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Abstract

We consider the problem of minimizing the rank of a matrix over a convex set. The
Rank Minimization Problem (RMP) arises in diverse areas such as control, system
identification, statistics, signal processing, and combinatorial optimization, and is
known to be computationally NP-hard. As a special case, it includes the problem of
finding the sparsest vector in a convex set.

In this dissertation, we propose two heuristics based on convex optimization that
approximately solve the RMP. We refer to them as the trace/nuclear norm and
the log-det heuristics. Unlike the existing methods, these heuristics can handle any
general matrix, are numerically very efficient, do not require a user-specified initial
point, and yield a global lower bound on the RMP if the feasible set is bounded. We
show that the nuclear norm heuristic is optimal in the sense that it minimizes the
conver envelope of the rank function, thus providing theoretical support for its use.
In the special case of finding sparse vectors, these heuristics reduce to the ¢;-norm
and iterative £;-norm minimization methods.

We catalog many practical applications of the RMP. By giving numerical exam-
ples of problems from different fields, we demonstrate that the proposed heuristics

work very well in practice.

v
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Chapter 1

Introduction

In this dissertation, we study optimization problems that involve minimizing the rank
of a matrix over a convex set. We refer to this as the Rank Minimization Problem
(RMP). The problem arises in diverse areas such as control, system identification,
statistics, signal processing, computational geometry, and combinatorial optimization.

In many applications, notions such as order, complexity, or dimension of a model
or design can be expressed as the rank of a matrix. If the set of feasible models
or designs is described by convex constraints, then choosing the simplest model can
often be expressed as an RMP. For example, a low-rank matrix could correspond
to a low-order controller for a system, a low-order statistical model fit for a random
process, a shape that can be embedded in a low-dimensional space, or a design with
a small number of components. It is not surprising that rank minimization has such
a wide range of applications across all disciplines of engineering and computational
sciences: we are often interested in simple models. This idea is well captured by the
principle known as Occam’s razor, which states that “Among competing explanations
for a phenomenon, the simplest one is the best.”

There are several special cases of the RMP that have well known solutions. For
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example, approximating a given matrix with a low-rank matrix in spectral or Frobe-
nius norm is an RMP that can be solved via singular value decomposition. However,
in general, the RMP is known to be computationally intractable (NP-hard). There-
fore, we do not expect to find a computationally efficient (polynomial-time) method
that can solve all instances of the problem exactly. What we look for, instead, are
heuristics that solve the problem approximately but efficiently.

There exist several ad hoc and heuristic methods for the RMP. The major draw-
backs of the existing methods are that they are highly sensitive to the choice of initial
point, generally converge very slowly, and do not provide any information on the
global minimum (e.g., a global lower bound).

In this dissertation, we propose new heuristics for the RMP, based on convex
approximations, that do not require an initial point, are numerically very efficient,
and provide a global lower bound on the optimal value. We also provide theoretical
results in support of their use. In their original form, these heuristics are applicable
only to the case where the matrix is positive semidefinite. We present a new result
that shows any general RMP can be embedded in a larger, positive semidefinite one.
With this embedding, our heuristics are readily extended to the general RMP.

We also show that the problem of maximizing the sparsity of a vector over a convex
set, which has many practical applications, is a special case of the RMP. We refer
to this as the Cardinality Minimization Problem (CMP). In this case, our heuristics
reduce to the well-known /;-norm minimization heuristic, and to a new iterative /-
norm minimization approach. We show that the iterative heuristic yields very sparse
solutions in practice.

Throughout the chapters, we list many practical applications of the RMP, covering
some well known applications and also many new ones. By giving numerical examples
of selected problems from various fields, from control and computational geometry to

finance, we demonstrate that our proposed heuristics work very well in practice.
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1.1 Semidefinite Programming

Our approach to the RMP is based on convex optimization, specially semidefinite

programming. A semidefinite program in the variable x is the optimization problem

minimize ¢z

subject to Ag+ 1A+ -+ 2,4, < B,

where A;, B € R™™ are symmetric matrices and < is matrix inequality. In other
words, a semidefinite program (SDP) minimizes a linear function subject to linear
matrix inequalities (LMIs). See for example [74, 73, 27, 2, 92, 100, 76, 93, 94]. SDPs
can be solved globally using interior-point methods with great efficiency. Software for
solving SDPs is widely available [91, 27, 101, 30, 3, 10, 88]. Computation time grows
gracefully with problem size and required accuracy.

