2000.

17. J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window joins over un-
bounded streams. In Proc. of ICDE, 2003.

18. J. Kulik, W. R. Heinzelman, and H. Balakrishnan. Negotiation-based protocols for
disseminating information in wireless sensor networks. ACM Wireless Networks,
8(2-3):169–185, 2002.



19. S. Madden and M. Franklin. Fjording the stream: An architecture for queries over
streaming sensor data. In Proc. of ICDE, 2002.

20. S. Madden, M. Franklin, J. M. Hellerstein, and W. Hong. The design of an acqui-
sitional query processor for sensor networks. In Proc. of SIGMOD, 2003.

21. M. Mokbel, M. Lu, and W. Aref. Hash-merge join: A non-blocking join algorithm
for producing fast and early join results. In Proc. of ICDE, 2004.

22. R. Nowak and U. Mitra. Boundary estimation in sensor networks: Theory and
methods. In Proc. of IPSN, 2003.

23. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-
formance improvements. In Proc. of EDBT, 1996.

24. S. Srinivasan, H. Latchman, J. Shea, T. Wong, and J. McNair. Airborne traf-
fic surveillance systems: video surveillance of highway traffic. In the 2nd ACM
international workshop on Video surveillance & sensor networks, 2004.

25. R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin.
Habitat monitoring with sensor networks. Communications of ACM, 47(6):34–40,
2004.

26. T. Urhan and M. Franklin. Xjoin: A reactively-scheduled pipelined join operator.
IEEE Data Eng. Bull., 23(2):27–33, 2000.

27. A. N. Wilschut and E. M. G. Apers. Pipelining in query execution. In Proc. of the
International Conference on Databases, Parallel Architectures and their Applica-
tions, 1991.

28. Y. Xu, J. Winter, and W.-C. Lee. Prediction-based strategies for energy saving in
object tracking sensor networks. In Proc. of MDM, 2004.

29. Y. Yao and J. Gehrke. Query processing in sensor networks. In Proc. of CIDR,
2003.

30. W. Zhang and G. Cao. Optimizing tree reconfiguration for mobile target tracking
in sensor networks. In Proc. of INFOCOM, 2004.


