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Abstract—The matrix rank minimization problem consists of been studied that guarantee that the heuristic yields att exa
finding a matrix of minimum rank that satisfies given convex splution when the constraints are linear equalities (f14]).
constraints. Itis NP-hard in general and has applicationsm con- Development of various classes of algorithms for this reuri

trol, system identification, and machine learning. Reweigted tic that loit ifi bl truct is al i
trace minimization has been considered as an iterative heistic  UC that exploil Specific problem structure IS also an active

for this problem. In this paper, we analyze the convergence research area (e.g., [17]). Finally, new applications have
of this iterative heuristic, showing that the difference béween initiated interest in special cases of the rank minimizatio

successive iterates tends to zero. Then, after reformulatg the problem, e.g., the low-rank matrix completion problem [4]
heuristic as reweighted nuclear norm minimization, we propose  ising in machine learning. We also mention that matrikran

an efficient gradient-based implementation that takes advatage d | inimization h tural tion t
of the new formulation and opens the way to solving large- and nuclear norm minimization have a natural connection to

scale problems. We apply this algorithm to the problem of low Vector sparsity and;-norm: the former reduces to the latter
order system identification from input-output data. Numerical if the matrix variable is taken to be diagonal.
examples demonstrate that the reweighted nuclear norm min- A variation on this basic heuristic that helps reduce the
imization makes model order selection easier anpl .re.sult.s N rank of the solution further, is to use a weighted objectaes(
lower order models compared to nuclear norm minimization . .
without weights. [3], [5] for the vector version, a_nd [8] for the mz_sltr_lx vergbo

In this paper we study theeweighted traceéneuristic, which
. INTRODUCTION is based on using a nonconvex surrogate function for the rank

and solving the resulting problem locally via a sequence of

] o ) ~convex problems. First, note that problem (1) can also be
The matrix rank minimization problem consists of findgypressed in a positive semidefinite form [9]:

ing a matrix of minimum rank that satisfies given convex
constraints, i.e.,

A. Background

minimize rank(Y') + rank(Z7)

5 Xlsuxee  ®
where X, Y € R™*™ and Z € R"*™ are the op-

where X € R™*™ is the optimization variable and’ timization variables. Then, replacing rank with trace, we

is a convex set. Whert' is described by affine equality obtain a semidefinite programming problem that is equivalen

constraints, (1) is the matrix extension of the popular sparto (2) [7]. The heuristic given in [8] replaces the rank of

signal recovery problem irtompressed sensinghe rank positive semidefinite matriceg, Z by a surrogate function

minimization problem arises in a diverse set of fields, whees follows:

notions of order, complexity, or dimension are expressed by minimize logdet(Y + 61) + logdet(Z + 61)

means of the rank of an appropriate matrix. Applications [ Y X

minimize rank(X) subject to [

subjectto X € C, (1)

include system identification, low-order controller desig ~ Subject to xT gz

collaborative filtering in machine learning, and Euclidean . o
%?grerezi > 0 is a small regularization constant. Problem

]EO,XGC’, )

embedding problems (see [14] and references therein)- Pr can be solved locally by iterative linearization of the

lem (1) is in general NP-hard. A common convex heuristic [#[7. . . .
replaces rank with thewclear norm (also known as the bjective. Thekth step of this algorithm solves tlhe problem

Schatten 1-norm or trace norm) of the matrix, denoted by minimize Tr (Y* + (S,I)_1}/+’I‘r(Z’C +6I) Z

| X[« =37 0:(X) whereco;(X) are the singular values and . Yy X (5)

r = rank(X). The heuristic solves the convex problem subject to XT 7 |2 0, X €C,
minimize || X||. @ to get X +1 yk+1 7Zk+1 Throughout this paper, we refer to
subjectto X € C. (5) as theaeweighted trace heuristiRTH). We often takg™®

o . i o . .
This heuristic and its variants have lately received a lot S‘PdZ_ o be _|d.enlt|ty, thus the first iteration of the algorithm
will simply minimize TrY + Tr Z.

interest. One reason is the recent progress in both theytheor
and the algorithms for this heuristic. Several conditioageh B. Summary of results

_ L N , We examine the convergence of the reweighted trace
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We give an example of other concave functions that cdor all W # X € D, where
be used as a surrogate for rank in (3), giving rise to other
heuristics th{;\t haye similar convergence prpperties. o D={(X,Y,2): { YT X } >0,X €O}

