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Abstract—In this seminar, we address spatial predictive queries
both in Euclidian spaces and over road networks. We provide
a definition for various types of spatial predictive queries,
describe current research trends, and envision future directions.
We present practical application scenarios and emphasize the
roadblocks that are holding industry back from the commercial-
ization of spatial predictive queries. This seminar targets audience
in mobile data management, spatiotemporal query processing,
mobile crowd sourcing, and tracking of moving objects.

I. TUTORIAL OUTLINE

The next generation of location based services would offer
and recommend services for users according to their current lo-
cations as well as their future destinations [20], [21], [23], [25],
[26], [29], [34], [37], [38], thanks to the widespread of mobile
devices [17]. Nowadays, search engines, e.g., Microsoft Bing
and Google, offer satisfactory location-aware search results
that are based on the user’s current location. However, these
search engines remain in an infancy phase developing search
techniques that takes into consideration the user’s future (or
intended) destination. Experience tells that the advertisement
that targets the user’s current location (e.g., a coupon in a
nearby shopping mall) is not very effective. More specifically,
it is too late to attract the user’s attention to a nearby service
because most users, by then, are already heading to a pre-
planned destination. Industry believes that targeting the user
with services that are around his future destination is more
valuable to the user (from a relevance perspective) and more
profitable to industry (from a market share perspective). How-
ever, experience tells that users are either reluctant to share
their future destinations with search engines or are unaware
of the value they may get by doing so. Consequently, the
prediction of the user’s future location combined with spatial
query processing has been gaining tremendous interest in both
the research and industrial communities. Entering this era of
”future-location-aware” search engines requires the ability to
process spatial predictive queries.

In this seminar, we survey the existing research and envision
the future of spatial predictive query processing and optimiza-
tion. The seminar is organized in the following key sections:

A. Part 1: Spatial Predictive Queries, What and Why?
In this part, we provide basic definitions for different types

of predictive queries. Then, we show the importance of this
topic through real-world example applications and systems.
In general, predictive queries [19], [21], [25], [26] aim at
answering inquiries about the anticipated future locations of
a set of moving objects, either in an Euclidean space or over
a road network.

The fundamental types of spatial predictive queries include:
(a) predictive point query [19], [18], that finds out the objects
that are most likely to show up around a specific location
point in the space within a future time window, (b) predictive
range query [26], [49], [60], where a user defines a query
region rather than an exact point and asks for the list of
objects expected to be inside the boundaries of that region
within a specified future time window, (c) predictive KNN
query [4], [43], [60], that gets the most likely K objects
expected to be around a location of interest within a certain
time period, (d) predictive reverse-nearest-neighbor query [4],
[56], that finds out the objects expected to have the query
region as their nearest neighbor. This query is useful in service
distribution applications such as ad-hoc networking to assign
mobile devices to the nearest communication service point,
(e) predictive aggregate query [2], [20], [48], that predicts
the total number of objects to appear at a desired location
in a given next time range, and (f) continuous predictive
query [28], [34], [37], [55], that allows any predictive query
of the aforementioned query types to be stored at the server
side and to be continuously reevaluated over a data stream of
input locations through out its life in the system.

Spatial predictive queries can be utilized in a wide range of
location-based services. Examples of these services include:

Weather Forecast. By considering the weather elements,
e.g., clouds and tornadoes, as moving objects, the weather
forecast applications can issue predictive range queries to
predict the weather conditions at the areas of interest. In
addition, smart warnings can identify those stationary/moving
objects on the ground, e.g., homes/vehicles, that might be
hit by a certain server weather event [35]. Accordingly,
evacuation plans can be dispatched early before the occurrence
of such dangerous events.

Ride Sharing Systems. Ride sharing services aim at linking
the rider to the nearest driver and vice versa. These services
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can be improved by allowing the rider to submit a predictive
range query. This query finds out the drivers that are most
likely to show up around the rider’s current location in the
next few minutes. This approach would assist riders to plan
their trips more efficiently and to reduce their waiting times.

Location-Aware Advertising. A store in a sale season
executes a predictive KNN query to send electronic coupons
to the K, e.g., fifty, costumers that most likely to show up
around its location within the next t time units, e.g., next
30 minutes. This paradigm allows location-based advertising
to go beyond nearby customers in the present time and to
target possible nearby ones in the future. Sending coupons and
promotions to these prospective customers would encourage
them to plan ahead and stop by the store which, in turns,
increases the effectiveness of advertising for both business
owners and consumers.

