
THE CHECK-POINTED AND ERROR-RECOVERABLE MPI JAVA LIBRARY OF AGENT
TEAMWORK GRID COMPUTING MIDDLEWARE

Munehiro Fukuda, Zhiji Huang

University of Washington, Bothell
Computing and Software Systems

18115 Campus Way NE, Bothell, WA 98033

ABSTRACT

We are implementing a fault-tolerant mpiJava API on
top of the AgentTeamwork grid-computing middleware sys-
tem. Our mpiJava implementation consists of the mpiJava
API, the GridTcp socket library, and the user program wrap-
per, each providing a user with the standard mpiJava func-
tions, facilitating message-recording/error-recovering socket
connections, and monitoring a user process. This paper
presents the application framework, mpiJava implementa-
tion, and communication performance in AgentTeamwork.

1. INTRODUCTION

We are developing the AgentTeamwork grid-computing mid-
dleware that deploys Java-based mobile agents over a col-
lection of computing nodes to coordinate parallel execution
of Java applications. Of apparent importance is to provide
users with high-level communication libraries such as MPI
and PVM. However, they do not automatically restore acci-
dental disconnection of communication channels, and there-
fore do not support migration and resumption of crashed
jobs, which becomes a severe problem to grid computing.
The reason is the more computing nodes allocated and the
more time elapsed, the more chances of node failure a job
may face during the course of its computation. In addition,
to accelerate its execution speed, a job needs to migrate to a
less-loaded node at run time.

As a simple solution, some middleware systems set their
target on embarrassingly parallel or bag-of-task applications
that require inter-process communication only at the begin-
ning and the end of execution, namely for their parameter
distribution and result collection [1]. However, they ob-
viously narrow down application domains. Another solu-
tion is to use FT-MPI [2], a fault-tolerant MPI that restarts
a crashed process and restores its MPI communicator, al-
though an application is still responsible to recover mes-
sages lost in transit to a crashed process. Furthermore the

This work is fully funded by National Science Foundation’s Middle-
ware Initiative (No.0438193).

process must resume from its top of computation.
To cope with these problems, it is essential to repeat

taking a snapshot of computation and to resume a process
from the latest snapshot. The Condor MW project is such
a system that has focused on the master-worker model in
PVM [3]. Its MW library in a master process keeps track
of and retrieves connections to all its worker processes, yet
inter-worker communication is not retrievable due to the
lack of snapshots taken at each worker.

An enhanced solution is to replace MPI’s underlying
TCP connection with the Rock/Rack reliable TCP [4], us-
ing which a user process can reestablish a new TCP con-
nection to its “resumed” peer process, provided it is called
back from and given an IP address of this peer process. This,
however, forces users to develop mobile-aware applications.

Based on the above background, we are implementing a
check-pointed and error-recoverable Java version of MPI on
top of the AgentTeamwork middleware. While complying
with the original mpiJava’s API, our implementation uses
Java sockets we have modified so as to save a history of old
TCP messages, to restore disconnected TCP connections,
and to deliver lost messages to resumed processes.

This paper introduces the overview of AgentTeamwork,
presents the implementation techniques for our fault-tolerant
mpiJava, and discusses its communication performance.

2. PROGRAMMING INTERFACE

Using mobile agents, AgentTeamwork coordinates job exe-
cution over a collection of desktop/cluster computing nodes,
each owned by a different user but registered in a common
ftp server, (e.g., ftp.tripod.com in our implementation). To
participate in a grid-computing community, a user down-
loads XML-described resource and user-account files as well
as the AgentTeamwork software kit, and thereafter runs the
UWAgent mobile-agent execution platform on his/her com-
puting node in background so as to exchange user jobs with
other community members.

AgentTeamwork does not need a central cycle server
for job submission and coordination. Each user can inde-

pendently submit a job with a commander agent, one of
mobile agents provided by AgentTeamwork. This agent
starts a resource agent that searches its local XML files for
the computing nodes best fitted to the user job’s resource
requirements. Receiving such candidate nodes, the com-
mander agent spawns a sentinel and a bookkeeper agent.
These agents hierarchically spawn as many descendants as
the number of nodes required by the job execution. Each
sentinel launches a user process and repeats sending its ex-
ecution snapshot to the corresponding bookkeeper agent.
Upon an agent crash, its parent or child agent resumes the
crashed agent with the latest snapshot retrieved from the
bookkeeper. All results are forwarded through the agent hi-
erarchy from the bottom to the commander agent that there-
after reports them to the client user through the monitor, by
email, or by files.