RTH as given in (5) would require solving a semidefi- X' Z
nite program (SDP) at each iteration. We reformulate the ~ o ~ ~ ~ ~
iterations in terms of the matrix nuclear norm, to whicipince g(X) < h(X, W), VW # X € D andg(X) =
several first-order gradient-based methods could be applie(X,X), VX € D, the functionh majorizesy. Let X* de-
efficiently. We apply the reweighted nuclear norm heuristitote(X*, Y*, Z¥). RTHis thus aMajorization-Minimization
to a classic system identification problem, finding a low ordéMM) algorithm:
system from input-output data. We use the gradient praecti B
method to implement the heuristic efficiently. We give a X**' = arg min h(X, X*) = arg min (Vg(X*), X)_
numerical example (from the system identification database Xep 1 Xep 1
[11]) and show that the reweighted nuclear norm heuristic = arg }(1161% Tr(Y*+060) Y +Tr (2" +61) Z (6)
gives a clearer description of the model order and results in
lower order models lcompared to a simple sups_pa_ce methqgte that if X* £ X*+1,
and also the un-weighted or nuclear norm minimization as

in (2). g(XMY) < h(XMFL XF) < h(XF XF) = g(XF). (7)

C. Related work ) ) ) ) )
) S We first define a stationary point of a function before
The papers [3],_ [6] study reweightety m|n|m|zat|0n giving the theorem on convergence.
as a heuristic to find the sparsest vector in a convex set

(a special case of the rank minimization problem). It iDefinition [l.1. =z is a stationary point of a continu-
shown that this heuristic works better in practice thian ously differentiable functionf over a setD if z €
minimization [3]. RTH was first proposed in [8]. While this argminyep V f(2)Ty.

paper shows that the objective function value converges_ﬁt]eorem 2. Everv converaent subsequence of the
does not discuss if the iterates themselves converge oe if t - y 9 4

difference between the successive iterates converge.tﬁ'dﬂatrewe'ghteoi trace heuristic (5) converges to a stationamipo

difference between iterates goes to zero was shown for t%feg over D. Further the norm of the difference between

reweighted?; heuristic in [6], but the proof there does notUccesive iterates tends to zefox**! —X*||r — 0.
extend to the matrix case. Proof: Let X! = (X!,Y!, Z!) be the solution to the
The paper [17] gives an interior point method for nucleaiuclear norm minimization problem (2). The ge¥ |g(X) <
norm minimization, and applies it for system identificatiog(X!)} is bounded, becausgY ||, ||Z||r — oo implies

as an alternative approach to subspace based identificajoN) — co. Also, if | X||r — oo, then||Y||r x || Z||Fr —
methods (see, e.g., [12], [5]). It shows that nuclear norsy (since the block matrix is positive semidefinite), hence
minimization determines the lowest system order betten thg(X) — oo. Thus, {X|g(X) < g(X')} is a compact set.
existing methods. The interior point implementation is enorTherefore the iterates &TH are bounded (sincg( X*+1) <
efficient than generic SDP solvers, however it does not scglex*), vk > 1). Therefore, the sequencgX®} has a
as well as the first-order implementation we discuss here convergent subsequence. ef™},i = 1,2, ... denote this
subsequence with a limik*. Let X"+ — X@ Assume
Il. CONVERGENCE OF THE REWEIGHTED TRACE that X* £ X . Now, (7) with the fact thay is continuously

HEURISTIC differentiable implies that
Let X € R™*" Y € R™*™, Z € R**". Define the - - - -
function g : R™*" x ST x S? — R asg(X,Y,Z) = g(X™*) =lim g(X™) > lim g(X™+1) = g(X?). (8)

log det(Y + 6I) +logdet(Z + 6I). Note thatg(X,Y, Z) is N N
a continuously differentiable function over its domain.eTh(7) also implies trlatg(X”l) < ¢g(X")Vi. Since g is
gradient ofg is given by bounded below{g(X*)} converges and

Vg(X,KZ) = (O, (Y + 5])_1, (Z + 5])_1). hIng(XZ) — hmg(Xm) — g(X*) — g(XnHl) — g(Xa) (9)

