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Abstract—Road-network data compression reduces the size
of the network to occupy lesser storage with the aim to fit
small form-factor routing devices, mobile devices, or embedded
systems. Compression (1) reduces the storage cost of memory
and disks, and (2) reduces the I/O and communication over-
head. There are several road network compression techniques
proposed in literature. These techniques are evaluated by their
compression ratios. However, none of these techniques takes
into consideration the possibility that the generated compressed
data can be used directly in map-matching. Map-matching is an
essential component of routing services that matches a measured
latitude and longitude of an object to an edge in the road
network graph. In this paper, we propose a novel compression
technique, named COMA, that significantly reduces the size of a
given road network data. Another advantage of the proposed
technique is that it enables the generated compressed road
network graph to be used directly in map-matching without a
need to decompress it beforehand. COMA smartly deletes those
nodes and edges that will not affect neither the graph connectivity
nor the accuracy of map-matching objects’ location. COMA is
equipped with an adjustable parameter, termed conflict factor C,
by which location-based services can achieve a trade-off between
the compression gain and map-matching accuracy. Extensive
experimental evaluation on real road network data demonstrates
competitive performance on compression-ratio and the high map-
matching accuracy achieved by the proposed technique.

I. INTRODUCTION

Extensive availability of GPS-enabled devices has increased
the need for routing and navigation services. The storage and
transmission of road-network data is the biggest performance
issue facing such services and is an important data manage-
ment challenge. Road-network map, road map for short, is
represented as a graph structure with a set of nodes, edges
and edges weights, i.e., travel distance or time. To provide a
navigation service, the user’s location, as measured by a GPS
device, is continuously map-matched to an edge in the graph.
This edge represents the current road segment that the user is
believed to be travelling on.

Map-matching links an object location, i.e., latitude and
longitude coordinates, to the corresponding edge in the un-
derlying road map [14]. Map-matching is crucial for location
aware services that answer queries based on the current and/or
future objects’ location [5], [6]. Traditionally, map-matching is
performed on the original (i.e., non-compressed) road network
data. For example, an in-car GPS device stores the digital map
of the commuted area, i.e., city, state or country, such that the
car location can be mapped correctly to a road segment in
this map. However, there are several situations and application
scenarios where a compressed version of the road network data
is appreciated.

Map compression enables small size devices, e.g., smart
watches and navigation drones, to carry the road map for
large areas. More specifically, compact representations of road
map data are triggered by the need to: (a) reduce the cost of
storage devices, e.g., Solid State Drive (SSD), (b) reduce the
I/O overheads, and (c) cut down the communication cost and
battery consumption in the case that the road map is stored on
the server side and is transmitted to the client side over the
network.

Motivated by the above reasons, road-network compression
becomes an essential goal to spatial database researchers. In
fact, there are several compression techniques proposed in
literature [1], [7], [9], [16], [18]. These techniques strive for
a high compression ratio as its major performance measure.
However, none of these techniques focus on the quality of
map-matching on the generated compressed data. Moreover,
the compressed map generated by some of these techniques
cannot be used directly to perform map-matching without an
initial phase of decompression to restore the original form of
the map. This initial phase leads to high CPU power wasted in
decompression of the compressed map and, hence, increases
battery consumption. Furthermore, in some lossy compression
techniques, the compressed version of the road-map is not
an equivalent representation of the original one. Some of
the map details are lost during the compression process. The
quality of lossy compression techniques are evaluated based
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on visual similarity or dissimilarity between the generated
map (after compression) and the original version of the map
(that is before compression). While visual similarity is a
valid measure of performance in some applications, we set
our performance measure to be the quality of map-matching
using the compressed version of the map. Losing some critical
information such as the exact locations of specific nodes (e.g.,
intersections and highway exits) leads to low accuracy in the
map-matching results, which in turn affects the quality of
location based services negatively.

In this paper, we draw the attention of the spatial database
community to the importance of road network compression
while preserving the quality of map-matching. Our contribu-
tions can be summarized as follows:

• We present COMA, a lossy compression technique that
significantly reduces the size of a given road map and
that is sensitive to the quality of map-matching.

• Map-matching can be performed directly on the com-
pressed data without the need to decompress the data
beforehand.

• We relieve ourselves from the constraint that the original
and compressed maps need to be visually similar. Hence,
we aggressively achieve high compression ratios in areas
where the map matcher is not confused by deformations
in the map appearance that result from the lossy nature
of the proposed technique.

• We introduce a tuning parameter, the conflict factor, that
controls the behavior of the technique and trades the
compression ratio for the map-matching quality.

• We provide an experimental study that uses real road
maps and real GPS tracks to evaluate the performance
of the proposed technique under variable GPS sampling
rates, variable conflict factors, and variable levels of
noise as measured in both urban and rural areas.

The rest of this paper is organized as follows. Section II
highlights related work. Section III provides a formal defini-
tion of the problem. The proposed technique is described in
Section IV. Section V explains the employed map-matching
technique. An experimental evaluation that is based on real
road network data is given in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK

In this section, we overview road network compression
techniques and we refer the reader to [10] for additional details.
We categorize compression techniques in two main groups: (1)
lossless compression and (2) lossy compression techniques. In
lossless compression, every single data element is recovered
when the given compressed map is decompressed back to
its original format. Lossless compression is very important
in terms of preserving the topological properties of a map.
Alternatively, in lossy compression, certain spatial data is lost
permanently as a result of the compression. Lossy compression
is acceptable, or even desired, in cases where not all object
details are required to perform the spatiotemporal operation in
question.