Figure 1 shows the AgentTeamwork execution layers
from the top application level to the underlying operating
systems. The system facilitates the mpiJava API for Java
applications, while they may call native functions and use
socket-based communication as a matter of course. Com-
plying with the original API, AgentTeamwork distinguishes
two versions of mpiJava implementation: one ismpiJava-S
that establishes inter-process communication using the con-
ventional Java socket, and the other ismpiJava-Athat real-
izes message-recording and error-recoverable TCP connec-
tions using ourGridTcpsocket library. The implementation
is user-selectable with the type of arguments passed to the
MPI.Init() function. Below mpiJava-S and mpiJava-A is
the user program wrapper that periodically serializes a user
process into a byte-streamed snapshot and passes it to the
local sentinel agent. As described above, the sentinel agent
sends every new snapshot to its corresponding bookkeeper
for recovery purposes. All these agents are executed on top
of the UWAgent mobile agent execution platform.

Java user applications
mpiJava API

mpiJava-S mpiJava-A
Java socket GridTcp

User program wrapper
Commander, resource sentinel, and bookkeeper agents

UWAgent mobile agent execution engine
Operating systems

Fig. 1. AgentTeamwork execution layer

An application program is coded in the AgentTeamwork-
specific template as shown in Figure 2. If the program uses
mpiJava-A, it must include a GridTcp object in a declaration
of system-provided members (line 4). The code consists of
a collection of methods, each namedfunc plus an index
starting from 0 and returning the index of the next method

to call. The application starts fromfunc 0, repeats calling
a new method indexed by the return value of its previous
method, and ends in the method whose return value is -2,
(i.e., func 2 in this example). TheMPI.Init function invokes
mpiJava-A when receiving an ipEntry object that is initial-
ized by the user program wrapper to map an IP name to
the corresponding MPI rank (line 8). FollowingMPI.Init, a
user may use any mpiJava functions for inter-process com-
munication (lines 13, 14, 16, and 22). The user program
wrapper takes a process snapshot at the end of each func-
tion call. Since GridTcp maintains old MPI messages inter-
nally, a process snapshot also contains these messages in it.
When the application is moved to or resumed at a new com-
puting node, GridTcp retrieves old messages from the latest
snapshot and resends them if they have been lost on their
way. We will ultimately relieve users from this framework-
based programming by implementing a a JavaCC/ANTLR-
based language preprocessor that automatically partitions
their Java applications into a collection of it funcmethods.

1 public class MyApplication {
2 public GridIpEntry ipEntry[]; // used by system
3 public int funcId; // used by system
4 public GridTcp tcp; // recoverable tcp
5 public int nprocess; // # processors
6 public int myRank; // processor id
7 public int func_0(String args[]){ // constructor
8 MPI.Init(args, ipEntry); // invoke mpiJava-A
9; // more statements inserted

10 return 1; // call func 1()
11 }
12 public int func_1() { // called from func0
13 if (MPJ.COMM_WORLD.Rank() == 0)
14 MPI.COMM_WORLD.Send(...);
15 else
16 MPI.COMM_WORLD.Recv(...);
17; // more statements inserted
18 return 2; // call func 2()
19 }
20 public int func_2() { // the last function
21; // more statements inserted
22 MPI.finalize(); // stop mpiJava-A
23 return -2; // application terminated
24 } }

Fig. 2. AgentTeamwork-specific code template

3. IMPLEMENTATION TECHNIQUES

This section details the underlying layers that support our
mpiJava implementation such as the MPJ package, the GridTcp
library, the user program wrapper, and the sentinel agent.

3.1. MPJ Package

This is a collection of Java programs that interfaces user ap-
plications with the underlying Java socket or GridTcp socket

communication. It includes:

1. mpjrun.java: allows an mpiJava application to start a
standalone execution (i.e., without using AgentTeam-
work) by launching an ssh process at each of remote
nodes listed in the “hosts” file.

2. MPJ.java: establishes a complete network of the un-
derlying socket connections among all processes en-
gaged in the same job.