LetW = (W, Wy, W3), X = (X,Y, Z) be two points in the _ o o o
domain ofg . Define the inner product on the cross produdUt (9) contradicts (8), henc&™ = X and by definition,
spaceR™* " x ST x S as(W,X) = (W, X)+ (W, Y)+ this implies that X* is a stationary point. Now, assume
(W3, Z), where(X, Y) is the standard inner product betweeff@t there exists a subsequence and @ 0 such that

two matrices. Sincg is strictly concave on its domain, well X" = X" [ > 4, i = 1,2,.... Let {X™} — X~
have and{X"i+1} — X* £ X*. Then, by a similar argument as

] ) - - above we arrive at a contradiction. Thus* = X@ and it
9(X) <g(W)+(Vg(W),X —=W)_ = h(X,W) holds that|| X**! — X*|| — 0. ]



A. Convergence through conditional gradient method Thus, problem (11) is equivalent to

For a generic problem with a continuously differentiable ~ minimize I (Tr WY W + Tr WEZWY)
objective functionf : R®* — R and a convex, compact subject to

constraint seC, the conditional gradient methogil] yields WEYWE  WEkXWwk -0 (12)
the iteratesz® = argmingec (Vf(2F),z), 2" = 2% + WEXTWE Wkzwk | =
ok (zF — %), If we use a the so-called limited minimization XeC.

. - e Ak
rule to pick the step-sizer”, we geta” = 1 since the yging the following characterization of the nuclear noree(s
objective functionf is concave. Thus, the heuristic (5) is, 9. [7], [24])

the same as the conditional gradient method applied to the

problem (4). It is known (e.g., [1]) that every cluster point X[« = 3min(TrY +TrZ)
of the conditional gradient iterates is a stationary poinf o subject to [ YT X } >0,
over the set’, and we obtain the first part of the convergence X Z |~
result in the previous theorem. we can write problem (12) as

minimize ||WFXWE|.

B. Other surrogate functions (13)

X e,
: we conS|dered_ the concave surrogate funcligtlet(.X) which is a (weighted) nuclear norm minimization. Once
in (4). We can similarly use other concave surrogates su&ﬂe optimal solutionX*+! is found, the weights/V*+!
as —Tr(X~1!) (see e.g. [2] for proof of concavity) andand WA are updated as follows.' LeItV’“X’”lW’“l _
apply the conditional gradient method or the Majorizatior}-]EVT2 be the reduced singular value (I:iecompozsition of
minimization algorithm to obtain other heuristics for whic kX kHLIE wherell € R™*™. 32 € R™" andV € R™X"
the same convergence results hold. For example, using 2 X )

H k+1 k+1
surrogate function- Tr(X ~!) yields the following heuristic: in (f;) Z?ecgr}\?(ezﬁegy [14] that the optimal and 7

XM = arg min Tr (VF 461) Y + Tr (2% +61) " Z(10) yEr = ) osuT )
_ ZE = (wh T vsvT (k)T (14)
with X as defined in section 2. Comparing the performance )
of these heuristics is a direction for future work. so the weights can be updated as
This section establishes the convergence of difference of Wkt — (Y 4 51)—1/2
successive iterates ®TH and shows that the limit point of ! _1/2’
every convergent subsequence is a stationary point. Hayveve Wyt = (Z8 o) (15)

we can't say if the trace heuristic can achieve the glob@he update equations (14),(15) together with (13) describe

minimum of (4). We initialize the weighted iterations Withthereweighted nuclear norm heuristitf the setC' in (13) is
the solution of nuclear norm minimization (2), thRH can described by convex constrainfs(X) < 0, i = 1,...,m

be thought of as improving on the solution of the nuclegf, .an write the problem in the regularized form
norm heuristic.

XHH = argmin Y Xifi(X) + [WEXWS . (16)
Ill. REWEIGHTED NUCLEAR NORM HEURISTIC i
th Wk, W¥ defined above, and a suitable choice\pf
We note that if in addition t&( € C we have the constraint
that X be positive semidefinite, then tmeweighted nuclear

Recall from (5) that in the:th iteration of the reweighted wi
trace heuristic we solve the following problem:

minimize Tr(Y* +61)7'Y + Tr (2% +61) ' Z norm heuristicreduces to,
. Y X (11) e in Tr(X*4+61) X, (17
subject to [ X7 } >0, X eC. arg  anin r(X¥+4dl) X. (17)