However, if the problem is large-scale, i.e., if the values of m and/or n are very
large, special methods may be needed to handle the computation. Developing meth-
ods for large-scale but sparse SDPs has been an active area of research in recent
years. Various methods have been developed to exploit the sparsity in problems
with special structure; for example, dual-scaling interior-point algorithms [8, 18], the
inexact Gauss-Newton method with preconditioned conjugate gradients [98], primal-
dual interior-point methods using conjugate residuals [89], non-linear programming

methods [14], and a matrix completion method [28, 72].

1.2 Outline of the dissertation

In Chapter 2, we study the RMP and its practical significance, list many examples
from a wide range of applications, and also discuss the CMP. In Chapter 3 we

present and prove a lemma that shows how a general RMP can be embedded in
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another, larger, positive semidefinite RMP. Chapter 4 gives an overview of existing
approaches to the problem, and points out their drawbacks. Some special cases of the
RMP with analytical solutions are also listed. Chapter 5 presents the new methods,
the trace and log-det heuristics, first for the positive semidefinite case, and then for
the general case using the embedding lemma. We also provide theoretical support for
the use of the trace heuristic and its extension, and illustrative examples that compare
the performance of these heuristics with existing methods. Finally, in Chapter 6 we
demonstrate the effectiveness of these heuristics on numerical examples from various
fields: system identification, control, statistics and psychometrics, and finance.
Parts of the material in Chapters 3, 5 and 6 appear in [26]. The portfolio opti-

mization example in Chapter 6 appears in [63].



Chapter 2

The Rank Minimization Problem

We study the general matrix rank minimization problem (RMP) expressed as

minimize Rank X
RMP: (2.1)

subject to X € C,

where X € R™*" is the optimization variable and C is a convex set denoting the
constraints. As a generic example of the RMP, suppose we are trying to estimate or

reconstruct the covariance matrix
X =E(z—Ez2)(z—Ez2)"

of a random vector z € R", from measurements and prior assumptions. Here E(z)
denotes the expectation of the random vector z. The constraint X € C expresses the
condition that the estimated covariance matrix is consistent with (or not improbable
for) our measurements or observed data and prior assumptions. For example, it could
mean that entries in X should lie in certain intervals. The rank of X is a measure
of the complexity of the stochastic model of z, in the sense that it gives the number

of underlying independent random variables needed to explain the covariance of z.
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The RMP (2.1) is therefore the problem of finding the least complex stochastic model
(i.e., covariance) that is consistent with the observations and prior assumptions. As
we will show in the examples, this problem has many practical applications.

In other applications, rank can have other meanings such as embedding dimension,
controller order, or number of signals present. These will be explored further in the
Section 2.2.

In problem (2.1), we allow any constraints on the matrix as long as they describe
a convex set. Thus, we cover a large number of constraints and specifications that
come up in practice. For example, constraints on the accuracy of a model or the per-
formance of a design are common; e.g., f(X) < t, where f(-) is a (convex) measure of
performance, and ¢ € R is the tolerance. We give many examples of these constraints
in the next section.

In practice, there is a fundamental trade-off between the model complexity, cap-
tured by Rank X, and its accuracy, captured by f(X). We can obtain a trade-off
curve by solving the RMP

minimize Rank X
subject to X €C (2.2)
f(X) <t,

for a range of values of ¢. Alternatively, if we solve the rank-constrained problem

minimize  f(X)
subject to X €C (2.3)
Rank X < m,

for various values of the integer m, the same trade-off curve is obtained. A typi-

cal curve is shown in Figure (2.1), where f* shows the minimum value of f(X) in
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Figure 2.1: A typical curve showing the trade-off between complexity and accuracy
of a model.

problem (2.3) for the given m.