3. JavaComm.java and GridComm.java: create and main-
tain a table of Java or GridTcp sockets, each corre-
sponding to a different processor rank.

4. Communicator.java: implements all message-passing
functions such asSend(), Recv(), Bcast()etc..

5. MPJMessage.java and Status.java: return the status
of the last exchanged message.

The heart of the MPJ package is MPJ.java and Commu-
nicator.java. The former, upon anMPI.Init() invocation,
chooses Java or GridTcp sockets, establishes a socket con-
nection from all slave nodes (with rank 1 or higher) to the
master (with rank 0), exchanges rank information among
all the nodes, and finally makes a connection from each
slave to all the lower-ranked slaves. The latter takes care of
serializing objects into byte-streamed outgoing messages,
exchanging them through its underlying Java or GridTcp
sockets, and de-serializing incoming messages to appropri-
ate objects.

3.2. GridTcp

GridTcp provides message-recording and error-recoverable
TCP connections. It saves each connection’s incoming and
outgoing messages in its internal queues. The queues are
captured in a process snapshot, and thus retrieved every pro-
cess migration or resumption. GridTcp garbage-collects its
history of these in-transit messages by exchanging acom-
mitmentmessage with its neighboring nodes. Our current
implementation sends a commitment whenever the under-
lying user program wrapper takes a new snapshot.

Figure 3 gives an example where two processes are en-
gaged in the same MPI application, running at n1 and n2
of theuwb.edudomain, and identified with rank 1 and 2 re-
spectively. When a process migrates from n2 to n3, their
TCP connection is broken, which thus asserts an exception
to the underlying layers, (i.e., the user program wrapper and
the sentinel agent). The sentinel agent with rank 1 receives
a new IP address from the one with rank 2, (i.e., n3). There-
after, these two sentinels pass the rank2/n3 pair to their user
program wrapper that has GridTcp restore in-transit mes-
sages from the latest snapshot, update its routing table, and
reestablish the previous TCP connection.

rank
1
2

ip
n1.uwb.edu
n2.uwb.edu

outgoing queue

incoming queue Program
User

User Program Wrapper

n2.uwb.edu

TCP

outgoing queue

incoming queue Program
User

incoming queue

outgoing queue

rank
1
2

ip
n1.uwb.edu
n2.uwb.edu

Program
User

snapshot

User Program Wrapper

n3.uwb.edu

TCP

TCP

User Program Wrapper

n1.uwb.edu

rank
1
2

ip
n1.uwb.edu
n3.uwb.edu

n3.uwb.edu

After Migration

Before Migration

capture

resume

Fig. 3. TCP maintenance upon migration.

3.3. User Program Wrapper

Using the Java object serialization, the user program wrap-
per periodically converts all user objects into a byte-presented
stream as an execution snapshot. The problem is that Java
does not serialize an application’s program counter and stack.
To handle this problem, we partition a user program into a
collection of methods, each namedfunc n (wheren is an
integer starting from 0) and returning the index of the next
method to call. In this scheme, the user program wrapper
schedules the invocation of these functions and takes a snap-
shot at the end of each function call.

This solution, however, burdens users with framework-
based programming. We will address this burden by extend-
ing the UCI Messengers’ compiler technique that converts a
user program into a series of functions [5]. Figure 4 shows
the simplest check-pointing example where nine sequen-
tial statements are partitioned into three functions, named
func 0, func 1, and func2, each returning the index of the
next function to call. The user program wrapper saves this
index value as well as all the user data members, and there-
after calls the indexed function. Upon a process crash, the
wrapper retrieves the last index from the corresponding snap-
shot and resumes the process from the indexed function.
The preprocessing technique for more complicated programs
is described in [5].