. . _ ) In the next section, we apply thiegularized reweighted
In this section, we reformulate this problem as a (rewehte,, o5 norm heuristigthat we abbreviate aBRNH to a
nuqlear_norm mlnlmlgatu_)n problem. This rEfF)rmm""t'or_‘l*sasystem identification problem using an efficient first-order
gorithmically beneficial: it allows us to exploit the propes |14
of the nuclear norm and the problem structure to obtain an

efficient first-order algorithm for solving the heuristic. IV. EFFICIENT IMPLEMENTATION OF THERRNH FOR
_1 _1
Let W = (Yk4+61) % and W} = (ZF+6I) 2. Since SYSTEM IDENTIFICATION

WE . W¥ are positive definite for any feasibg*, Z* and Consider the problem of identifying a discrete-time, linea
d > 0, the constraint in (11) is equivalent to time-invariant state-space model,

[Wlk 0 H Y XHV[/; 0 } w(t +1) = Az(t) + Bu(t)

o wE||xT z || 0o wp|=Y y(t) = Cx(t) + Dul(t),



given a set of inputs(¢) € R™ and noisy measured outputsve don't observe a sharp drop, the thumbrule used is to
Ymeas(t) € RP, fort =0,1,...,N — 1. Herez(t) € R" is choose the rank of the matrix to be the number of singular
the state of the system at tintieandn is the order of the values that are withif.1 percent of the largest singular value
model. We would like to find the matriced, B, C, D, the (as in ([17]). Once we identify the rank &fU -, the matrices
initial statex(0), and the lowest possible orderthat satisfy A, B, C, D of the LTI state-space model can be estimated as
Y(t) & Ymeas(t). Let Y = [y(0),...,y(N —1)] € R**N,  detailed in section 5 of [17].

Yieas = [ymeas(o)a"'aymeas(N - 1)] € RpXN’ U =

[u(0),...,u(N — 1)] € R™*N, Define the linear operator A. Problem Reformulation
H, as follows: To solve (20) efficiently, we reformulate it by making use
y(0) y(1) cor y(N—=r—1) of the structure of the regularized constraint in (19) arel th
. y(1)  y(2) e y(N=7) fact that the nuclear norm is the dual of the spectral norm,
H.(Y)=| . . . , (18)
1 1 : Yl = max{{Y, Z) : [ Z]|r < 1}. (21)
y(r) ylr+1) ... y(N —1) z

Using (21) the primal problem in (20) at thgh iteration

\.II.VEiChO:TS a bIock-Hank*eI mat_rix, Wl')thlf dgfined as earlier. ¢an pe formulated as (note that switchidgo —Z does not
e adjoint operator{ (W), is as below: change (21)):
w11 w1z ... W1,N—r , ) ) L
movy—my | | R SV = Voeaalfp = (ZWER (VU W) (22)

The dual problem corresponding to (22) is obtained by

Wrdll e oee WrdlNor interchanging thenin and max in the primal as follows:
= [ w11 W21 +Wi2 W31 + W2 + W13 ... Wepl N—r } 3
~ k ¥% 1 k
Define X = [2(0),z(1),...,z(N —r —1)], U = H,(U), Znga;<Im;n—l\Y Y5 = (Z, WP H (Y)U-Wy)

Y = H,(Y) with X, U, andY as defined earlier, and let
. . o Define the operatof;, : RPN — RUFVUPX(N=r) } —
G=[CT (AT ... (ca)T]", 0,1,2,..., with ®,(Y) = WFH,(V)ULWE. It is easy to
check that the adjoint operat@y; : R("Dpx(N=r) _, RpxN

D 0 0 0
CB D 0 0 is given by (Z) = H*(WFZWEUL"). The dual problem
F— CAB CB D 0 can now be reframed as:
I max mln— Y — Yoeas|| % — (Z, @4 (Y 23
CA™™'B CA™2B CA™B ... D 221 7<1 Y 1l = 22X @3)
It is easy to see that = GX + FU, and thusYU+ = Minimizing overY, the optimality conditions give

GXU*, whereU+ € RN—"*1x4 is a set of orthonormal
basis vectors for null-space @f. If X has a rankn and
there is no rank cancellation iIsU -+, one can find the system
order from the rank o U~ (see, e.g., [17], [16] for more
details). Liu et al [16], [17] propose a nuclear norm heigist
for minimizing the rank ofy U+ as

AY — Yineas) — ®5(Z) =0 (24)