The two problems above are closely related; we can solve problem (2.3) using the
RMP (2.2). Let fo = I)I(lélcl f(X); this provides a lower bound on (2.3). To solve
problem (2.3), we can pick t = afy for some o > 1, and solve (2.2) to find the
optimum value, n;. If ny < m, then f* the minimum of (2.3), is between f, and
afy and can be found by bisection (i.e., iteratively dividing the interval in half). If
ny > m, we increase « and repeat. Thus, if we can solve problem (2.2), we can
solve problem (2.3) as well. Some examples of rank-constrained problems are given

in Section 2.2.

2.1 Computational complexity

It is well known that the RMP is an NP-hard problem [20, 92]. For example, Boolean
linear programming, which is known to be NP-hard, can be formulated as an RMP
[92, §7.3]. To see this, consider the problem of determining whether there is an

z € R™ such that Cz +d > 0 and z; € {0, 1}, where C € R™™ and d € R™ are
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given. This problem is NP-hard. It can be formulated as the RMP

minimize Rankdiag(z,...,om, 1 —21,...,1 — Zy) (2.4)
subject to Cx +d > 0,
where diag(z1, ..., z,) refers to a diagonal matrix with the x; as its diagonal entries.
Here the rank of diag(zy,...,zm,1 —z1,...,1 —x,,) is always at least m and equals

m only when z; € {0,1}.
There are special cases of the RMP, though, where an exact solution can be found,
e.g., through singular value decomposition (SVD). These special cases are discussed

in Chapter 4.

2.2 Examples

In this section we catalog many applications of the RMP. The purpose is to convey
the general nature of the problem and the practical meaning of the rank, to emphasize
the generality of the problem, and to point out connections between applications in
different areas. Some of these problems are treated in greater detail in Chapter 6,

along with numerical examples.

2.2.1 Rank of a covariance matrix

We begin by listing some examples that deal with the rank of a covariance matrix.
These problems arise in statistics, econometrics, signal processing, and other fields

where second-order statistics for random processes are used.
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Multivariate statistical data analysis

Second-order statistical data analysis methods, such as principal component analysis
and factor analysis (see, e.g., [59]), deal with covariance matrices estimated from
noisy data. Because of noise, the estimated covariance matrices have full rank (with
probability one). Finding a covariance matrix of low rank comes up naturally in these
methods. As mentioned in the beginning of this chapter, a low-rank covariance matrix
corresponds to a simple explanation or model for the data. For example, consider the

following constrained factor analysis problem:

minimize Rank(Y)
subject to ||¥ — S|[r < e,
X>0
YelC,

where & € R™" is the optimization variable, 3 is the measured covariance matrix, C
is a convex set denoting the prior information or assumptions on ¥, and || - ||z denotes
the Frobenius norm of a matrix (other matrix norms can be handled as well). The
constraint |X — 3| < € means that the error, i.e., the difference between X and the
measured covariance in Frobenius norm, must be less than a given tolerance e. The
constraint X > 0 ensures that we obtain a valid covariance matrix. In the statistics
terminology, the objective function, Rank ¥ corresponds to the number of factors
that explain X.

If C = R™" (i.e., no prior information), this problem has an SVD-based analytical
solution; see Section 4.1. However, extra constraints such as upper and lower bounds

on the entries of X result in a computationally hard problem.
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Sensor array processing

In sensor array processing, data containing the superposition of a number of signals,
corrupted by additive noise, is measured at p spatially separated sensors. The vector

of observations or measurements y(t) € R” can be modeled as

y(t) = in(t)ai + (),

where z;(t) € R is the ith signal, v(¢) € R? is the noise, and a; € RP? is the response of
the sensor array to the ith signal and is typically a function of some signal-dependent

parameter. Equivalently,

y(t) = Az(t) +v(1),

where z(t) = [z1(t),...,2x(t)]" and A = [a; ... ag]. Each vector y(¢;) is a snapshot
across the array of sensors at time ¢;. Given observations y(t1),...,y(ty), it is desired
to estimate the unknown number of signals k£, where £ < p.