3.4. Sentinel Agent

The sentinel agent is one of the AgentTeamwork-provided
mobile agents. Dispatched to a different computing node,
each sentinel launches a user program wrapper as passing a
user program name and its parameters to the wrapper. Every
five seconds the sentinel checks if the wrapper has taken a
new execution snapshot and sends it to the corresponding

statement_1;
statement_2;
statement_3;
check_point();
statement_4;
statement_5;
statement_6;
check_point();
statement_7;
statement_8;
statement_9;
check_point();

Source Code User Program Wrapper

Preprocessing

 switch(func_id)) {

 }
 check_point();
}
check_point() {
 // save this object including
 // func_id into a file
}

int func_id = 1;
 statement_1;
 statement_2;
 statement_3;

}

 statement_4;
 statement_5;
 statement_6;

}

 statement_7;
 statement_8;
 statement_9;
 return −2;
}

while (func_id != −2) {

func_2() {

func_1() {

func_0() {

 return 1;

 return 2;

 case 2: func_id = func_2();
 case 1: func_id = func_1();
 case 0: func_id = func_0();

Fig. 4. Source program preprocessing.

bookkeeper if it is new. When a sentinel is resumed after a
crash or a migration, it multi-casts a pair of its new IP name
and rank to its parent and child agents that further forward
their ascendants and descendants. Upon receiving such a
new IP/rank pair, each agent reinitializes its user program
wrapper that directs GridTcp to recover broken connections.

4. COMMUNICATION PERFORMANCE

We have implemented the basic features of the AgentTeam-
work system including 14 major functions of mpiJava such
asMPI.Send(), Recv(), Bcast(), gather()andscatter().
Using Java Grande MPJ benchmark’s PingPong program [6],
we have compared the communication performance among
four different executions: (1) mpiJava: the program exe-
cuted with the original mpiJava, (2) Java: the one converted
to use Java sockets and executed with JVM, (3) GridTcp:
the one converted to use GridTcp sockets and executed on
AgentTeamwork, and (4) mipJava-A: the one executed on
top of mpiJava-A and AgentTeamwork. We conducted our
evaluation on two cluster systems: one is a Myrinet-2000
cluster of eight computing nodes, each with a 2.8GHz-Xeon
processor, and the other is a Giga-Ethernet cluster of 24
nodes, each with a 3.2GHz-Xeon processor. Note that all
processors have 512MB system memory.

Figure 5 compares the performance of these four ver-
sions on the Myrinet cluster. Java demonstrated its ideal
network bandwidth. GridTcp marked only 20%∼ 80% of
the Java version due to its message-recording overhead. The
original mpiJava showed its 400Mbps constant bandwidth,
whereas mpiJava-A gradually increased its bandwidth and
even showed higher bandwidth than the original mpiJava,
(i.e., 528.916Mbps at 1024K-byte message transfer). For
our evaluation on the Giga-Ethernet cluster, we received the
similar results where mpiJava-A performed 381.944Mbps at
1024K-byte transfer, whereas the original mpiJava showed
slightly lower bandwidth, (i.e., 304.155Mbps).

 200

 400

 600

 800

 1000

 1200

 1400

 200 400 600 800 1000

ba
nd

w
id

th
 (

M
bp

s)

size (Kbytes)

mpiJava
Java socket

gridtcp
mpiJava-A

Fig. 5. Communication performance.

5. CONCLUSIONS

This paper has discussed the design, the implementation,
and the preliminary performance of mpiJava that facilitates
check-pointed and error-recoverable message passing on top
of the AgentTeamwork grid-computing middleware system.
The paper has also demonstrated that mpiJava-A’s perfor-
mance is competitive to that of the original mpiJava library.

Our next milestone is to complete our implementation
of mpiJava-S and mpiJava-A APIs and to design a language
preprocessor that automatically partitions a user program
into a collection of check-pointed functions.

6. REFERENCES

[1] Grid@IFCA commercial grid solutions,
“http://grid.ifca.unican.es/dissemination/Commercial.htm,”
2003.

[2] FT-MPI: HARNESS Fault Tolerant MPI,
“http://icl.cs.utk.edu/ftmpi/,” 2003.

[3] Condor MW Homepage,
“http://www.cs.wisc.edu/condor/mw/,” 2004.

[4] V. C. Zandy and B. P. Miller, “Reliable network connec-
tions,” in Proc. MOBICOM’02, Atlanta, GA, Septem-
ber 2002, pp. 95–106, ACM Press.

[5] C. Wicke, L. Bic, M. Dillencourt, and M. Fukuda, “Au-
tomatic state capture of self-migrating computations in
MESSENGERS,” in Proc. MA’98. September 1998, pp.
68–79, Springer.

[6] The Java Grande Forum Benchmark Suite,
“http://www.epcc.ed.ac.uk/javagrande/,” 2002.