Note that the primal (22) is a convex problem and obeys
Slater’s conditions, hence the duality gap between (22) and
(23) is zero. Thus the primal optimal solution can be obtine
from the dual optimal solution, which is the basis for the
ce Syl Ao 2 implementation described later. Substituting from (24)
minimizey ||, (Y)U L, + 2 IV = Ycaslls - (19) back into (23), the dual problem reduces to:
with A a positive parameter. We apply tiRRNHto find a
minimum order system giving the following iterative mini-

mization:

1
in —[|®5(2)|% + (Yeneas, PL(Z 25
S in o IR+ Vs, 25(2)) (25)
A o~ The dual objective is scaled by so that the objective is
= in =||Y — Yineas||7 i i
—argﬂgn§|| = Yimeas|| independent of it:

W H,(YV)UL W, (20)

where we defing’ = 1{|Y — Yyneas]|2 in (16) and W}, Wi
are as in (13). Once we obtain an optima] we compute The RRNH for the System Identification application using
the rank ofH,.(Y )UL by looking at its singular values. Thean efficient first order method (i.e., the Gradient projettio
thumbrule we use to obtain the rank is the number of singularethod applied to the dual, see e.g. [15]) can be summarized
values after which there is a sharp drop (differentiating ttas follows:

significant singular values from the non-significant onés).

}A/k-s—l

ZWTZ)quI HN% 4 (Yimeas, ®5(2))  (26)



1) Setk = O. Inltla“ze Wlo = I, W2 = 1. L ! ! ! !
2) Solve the dual problem (26) using the grad
projection algorithm, obtaiZ*+1!.

1)
=)

o
@
T

3) ObtainY**+! = Vyyeas + 1 @5(A\Z*F1) (using 24)

Identification/Validation error
)
©

4) LetY*+l = [, (Y*+1), letUSVT be the reduceg ol
SVD of V1 = VT set ., =
_ / Nuclear norm of YU”

—1 -1 1/2
Wi = (W) usut (W) +é1) _ o
1 1 —~1/2 Fig. 1. Trade off curve between Identification error and aclnorm for
Whtt — ((Wk) VEVT(Wk) +61) . the data-set. The bigger dot on the identification error eumrresponds to
2 2 2 . 99
a very small identification error of 0.0725 and corresporwda A = 6

5) Stop if termination criterion is satisfied, else set
k=k+1 and go to step 2.

10°

—— original
—=&— nucnorm

i
S)
8
T

Define D*(Z) = 1(|®;(2)[|% + (Ymeas, P;(Z)) to be the
dual objective in (26). Step 2 of the above algorithm applie
the gradient projection method to solve the dual (26). W
note that the projection method works well when the step si
in the gradient-descent step of the method is chosen to
inversely proportional to the lipschitz constantiof (Z)(see
e.g. [15]). An estimate of the Lipschitz constantwD* can

H
O‘
T

-
O‘

L
T

Normalized Singular Values
1
O‘

H
O‘
&
T

be obtained ag* = rA2, . (WF)A2, .. (W¥) with the details » ‘ ‘ ‘ ‘ ‘
. . . 0 5 10 15 20 25 30
given in the Appendix. Singular Value Index
B. Numerical results Fig. 2. Normalized singular values afU- with Y = H,.(Y) obtained

In [16] Liu et al mention that the main advantage 0t'hrough nuclear norm heuristic for the data-set. A plot af ttormalized
! singular values ol ..U (original) is also shown.

nuclear norm technique is that it makes the selection of
an appropriate model order easier. We present an example,

where we show that theRNHimproves on the nuclear norm N . -
technique for model order selection. We apply RBNH error,validation error and nuclear norm for is shown in Fig.
' 1. We pick A = 6, that corresponds with approximately

implementation (algorithm described at the end of subsecti . S L .
P (alg the smallest identification error of 0.0725 as indicated in

B) t f the dat ts (96-006, [11 ilable f . . ) !
ht)t(;.(;r}ehgmse esaat Siusl ((auven bEa/ ])Srz;l]\:/z;udaai(;y;o)m ig. 1. The normalized singular values BfU+ (obtained

The parameter, which is the number of row-blocks in theby setting maximum singular value to 1) using just nuclear

block Hankel matricesy (U) Y — H (Y) is chosen so norm heuristic as in (19) are shown in Fig. 2. As can be
SN T fen from Fig. 2, there is no sharp drop in singular values

that the number of rows is greater than the expected s stlih .
J P y that would clearly indicate the rank afU+, therefore we