Zongyu [18] proposes a lossless compression technique that
navigates through the given road map based on its topology
to build a prediction model. This model predicts the next
to-be-visited node based on the already visited nodes. This
compression scheme encodes a node using less number of
bits than originally required. Suh et al. [7] propose another
lossless approach that utilizes combinatorial optimization and
data mining techniques to compress the road network nodes
as well as the road shapes.

Lossy compression techniques, in general, discover similar
chunks of data, create dictionaries on frequently referenced
data chunks, and then refer to items in these dictionaries to
encode the data. The higher the redundancy in the input data is,
the higher the compression ratio is. Shashi et al. [16] propose a
dictionary based compression technique, where the dictionary
entries represent frequent shapes of line segments on the map.
During data compression, line segments of similar shapes
are extracted and represented by a single representative line
segment. This representative line segment is inserted into the
dictionary. Upon data decompression, the dictionary is looked
up and decompression is done by reverting each line segment
back to its representative line segment from the dictionary.

The reference line approach is another lossy compression
approach that is proposed in [1], [3]. The basic steps of the
algorithm can be described as follows: (1) For each polyline in
the original map space, a reference line is identified, (usually
produced from connecting the two ends of the polyline). (2)
The coordinates of that reference line along with its angle
from the original coordinate system is used to apply an affine
transformation to the points on that polyline. (3) The delta
distances in the vertical direction between the intermediate
points on the polyline and the reference line in the new
coordinate system are bounded by a predefined error threshold
e. The selected reference line should keep these deltas within
e, otherwise, a more representative reference line is selected.
(4) In the aggressive mode of the reference line approach [1],
which achieves higher compression ratio but less accurate
decompression, the original coordinate values of the two ends
of the line are stored, along with the number of intermediate
points and the error tolerance e. In the less aggressive one [3],
(less lossy and less compression ratio), the algorithm stores
delta vectors between each intermediate point coordinates and
the origin of the reference line, in addition to the two ends of
the reference line themselves.

Map generalization is a process of reducing the complexity
of the map without hampering the topological and structural
features [13]. Generalization operators include simplification
and smoothing. One of the most known line generalization and
simplification technique is the Douglas-Peucker algorithm [4].
Shin ting et al. [17] utilize an improved Douglas-Peucker al-
gorithm to avoid self-intersections for any specified tolerance.
Saalfeld [15] uses a convex hull to efficiently detect and correct
the topological inconsistencies of the polyline with itself and
with other polyline characteristics. Ali et al. [9] propose a
hybrid aggregation and compression technique and integrate it
with the query processing pipeline of a road network database.
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III. PROBLEM DEFINITION

In this paper, we address the road network compression
problem such that the output is sensitive to the quality of
the map-matching operation. In this section, we give a formal
definition of the problem and describe the input and output
of the proposed compression algorithm (Section III-A). Then,
we describe the input and output of a typical map-matching
algorithm (Section III-B). Note that this paper proposes a novel
algorithm to generate a compressed road map that is usable by
any map-matching technique. Hence, the choice of the map
matcher is orthogonal to the proposed compression algorithm.
We also define two measures of performance, the compression
ratio CR and the map-matching accuracy.

A. Road network compression

Consider a road network graph G(N,E), such that:

• N , is a set of nodes, where each node ni(lat, lon) ∈ N
is defined by its latitude (lat) and longitude (lon), and

• E, is a set of edges, where each edge es,e(ns, ne, wse)
∈ E is defined by a start node ns, an end node ne, and a
weight wse that refers to the cost of traversing this edge,
e.g., distance or travel time.

We assume that the given road network graph G is directed,
where the travel direction over edge e is from the edge’s start
node to the end node (and is represented as e : ns → ne). An
undirected edge means that this edge is bi-directional (and is
represented as e : n1 ↔ n2). For example, an undirected edge
e that connects nodes n1 and n2 will be converted into two
edges with the same weight, one edge e1,2 from n1 to n2 and
another edge e2,1 from n2 to n1.

The following definitions formalize the problem and intro-
duce several concepts that are used throughout the rest of the
paper:

Definition 1: Road network compression generates a com-

pressed version of the road network graph G
′

(N
′

, E
′

) such

that N
′

⊂ N and |E
′

| < |E|.

Definition 2: Victimized node. A victimized node is a node

nv such that nv ∈ N and nv /∈ N
′

.

Definition 3: Bridge edge. if nv is a victimized node that
is connected to nodes ni and nj by edges ei,v ∈ E and
ev,j ∈ E, respectively, ∃ a bridge edge ei,j(ni, nj , wij) ∈
E

′

to reconnect ni and nj such that wij = wiv + wvj .