Traffic Management Systems and Routing Services. Pre-
dictive queries in traffic management systems would improve
traffic prediction results. Both Bing Maps and Google Maps
offer routing services that calculate the travel time with and
without traffic. In a typical situation, online traffic services
announce a traffic jam after the fact, that is, after all interested
users are either in the traffic jam itself or inevitably heading
to the traffic jam. Another major problem in calculating the
travel time for long trips is that the traffic pattern changes
significantly while the driver is half-way in his trip. Predictive
aggregate queries estimate the number of vehicles expected to
be inside a certain area, e.g., down town, in the coming time
interval, e.g., 30 minutes. Consequently, the estimated travel
time of a trip would be enhanced by considering both the
current and predicted future traffic conditions. Also, executing
predictive queries against the road map before acquiring the
route would eliminate the portions of the map that might be
influenced by bad conditions, e.g., congested traffic, severe
weather event. Accordingly, a safe routing service would avoid
these undesirable areas.

B. Part 2: Research Trends
In this part, we survey the current research trends that form

the field of spatial predictive queries. These trends can be
summarized as follows:

(1) Query evaluation and optimization, in which the main
concern is to find the optimal or at least a good enough strategy
for executing the predictive queries [11], [10], [12], [16], [53],
[52], [55].

(2) Prediction functions, which refer to the underlying
prediction model employed to anticipate the next destination
or the complete forthcoming trajectory of a given moving
object. We talk about three categories of prediction models; (i)
Linearity-based prediction [4], [43], [47], [50], [52], where the
underlying prediction function is based on a simple assumption
that objects move in a linear function in time along the input
velocity and direction, (ii) Historical-based prediction [6],
[14], [26], [29], [32], [31], [48], where the predication function
uses object historical trajectories to predict the object’s next
location, and (iii) complex prediction [25], [49], [59], [61],
where more complicated prediction functions are employed to
realize better prediction accuracy.

(3) Spatio-temporal indexing techniques, which attempt to
find an efficient way to store and retrieve moving objects
data. We cover four categories of indices that are widely used
within the context of processing spatial predictive queries.
Each category is based on and derives its variants from the
following basic structures; (i) R-tree [3], [44], [45], [46], [51],
(ii) B-tree [8], [24], [58], (iii) kd-tree [5], [13], [39], [54], and
(iv) Quad-tree [7], [39], [36], [41].

(4) Location uncertainty, which deals with the imprecise
knowledge of the objects’ locations, velocities, and directions.
This trend tackles inference techniques that obtain the antic-
ipated objects’ locations given uncertain motion patterns and
non-deterministic input values [42], [49], [59].

C. Part 3: Euclidean Space Versus Road Network
In this part, we address two different settings for spatial

predictive queries. These queries can run in an Euclidean
space or against a road network graph. The main difference
between the Euclidean space and the road network is that the
objects in the former are free to move anywhere in the given
space without constrains. However, in the later, the objects’
movements are constrained by the underlying road segments,
intersections, and speed limits on each road. Also, in the
Euclidean space, the Euclidean distance is the measure of
distance between two locations. In a road network, the travel
distance (or travel time) on the road segments that form the
object’s trip is considered to be the distance measure.

As an example system that handles spatial predictive queries
on Euclidean space, we manifest the Panda framework [20].
We overview its data structures, prediction model, and key
ideas behinds its efficiency and generality. As an example
system that handles predictive queries on road networks, we
present the iRoad [18] framework, its predictive-tree (P-tree)
data structure [19], and associated query processing algo-
rithms.

D. Part 4: Open Problems and Future Directions
In this part, we highlight a couple of challenges that are

holding industry back from moving forward aggressively in
pursuing spatial predictive query efforts: (i) Privacy, which
aims at protecting the users’ private information (e.g., exact lo-
cations, motion patterns, and historical trajectories) from being
released while providing the users with meaningful services
based on their location. In this seminar, we discuss several
merits and drawbacks of each of the well-known techniques
that achieve privacy in spatial non-predictive queries [1],
[15], [33], [27], [30] and how it could be adapted to fit
into the spatial predictive query domain. (ii) Authentication,
which introduces techniques to check the completeness and the
soundness of the returned answers to users’ predictive queries.
None of the existing technique [9], [22], [40], [57] can be
leveraged directly to handle authentication.

II. TARGET AUDIENCE
The seminar targets researchers, engineers and data sci-

entists in both academia and industry who are working in
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the fields of mobile data management, spatiotemporal query
processing, mobile crowd sourcing, and tracking of moving
objects. The seminar summarizes the basic concepts, surveys
exiting work, provides industrial application scenarios and
envisions the future of spatial predictive queries. More interest-
ingly, the seminar addresses the roadblocks that holds industry
back from incubating several techniques that are addressed
in the seminar. Attending the seminar does not require prior
knowledge about spatial predictive queries. Attendees are
expected to gain knowledge about spatial predictive queries
both in the Euclidean space and over road networks.
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