\(,)vr: eerré \Z/)Veiscr:ﬁgszi;: Z?ﬁiﬁfngﬁtéir?%fl'teﬁg ' sgite_méo,'l'hélse the thumbrule described earlier tlo optain .the. rank (and
parameter\ is chosen to give approximately the smalles?rder of th_e system) to be 6'. The_termmauon criterion we use
identification error wherRRNH s run for one iteration (i.e. fc_>r_ RRNHis to stop after 4 lterations since we obserye em-
just the nuclear norm heuristic as in (19)). The identifiwati p|r|gally that the_re IS no significant change n the optirdize
error is given by yarlable _after_4 iterations. For the QUaI_-gradl_ent_ methseki_l
in each iteration oRRNH the termination criterion used is
| Vineasi — Y% such that the number of iteration@,= min(Q1, Q2), where
er = m ’ @7) Q1 is the number of iterations for the duality gap to fall below
a tolerance ol0~* and @, = 4000. Fig. 3 shows the results
where Y = [§(0),...,5(N; — 1)] denotes the output of of RRNHfor A\ = 6 and different values of the parameter
the identified state-space model, a¥id has each of itsV;  The identification error and validation error were obtaiasd
columns equal t&easil. Yineasi € RPN denotes the first 0.0691 and 0.1154 respectively, which is comparable to the
N; output measurements. Similarly the validation errpy, errors (0.069 and 0.12 respectively) obtained for this data
can be obtained by replacing; by Ny in the computations in [17]. The parameted, which is used as a regularization
in (27). The number of data points used for the identificatiderm in the weights\WW{, W seems to have an influence
experiment isN; = 150 and for computing validation error on the singular values oH,‘(Y)UL and thus its rank. We
is Ny = 400. The trade-off curve between the identificatiombserve empirically that as increases, smaller values of
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ém—a \‘ APPENDIX
% [ + - st s Estimate of Lipschitz constarftor anyZ;, Z, € R™P*4,

S0 L 501 e Sgg o ) «
= s *HﬁEEEEE’EEE’EEEQE_@E b IVD*(Z1) — VD*(Zy)||p = |2k ®4(Z1 — Zo)|lr  (28)
107 : 5 ‘ = > 2 Note thatHd, H; and®,®; are self-adjoint operatore;, ;

15
Singular Value Index

is a compact operator since its range is finite dimensional,

Fig. 3. Normalized singular values afUL with Y = H,.(¥) obtained amf itis 2p05|t|Ve sincéZ, @, 95 (2)) = <<I)k(Z), @k(Z» =

through regularized reweighted nuclear norm heuristiéRRfor the data- |25 (Z)[|7 > 0 VZ. We apply the Rayleigh-Ritz method

set for djiffere_nt' valu_es ob. A plot of the normalized singular values of for self-adjoim’ positive, compact operators [13] to

Yimeasi U (original) 15 also shown. the maximum eigenvalue ofb;®; as Apax(Pr®;) =
supyy. w1 (W, ®x®;(W)) and get

0 give a clea_lrer rank despription fdi, (Y)U*. As_ can be @85 (21 — Zo)||% |02 (W))2 (oo

seen from Fig. 3, = 0.5 gives a clearer description of the 121 — 2|2 = Sblvp W2 = Anax (®r®%)
rank, i.e., equal to 4. Smaller values &f(less than 0.01) F F .

don’t seem to provide a clear description of the rank ank'uS @n upper bound Ony.. can be used to find an
this observation mirrors the observations made in [3] aboggtimateL” of the Lipschitz constant of the gradient of the
the choice of for which theiterative weighted; algorithm dual ObJECt'VeVDk_- We obtain an estimate 0y, (®x®;)
recovers sparse solutions. Thus, for the data-set coesideP€loW. From (19), itis easy to see by using the properties of
we obtain a reduction in model order (from 6 to 4) as wellorms that| H(X) |7 < r|X||%. Also by using the prop-
as a much clearer description of model order by ugtiRiNH ~€rties of trace, we havgd; (2)|% < r(WHEZVE, WFZVE).

as compared to the nuclear norm heuristic. Let A = (Wy)", with eigenvalueg?; > p3 > ...p2, and let

i >3 > ...~2, be the eigenvalues @#vF)® . Using Von
Neumann’s Trace inequality (see e.g. [10]), it can be shown