The definitions above implies that the compression problem

generates a compressed graph G
′

such that the number of
nodes is reduced by victimizing several nodes from the original

graph G. Consequently, the nodes in the resultant graph G
′

is
a subset of the nodes in the original graph G (as described in
Definition 1). If two nodes ni and nj are connected through an
intermediate node nv that is victimized during the compression
process (Definition 2), ni and nj are reconnected through a
bridge edge to maintain the connectivity of the compressed
graph (Definition 3). Hence, eliminating a victim node nv also
compresses two adjacent edges into one edge, the bridge edge.

Note that as more adjacent nodes are victimized, the bridge
edge can substitute multiple consequent edges. The weight of
the bridge edge becomes the sum of the weights of the edges
it substitutes. By replacing multiple consequent edges by a

single bridge edge, the number of edges in G
′

becomes less

than the number of edges in G as indicated by |E
′

| < |E| in
Definition 1.

Definition 4: Compression Ratio. CR = 1− |N
′

|/|N |

We define the compression ratio as the reduction in the
number of nodes in the generated graph relative to the original
graph. Other compression ratio measures may also consider
the reduction in the number of edges. In our algorithm, the
reduction in the total number of edges is linearly correlated
with the reduction in the number of nodes. Hence, we consider
the reduction in the number of nodes as our compression ratio
measure.

B. Map-matching over compressed graphs

An object trajectory Traj is a chronologically ordered set
of object’s timestamped locations. Each tiemstamped location
is on the form of (object-id, timestamp, latitude, longitude). A
map-matched trajectory appends an edge id e to each object’s
location to denote the road segment (or the edge in the graph)
the object is believed to be travelling on at that timestamp. To
assess the performance of map-matching using a compressed

road graph G
′

relative to the original graph G, the object’s
trajectory is map-matched using both graphs.

Definition 5: Accurate match. If an object location is map-
matched to edge e using the road network graph G and is map-

matched to edge e
′

using the compressed version of the road

network graph G
′

, an accurate match is declared if e = e
′

or

e
′

is a bridge edge that encompasses e as one of its compressed
underlying edges.

We define the accuracy of map-matching given a road
network compression techniques as the percentage of accurate
matches relative to the entire trajectory length.

Definition 6: Map-matching accuracy under compres-

sion. Accuracy =
|Trajaccurate|

|Traj|

IV. THE COMPRESSION TECHNIQUE

In this section, we describe our proposed COMA technique
for road network compression for map-matching. We start by
briefing the main idea of the proposed technique, then we go
through the algorithm details, and finally, we give an example
to further illustrate the steps of the algorithm.

Main Idea. The main idea of the proposed COMA technique
is to reduce the number of nodes and edges in the given road
network graph such that the deletion of a node/edge will not
cause map-matching ambiguity. As described in Section III,
multiple edges are compressed and represented by a single
bridge edge. A smart compression algorithm optimizes for a
minimal amount of false positives and false negatives. On one
side, we make sure that the to-be-added bridge edge is closer
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Algorithm 1 COMA: Road Network Compression For

Map-Matching

Input: Road Network Graph G(N,E),
Conflict Factor Threshold C

1: #Original Nodes← Count(N )
2: for each node n ∈ N do

3: /* Step 1: Select Candidate Victim Node*/
4: if Select Candidate Victim(G, n) then

5: Ein ← set of input edges to n
6: Eout ← set of output edge from n
7: /* Step 2: Check Conflict Edges*/
8: Check Conflict(G, n, Ein, Eout, C)

9: /* Step 3: Victimize Chosen Node*/
10: Delete And Merge(G, n, Ein, Eout)

11: end if

12: end for
13: #Compressed Nodes← Count(N )

14: CR = 1-
#Compressed Nodes

#Original Nodes
// Compression Ratio

15: Return G, CR

to the to-be-deleted victim node (and its edges) than any other
existing edge in the vicinity. Hence, the object that is travelling
on the to-be-deleted edge can still be map-matched correctly
to the bridge edge with no ambiguity or confusion with other
edges. Consequently, we avoid false negative, where the object
is not map-matched to the bridge edge while it is supposed to.
On another side, we make sure that the to-be-added bridge
edge has no edges that are closer than the to-be-deleted edges.
Hence, an object travelling on a nearby edge is not mistakenly
map-matched to the bridge edge. Consequently, we avoid false
positives, where the object is map-matched to the bridge edge
while it is travelling on a different edge.

In other words, to decide wether a node nv qualifies for
victimization or not, COMA examines the newly formed bridge
edge ei,j(ni, nj), (resulted from connecting the two far ends,
ni and nj of the input and output edges of nv). If (1) the
bridge edge is closer to the in-hand node nv than any other
edge in the vicinity and (2) if the to-be-deleted edges are the
closest to the bridge edge, the node nv is victimized and the
new bridge edge replaces the edges of nv in the graph.

To control the behavior of the compression algorithm, we
define a tuning parameter, called the conflict factor threshold
C. The conflict factor of a candidate victim node nv is the
distance from the this node nv to the to-be-added bridging
edge relative the distance from nv to the nearest edge in
the vicinity. If the conflict factor of node nv is below the
specified conflict factor threshold C, the victimization may take
place. Otherwise, the victimization stops and no compression
is achieved at that node. By leveraging C, we can control the
trade-off between the compression ratio and the map-matching
quality. The higher C is, the higher the compression ratio we
get, and the less the quality of map-matching we guarantee,
and vise versa.