We explored the convergence properties of eeighed 4t (WEZWE WEZWE) < p12712||Z)|%. Thus we have
trace heuristic showing that the difference between the ’ - F

V. CONCLUSIONS

successive iterates of this heuristic goes to zero, and that ~ [®®*(Z1 — Zo)[% _ N ()2
every convergent subsequence converges to a stationanty poi 121 — Zs||% o
of the concave surrogate function. We gave a reformulation | (W)]|2 2
of this heuristic as theeweighted nuclear norm heuristic = (W W)
(RNH), which allows for efficient and scalable implemen- S a4 T
Sripim (29)

tation through first-order gradient methods such as the gra-
dient projection method and conditional gradient methad, 3hus, L* = rp,2+;2(upper-bound OM\ o (D)) is an
compared to the reweighted trace formulation which requirgstimate of the lipschitz constant 8D,
solving an SDP at each iteration. We apply tR&RNH
to a System lIdentification application and show that the REFERENCES
RRNHprovides a clearer description of the matrix rank (and1] D.P. BertsekasNonlinear Programming 1999. o
hence system order) through a sharp fall in singular valuddl J- Brinkhuis, Z. Luo, and S. Zhang. Matrix convex funcowith
in th : | lue plot off (}A/)UL We also observe applications to weighted centres for semidefinite progrmgm200_5.
In the singular Vfa p r : [3] E.J. Candes, M.B. Wakin, and S. Boyd. Enhancing sparbity
that the RRNH gives a lower system order as compared reweightedl; minimization. Journal of Fourier Analysis and Appli-
to nuclear norm heuristiqwithout weighting) for the data _ cations 14:877-905, 2008. : o .
. . \ I . . [4] E.J.Candes and B.Recht. Exact matrix completion viaverrnopti-
set considered, with the identification and validation esro mization.
comparable to those obtained for this data set in [17]. W] L Ljung. System Identification - Theory for the Us@002.
observe empirically that ag increases, smaller values of [©] ';"rjﬁ';(‘ézo{rg"ﬁsggtzig'ﬁ ig‘s’tg Boyd. Portfolio optimizatiovith linear
. . . 7, l .
g give a clearer rank descrlptl_on fddT(Y)U -t WOU"?' [7] M.Fazel, H.Hindi, and S.Boyd. A rank minimization hestic with
be useful to understand precisely hawplays a role in application to minimum order system approximation. Proceedings
providing a clear rank description asvaries. We mentioned _ American Control Conference001. N .
.. . . [8] M.Fazel, H.Hindi, and S.Boyd. Log-det heuristic for matrank min-
that t_heRRNHaHOWS f.or.an efficient |mplementat|on O]_c the imization with applications to hankel and euclidean diseamatrices.
reweighted trace heuristic. It would be useful to quantify t In Proceedings American Control Conferen@903. o
efficiency and scalability oRRNHand compare it with the [9] M-.Fazel, H.Hindi, and S.Boyd. Rank minimization and Btions
s . . . . in system theory. IfProceedings American Control Conferen@904.
nuclear norm heuristi¢mplemented using the interior point;

h - L. Mirsky. A trace inequality of john von neumanionatshefte fur
method detailed in [17]. Mathematik 1975.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

B. Moor, P. Gersem, B. Schutter, and W. Favoreel. Dafsytatabase
for the identification of systems.

B.D. Moor, M. Moonen, L.Vandenberghe, and J. Vandesvall A
geometrical approach for the identification of state spaodeis with
the singular value decomposition. Rroceedings of the 1988 IEEE
International Conference on Acoustics, Speech, and Sigrmessing
1988.

A.W. Naylor and G.R. Sell.Linear Operator Theory in Engineering
and Science 1982.

B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed mimmtank
solutions to linear matrix equations via nuclear norm mimation.
Accepted for publicationSIAM Review

T.K.Pong, P. Tseng, S. Ji, and J. Ye. Trace norm reqataon:
Formulations, algorithms, and mult-task learning. 2009.

Z.Liu and L.Vandenberghe. Semidefinite programmingthods for
system realization and identification. Rroceedings Conference on
Decision and Contrgl2009.

Z.Liu and L. Vandenberghe. Interior-point method farckear norm
approximation with application to system identificaticBubmitted to
SIAM Journal on Matrix Analysis and Applicatign2009.