Algorithm. The pseudo code of the proposed compression
technique is given in Algorithm 1. The algorithm takes as input
the original road network graph G, and the conflict factor C.
As output, the algorithm returns the compressed version of the
road network graph, and the compression ratio. The algorithm
has three main steps that are described as follows.

Step 1: Select Candidate Victim Node. The compression
process start from any arbitrary node in the underlying road
network graph, (Line 3). Once we pick up a node, the
algorithm examines the ability to delete (or victimize) this
node from the graph. Yet, the algorithm applies some checks
to make sure that the deletion of this node is safe from a
graph connectivity perspective. This is done by calling the
Select Candidate Victim(G, n) function which considers the
in-hand candidate node n as a valid victim for deletion when
any of the following conditions is valid.

(1) Intermediate node. n is an intermediate node if it is
connected to only two different nodes, e.g., ni, and nj and
ni 6= n 6= nj , and satisfies one of the following two cases.

• Case1: Intermediate node of a one-directional path.
n has one input edge coming from ni, and an output
edge going to nj , i.e., ni → n → nj . For example,
n2 in Figure 1(a) is an intermediate node in the one-
directional path from n1 to n3.

• Case2: Intermediate node of a bi-directional path.
the two nodes ni, and nj are connected to n via bi-
directional edges, i.e., ni ↔ n ↔ nj . For example, n5 in
Figure 1(a) is an intermediate node in the bi-directional
path from n4 to n6.

(2) Fan in/out node. n is a fan in or fan out node if it is
connected to more than two other nodes with one-directional
edges, and there is only one input edge and all the remaining
edges are output edges (e.g., n7 in Figure 1(a) is a fan-out
node). Alternatively, there is only one output edge and all the
remaining edges are input edges.

Intermediate nodes (both one-directional and bi-directional
cases) are appealing for compression. Intermediate nodes can
be victimized with minimal impact on the graph connectivity
by simply bridging the victim node, i.e., connecting the nodes
before and after the victim node by a bridge edge. Also, the
fan-out nodes are bridged by connecting the start node of the
input edge to the end nodes of all output edges directly. An
example is detailed later in this section.

After we discussed the various cases where a node is
considered for victimization, we highlight cases where a node
is never considered for victimization.

• Cornerstone node. A cornerstone node has edges that
either all input edges or all output edges, e.g., node n1

in Figure 1(a). The deletion of such a node breaks the
connectivity and/or directional flow of the graph.

• Highly-connected node. If a node n has multiple in-
put edges and multiple output edges, e.g., node n6

in Figure 1(a), the consequences of deleting this node
will produce a large number of bridge edges to cover
all connectivity possibilities. For example, if a node
has x number of input edges and y number of output
edges (i.e., a total of x + y edges), deleting this node
will result in x × y number of edges to reconnect all
broken connection between the input edge sources and
the output edge destinations.

• Variable-directionality node. If a node n has a mix of
one-directional and bi-directional edges, e.g., node n4 in
Figure 1(a), the consequences of deleting this node will
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Algorithm 2 Check_Conflict Function

Input: Road Network Graph G(N,E,W ), Node n, InEdges Ein, OutEdges
Eout, Conflict Factor C

1: for each edge ein ∈ Ein do

2: for each edge eout ∈ Eout do

3: econflict ← Find nearest edge to n where econflict is not
connected to n

4: ebridge ← Create new edge by connecting the far ends of ein and
eout

5: if Distance(n, ebridge) / Distance(n, econflict) < C then
6: nmid ← Get midpoint of enew

7: enewConflict ← Find nearest edge to nmid where
enewConflict is not connected to n

8: if enewConflict = econflict OR Distance(n, enew) /
Distance(n, enewConflict) < C then

9: Mark < n, ein, eout > as eligible victims
10: end if
11: end if

12: end for

13: end for
14: Return

produce parts of the graph that violate the directional
flow of the graph, i.e., the path between n3 and n5 is
half one-directional and half bi-directional.

We deliberately exclude corner stone, multi-edge and vari-
able directionality nodes from being victimization candidates
in the algorithm.

Step 2: Check Conflict Edges. For a selected candidate
node n, our objective is to victimize this node and to replace
each of its connected pairs of input/output edges < ein, eout >
with a single new bridge edge ebridge that links the two far
ends of that pair. However, before we victimize the node n, we
check if the to-be-added bridge edge has enough distance away
from nearby edges. This step makes sure that this compression
is safe from a map-matching perspective. The pseudo code
for the check conflict function is given in Algorithm 2. The
conflict check has two phases. The first phase of the conflict
check considers the edges that are close to the candidate victim
node n while the second phase considers edges that are close
to the to-be-added ebridge.

In the first phase, it finds out the closest edge econflict to the
in-hand node n, (Line 3 in Algorithm 2). After that, we create
a new edge ebridge by linking the start node of the input edge
ein and the end node of the output edge eout of the under
processing pair of edges < ein, eout > around n,(Line 4).
Next, (Lines 5 to 11 in Algorithm 2), we get the ratio between
the distance from n to the bridge edge ebridge, and the distance
from n to the conflict edge econflict. If this ratio is less than the
controllable parameter C, the conflict factor threshold, ebridge
is far from nearby conflicting edges and, hence, may substitute
the edge pair < ein, eout > and avoid false negatives (as
described above).

To avoid false positives and further map-matching conflicts,
the second phase of the conflict check considers all edges in the
vicinity of ebridge. Among these edges, we find out the edge
with the minimum perpendicular distance to the midpoint of
ebridge and we call it enewConflict. If enewConflict refers the
same edge of econflict, we conclude that the closest edge to
the to-be-added edge ebridge is the same the closest edge to the

Algorithm 3 Delete_And_Merge Function

Input: Road Network Graph G(N,E,W ), Node n, InEdges Ein, OutEdges
Eout

1: if All combinations of {< ein, eout >} ∈ {Ein × Eout} are marked
for deletion then

2: for each < ein, eout > ∈ {Ein ×Eout} do
3: W (ebridge) = W (ein) +W (eout)
4: Add ebridge to G
5: end for

6: Delete n from G
7: Delete ein and eout from G
8: end if

9: Return

to-be-deleted node nv. Hence, we mark the pair < ein, eout >
as safe to be deleted and replaced by the new edge ebridge. if
enewConflict 6= econflict, we check how much enewConflict is
of conflict relative to neighboring edges based on the specified
conflict factor threshold C. If the conflict of enewConflict is less
than C, we mark the pair < ein, eout > as safe for deletion.
Otherwise, we do not victimize the node or any of its edge
and we move on to the following node in the graph.

Step 3: Victimize Node. The objective of this step is to per-
form two things, (1) deleting the victim node and its connected
edges, and (2) adding the new bridge edge(s) to the graph.
This is accomplished by calling the Delete And Merge
function, Algorithm 3. Initially, this function makes sure that
all combinations of edge pairs < ein, eout > in the set
of input edges Ein and output edges Eout have passed the
conflict check done in step 2. If this is the case, the algorithm
proceeds by computing the weight for each new edge ebridge
by summing up the weights of its corresponding edge-pair
< ein, eout >. Finally, ebridge is inserted to the graph and the
node n is eliminated. Consequently, the deletion of n triggers
the elimination of its linked in and out edges from the graph.

At the end, after we visit all nodes and edges in the
original graph, the algorithm computes the compression ratio
to indicate how many nodes have been successfully removed
from the graph based on the selected conflict factor threshold
C.

Example. Figure 1 gives an example to illustrate the steps
of the proposed compression algorithm. In this example, the
original road network consists of 13 nodes and 15 edges
(Figure 1(a)). Also, the conflict factor C is set to 0.5.

The compression process can start from any node in the
given graph. We arbitrarily start from node n1. Unfortunately,
we find that n1 has no input edges and two output edges, e1 and
e6. Hence, n1 is a cornerstone node and is not a candidate node
for victimization, thus, we skip to the next node n2. Because
node n2 has exactly one input edge e1, and one output edge
e2 (i.e., an intermediate node), n2 is marked as a candidate
victim and there is a possibility that it will be deleted from
the graph. Yet, we have to check the conflict between the new
bridge edge (i.e., e(n1, n3) that connects the two far endpoints
of edges going to or going out of n2) and the set of nearby
edges. To do so, we define a circular region centered at the
node in-hand n2 and its radius is equal to the length of the
longest edge connected to n2, as shown in Figure 1(b). We get
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(a) Given Road Network (b) Deletion of n2 (c) Deletion of n3

(d) Attempt n4 and Delete n5 (e) Deletion of n7
(f) Deletion of n8

(g) Deletion of n13
(h) Attempt n12 and Delete n10 (i) Compressed Road Network

Fig. 1. Illustrative Example of The Proposed Compression Technique

a set of edges in the vicinity that intersect with this region.
Then we find out the conflicting edge, that is the closest edge
to n2 among these vicinity edges, e7 in this case. Next, we
compute the conflict factor as the value of the distance from
n2 to bridge edge e(n1,n3) divided by the distance from n2 to
the conflicting edge e7, then, we compare this conflict factor
value to the conflict factor threshold C. Obviously, this ratio is
less than C. Since e7 is also the closest edge to the midpoint
of e(n1,n3), n2 passes the two phases of the conflict check.
Therefore, n2 is deleted from the original graph, and its two
connected edges, e1 and e2, are replaced by one new edge
e(n1,n3). The weight of e(n1,n3) is equal to the sum of weights
on e1 and e2.

We continue the compression by moving on to n3. In
Figure 1(c) we successfully victimize n3 after passing the two
phases of the conflict check. Note that e7 is the closest to the
midpoint of the new edge e(n1,n4) and e8 is the closest to n3

itself. In the first phase of the conflict check, the conflict factor
is computed as the distance from n3 to e(n1,n4) divided by
the distance from n3 to e8. In the second phase, the conflict
factor is computed as the distance from n3 to e(n1,n4) divided
by the distance from n3 to e7.

Our attempt to delete n4 fails because one of the two
connected edges is a bi-directional edge (e4) and the other
one is one-directional (e3). This means n4 is a variable-
directionality node and is, hence, not a candidate for victimiza-
tion. The deletion of n5 is smoothly completed as the nearest

conflict edge e9 is much farther than the new edge e(n4,n6)
(Figure 1(d)). Deletion of the node n7 is a compound step
(Figure 1(e)). As n7 has one input edge and three output
edges (i.e., a fan out edge), the deletion process acts as if
there are three copies of n7, one for each < input, output >
pair of edges, i.e., < e6, e7 >, < e6, e10 >, < e6, e14 >.
We delete n7 from the three pairs and replace each pair of
< input, output > edges by a newly added bridge edge.
Thus, n7 is deleted along with its connected edges e6, e7,
e14, e10. Then, we inserted three new bridge edges, e19, e20,
e21 (Figure 1(f)).

The algorithm proceeds to delete the node n8. As seen in
Figure 1(f), the closest edge to n8 is e20, while the closest
edge to the midpoint of the new edge e(n1,n9) is e17. Hence,
we apply two conflict checks one after the success of the
other. The first check is for the distance from n8 to e(n1,n9)
divided by the distance from n8 to e20, and the other one is for
the distance from n8 to e(n1,n9 divided by the distance from
n8 to e17. Fortunately, both ratios are less than C, therefore,
n8 is eliminated from the graph followed by the removal of
n9 in another straight forward step. This sequence of node
victimization resulted in connecting n1 and n6 through the
added edge e23 (Figure 1(g)).

The processing of n13 is similar to what we did previously
with n8, as shown in Figure 1(h). Then, our attempt to get
rid of n12 fails because the conflict check with edge e23 fails.
Finally, we are able to victimize n10 leaving the compressed
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version of the road network graph with 5 nodes out of the 13
nodes in the original one, Figure 1(i).

V. MAP-MATCHING

Map-matching refers to the process of linking a series of
GPS locations to their corresponding road segments in the
underlying road network graph. Importance of map-matching
comes from the fact that it is a core element in location
aware services. Basically, we need to know precisely the
correct edge on which the object, e.g., vehicle or person, is
currently traveling on. Hence, we can accurately answer spatial
queries, e.g., finding shortest path or finding nearest point of
interest. The accuracy of the map-matching output is highly
dependent on the quality of the underlying road network.
In other words, road network graph should provide a good
representation of the real streets along with their directions,
connectivity, layout and intersections. As we stated earlier
in this paper, the main goal of our compression approach
is to significantly shrink the size of the road network graph
while maintaining a high quality road network representation
in the compressed version of the graph. Definitely, we should
reserve a sufficient precise map-matching for moving objects
movements on the compact graph. Therefore, to prove the
accuracy of our compression algorithm, we utilize the Passby
map-matching algorithm [11].

The promise of this algorithm is that it can even work on
most simplified road networks. It does not have to be feeded
with each single detail in the road network graph.

The main idea of the Passby algorithm is to consider the
road intersections as the flag points at which the map-matching
process focuses more. Once an object’s trajectory passes by
an intersection, the algorithm finds out those edges around
this intersection and select the one that are closer to more
GPS points in the underlying trajectory. To achieve this, the
algorithm takes two successive GPS points, the current point
pcurrent and its previous point pprevious, and computes a
number of measurements for each nearby edge. It measures
the projected distance between the edge and each of the two
points and also the angle between the line connecting pprevious
and pcurrent, and the edge line. The GPS points will be
linked to the edge with optimal measurements. In our map-
matching test, we run the Passby algorithm on a set of objects
trajectories Traj for both the original road network graph

G and the compressed version G
′

. Then we measure how
close the map-matching quality on the compact version to the
original one.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our pro-
posed COMA technique for compressing road networks while
preserving the map-matching quality. We begin by describing
the environment of the experiments. Then, we describe the
competitive compression technique against which we compare
the COMA technique. Next, we examine the effect of the
conflict factor C on the compression ratio we can obtain as
well as the performance measurements, i.e., CPU time and
memory overhead. After that, we study the effect of different

Fig. 2. COMA Graphical Interface

areas of the underlying graph on the behavior of the COMA
technique. Finally, we test the map-matching quality of the
resultant compressed graph.

A. Experimental Setup

In all experiments of this evaluation, we use real road
network graph of the Washington state, USA.

For the accuracy evaluation for the map-matching operation,
we use real data sets for cars trajectories around the area of
Seattle [2], [8]. In addition, we employ the Minnesota traffic
generator [12] to generate larger sets of synthetic moving
objects on the Washington road network.

All experiments are based on an actual implementation of
the COMA and the competitive technique. All the components
are implemented in C# inside visual studio 2013 with .net
framework.

A nice graphical user interface is developed to allow end
users to submit compression requests, export the compressed
data in different formats, and visually inspect the results,
Figure 2. All evaluations are conducted on a PC with Intel
Xeon E5-1607 v2 processor and 32GB RAM, and running
Windows 7.

B. Competitive Technique

We use the Douglas-Peucker [4] algorithm as the compet-
itive technique to our proposed COMA technique. Douglas-
Peucker is original introduced to reduce the number of points
required to represent a given polyline. The reason for choosing
this technique to compare with is that it can shrink the size
of the road network graph, (when given as a set of polylines),
at the same time, the produced compact graph still can be
leveraged directly to perform map-matching operations. To
make a fair comparison, we use the conflict factor C as the
distance threshold that is required by the Douglas-Peucker to
guide its compression process. Here, we compute C as the ratio
between, the distance from a given ployline, (to-be-compressed
edge(s) in the underlying road map), to the to-be-produced
simplified edge, divide by the distance from that polyline to
the nearest other conflict edge.
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Fig. 3. Effect of Conflict Factor on COMA VS Douglas-Peucker
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Fig. 5. Effect of The Node Degree on COMA
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Fig. 6. Effect of The Road Network Density on COMA

C. Evaluation of Compression Gain

In this set of experiments, we examine the amount of
compression we achieve using the proposed COMA technique.
Also, we compare the results versus the ones we get from the
Douglas-Peucker technique.

Effect of The Conflict Factor Initially, we study the
influence of using different values for the conflict factor C on
the compression ratio we can gain. We run both algorithms
on the whole Washington graph. As given in Figure 3(a),
we vary C from 0.1 to 0.9 on the x-axis and we measure
the compression ratio we obtain on the y-axis. Obviously, the
COMA technique achieves high compression ratio that starts
at about 60% when C is 0.1 and keeps increasing until it
reaches about 75% at C is 0.9. On the other side, the Douglas-
Peucker achieves about 12% compression ratio at C = 0.1 and
38% at C = 0.9. These results prove that COMA outperforms
the Douglas-Peucker in terms of compression ratio. It is also
observed that both techniques achieve higher compression with
larger C values, and vise versa.

Effect of The Area Type To examine how the COMA
compression results are affected by the surrounding nature
around the given road network graph, we select five different
regions to represent area types around forest, down-town, high-
way, lake, and seaside.

Figure 7 compares the COMA compression ratio versus the
Douglas-Peucker for each of the previously mentioned area
types. Clearly, the percentage of size reduction is influenced
by the type of the neighbourhood of the given road map.

For example, in the forest areas, COMA can achieve at least
64% and up to 81% compression ratio at C equals 0.1 and 0.9
respectively. Also, in down-towns, the gain we get by COMA
drops down to 50% at C = 0.1 and to 69% at C = 0.9.

In all areas, COMA defeats Douglas-Peucker by large dif-
ference. The reason behind this variability in the obtained
compression ratio is that the area type defines the shape of
the road network graph. For example, roads in down-towns
have more intersections, branching, and higher dense (number
of node per unit of area), than the highways, forest, and lakes.
In turns, it is easier to delete nodes from the graph of forest

area than the one for down-town area.
Effect of Node Degree Here, the degree of a node is the

average number of edges connected to this node. The overall
trend of COMA in Figure 5(a) is to decrease the compression
ratio when the node degree increases. Basically, that is because,
the larger the degree the more conflict edges we might find,
and consequently the less the ability to delete nodes from the
original graph.

Effect of Road Network Density We use the number
of nodes divided by the size of the area as an indicator of
how dense the given road network graph in different areas in
Washington. For example, 73K means there are 73,000 nodes
per unit square, i.e., lat/long degree, of the road network in this
area. For the same reason mentioned with the node degree, the
compression we gain by COMA goes down when road network
density goes up, Figure 6(a).

D. Efficiency Evaluation

Figures 3(b), and 3(c) studies the efficiency of both tech-
niques for the whole Washington state graph. This gives the
average cost estimates for both CPU and memory overhead.
Except for the first value for COMA in Figure 7(c), it seems
that both techniques have a steady trend in terms of CPU and
memory costs. However, COMA is a CPU friendly technique
whereas Douglas-Peucker is clearly a memory friendly tech-
nique.

Figures, 8 and 9 give the results of studying the efficiency
behavior of the two techniques with different area types. As
shown in the former figure, COMA significantly reduces the
CPU time required to compress a road graph compared to
the Douglas-Peucker. We can also notice the influence of the
area type on the average CPU cost. For example, COMA costs
about 2.8MS at C = 0.1 to process the graph of down-town
area, Figure 8(d), while it costs less than half millisecond for
lakes at the same C, Figure 8(c). Douglas-Peucker has similar
trend of reacting to area type effect, but, with much higher
CPU costs, 8.6MS and 1.92MS respectively.

From the memory overhead efficiency perspective, COMA is
the looser here. The reason for these efficiency patterns is that
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Fig. 7. Effect of Area Type on Compression Ratio
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Fig. 8. Effect of Area Type on Efficiency (CPU Time)
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Fig. 9. Effect of Area Type on Efficiency (Memory Overhead)

 

 0

 20

 40

 60

 80

 100

1/10 3/10 5/10 7/10 9/10

A
c

c
u

ra
c

y

Conflict Factor

COMA
Douglas-Peucker

(a) Highway

 

 0

 20

 40

 60

 80

 100

1/10 3/10 5/10 7/10 9/10

A
c

c
u

ra
c

y

Conflict Factor

COMA
Douglas-Peucker

(b) Seaside

 

 0

 20

 40

 60

 80

 100

1/10 3/10 5/10 7/10 9/10

A
c

c
u

ra
c

y

Conflict Factor

COMA
Douglas-Peucker

(c) Lake

 

 0

 20

 40

 60

 80

 100

1/10 3/10 5/10 7/10 9/10

A
c

c
u

ra
c

y

Conflict Factor

COMA
Douglas-Peucker

(d) Down-Town

 

 0

 20

 40

 60

 80

 100

1/10 3/10 5/10 7/10 9/10

A
c

c
u

ra
c

y

Conflict Factor

COMA
Douglas-Peucker

(e) Forest

Fig. 10. Effect of Area Type on Map-Matching Accuracy

COMA converts the given road network graph into extended
version where intermediate nodes are converted into regular
nodes and edges. This step can not be done for the Douglas-
Peucker, as it needs a long polyline. By doing so, COMA
occupies much memory. Moreover, COMA processes node by
node without visiting the same node twice which is not the case
for recursive visiting in the Douglas-Peucker. Thus, COMA is
more CPU friendly.

When we examine the effect of node degree, Figure 5(b,c),
and road network density, Figure 6(b,c), on the COMA effi-
ciency measurements, we find that it costs more CPU with
larger degrees and density and vice versa for memory over-
heads. The reason is that larger degree/density means more
checks for edges conflict which means more CPU time. This
also means the same data structures can serv more nodes per
unit which decreases the total memory overhead.

E. Testing The Map-Matching Quality

In this set of experiments, we examine the accuracy of cor-
rectly map-matching locations of moving objects trajectories

on the compact road network graph, Definition 5 and 6. As
mentioned earlier, we use sets of real and synthetic moving
objects trajectories distributed over the road network graph of
Washington, USA.

As given in Figure 4(a), COMA achieves high accurate map-
matching that ranges from 96% at C = 0.1 with about 58% as
compression ratio, Figure 3(a), to about 93.5% at C = 0.9 with
compression ratio around 75%. On the other side, Douglas-
Peucker barely achieves 27.6% at C = 0.9 with compression
ratio = 38.4% and its maximum accuracy comes at 29% when
calC = 0.1 with very low compression ratio = 11.7%.

In Figure 4(b), we check the effect of using different levels
of trajectory sparseness on the map-matching quality. We vary
the trajectory sampling from one point every 1 second to
one point every 20 seconds. Generally, Douglas-Peucker is
not sensitive to the trajectory sparseness, while COMA is
negatively affected by sparse sampling rate. The reason is that
COMA produces short edges, i.e., without intermediate nodes,
which is not the case for Douglas-Peucker. Thus, skipping
few seconds might jump the matching to the next edge and
this does not give the Passby algorithm a sufficient number of
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consecutive points on each single edge to do the right map-
matching.

Figure 4(c) studies the effect of trajectory length on the map-
matching accuracy. Both techniques have deceasing trend in
the accuracy with longer trajectories. However, COMA loses
less than 4% from its perfect accuracy at length = 1min
to 96.4% at length = 20min, while Douglas-Peucker drops
from 53% to 25.2 at length =1min and 20min respectively.
A possible reason for that the Passby algorithm uses few
trajectory points at the two ends of the vicinity edges to make
map-matching decision. Once an edge is chosen, all points in-
between those two ends will automatically be matched to that
edge. If the decision is wrong, that will have larger negative
effect on Douglas-Peucker accuracy than COMA because the
former produce longer edges, have intermediate nodes.

Though in most cases COMA achieves a close-to perfect
map-matching accuracy, however, in some areas, this ideal re-
sult is not guaranteed. For example, in forest area, Figure 10(e),
the map-matching accuracy for COMA goes down from 90.5%
to 79.2% at C = 0.1 and 0.9 respectively. One reason for this
is the nature of the forest environment, e.g., high dense trees,
that badly affects the GPS accuracy. Hence, objects locations
suffer from wider range of uncertain, yet, it is harder to be
map-matched correctly to its correct edge.

F. Experiments Summary

The conducted experiments prove the promises of COMA
from three main perspectives. (1) From the compression
achievements perspective, it can perform up to 75% compres-
sion ratio. (2) From the efficiency perspective, it is much faster
than the Douglas-Peucker, as main competitive technique.
However, the later is more memory friendly than COMA. (3)
From the map-matching accuracy perspective, COMA accuracy
can be directed to reach an ideal accuracy, and in general its
accuracy does not go blow 93% compared to 30% for the other
technique.

VII. CONCLUSION

In this paper, we highlight the importance of compressed
road maps from storage and communication perspective. With
the proliferation of mobile, hand-held and embedded devices,
the reduction in sizes of road maps becomes a metric that
drives cost. While road network compression has been an
active research problem, compression techniques aimed at
high compression ratios regardless of the operations that are
expected to be performed on the compressed version of the
road map are the next generation of challenges that need
to be addressed. We advance the state of the art along one
such aspect: a compression technique to generate road network
graphs that are consumable by the map-matching operations.
Our proposed technique achieves high compression-ratios that
reach up to 75% of the size of the original road network
data while maintaining a high map-matching accuracy. Exper-
imental studies validate extensively the utility of our approach
compared to existing techniques and are easily adaptable to
existing device form-factors, the main aim of our work.
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