We assume that z(¢) has covariance matrix ¥, and v(¢) is white Gaussian noise,
independent of z(t), with covariance matrix o2I. The covariance of y(t) is given
by ¥, = ¥ + 0?1, where ¥ = AY, A", If we assume A to have full rank, we have
k = Rank ¥, = Rank(AY,A") = Rank V. Thus, the number of signals is expressed
as the rank of a covariance matrix.

This problem comes up in antenna arrays [97], harmonic retrieval [62], and many
other applications. For example, Figure 2.2 shows the set up in a general antenna
array processing system. Here z;(¢) is the complex amplitude of a plane-wave signal
impinging upon the array at an angle 6;. Each column of A, marked as a(6;) in the
figure, gives the response of the antenna array in the direction 6;.

We now formulate the problem of estimating the number of signals k, as well

as the covariances Y,, ¥, and o%. One constraint for >, is to be consistent with
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Figure 2.2: A general antenna array processing system.

the observations, e.g., to maximize the likelihood of observing y(t1),...,y(tn), or to
render this likelihood higher than a given threshold. By taking the log of the Gaussian
joint distribution f(y(¢1),...,y(tny)) , we obtain the log-likelihood function as

N N ~ N
L(%,) = 5 logdet ¥, — 0} Tr(3,) 'S, — Tp log(27),

where 33, = (1/N) 2V, y(t:)y(t;)" is the covariance estimated from the observations.
Various RMPs and rank-constrained problems arise in this context. If the number
of signals is known to be less than or equal to k, the maximum likelihood (ML)

estimates of ¥ and o? are found by solving the optimization problem

maximize L(¥ + o2I)
subject to Rank V¥ < k (2.5)
U >0,

with variables ¥ and ¢2. The solution to this problem is known to be

Wopt = Zf:l[/\l(i) - UQ]“Z’(E)UZ‘(XA:)T’ ngt = p%k Zf:kﬂ )‘i(i): (2.6)
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where \; and v; denote the eigenvalues and eigenvectors, respectively [5]. Note that

the above is also the solution to the rank-constrained problem

minimize |2, — ¥ — o%[||
subject to Rank V¥ < k
v >0,

which minimizes the least-squares error between ¥ and 3. As we show in Chapter 4,

this rank-constrained problem is readily solved for ¥ using SVD and yields the same

V.t as above. The objective value will then be

I Z Xi(2) = T (S)ui ()17 = Z (M(E) = )2,

which attains its minimum value if o* is chosen as the o7, given in (2.6).

In [97], the problem of estimating the number of signals is formulated as

minimize — logdet ¥, — Tr(Z,)~'%, + g(k)
subject to X, — oI > 0,

2.7)

where g(k) is a measure of ‘complexity’ of the model as a function of the number

of free parameters in the model (i.e., in 3,), which is in turn a function of k =

Rank (X, — 0*]) = Rank V.

Two common choices for g(k) come from information theoretic measures: the

Akaike Information Criterion (AIC) [1] and Rissanen’s Minimum Description Length

(MDL) [80] criterion. For this problem, both criteria result in quadratic functions of

the rank k: we have AIC(k) = k(2p — k) and MDL(k) = S(log N)k(2p — k). (Note

that these problems, although related to the RMP, are not RMPs themselves.)

Note that if & is fixed, the problem reduces to (2.5), whose optimal objective value
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in terms of £ can be found using (2.6). To find the optimal £ in (2.7), we simply need
to check the value of this objective for k£ = 1,...,p (see [97] and references therein).

These are examples of RMPs and related problems that can be solved analytically.
However, this may not be possible if we have additional constraints. We may have
upper and lower bounds on the variances of some y;, or know that, for example, y;
and y; have a higher correlation than y, and y;. With such additional constraints,

the resulting RMP is computationally hard.

The Frisch problem

Let x € R"™ be a random vector, with covariance matrix Y,. Suppose we have

measurements of

y(t) = a(t) + o),

where the measurement noise v has zero mean, is uncorrelated with z, and has an

unknown but diagonal covariance matrix D = diagd. It follows that

S, =%, + D,

where ¥, denotes the covariance of y. The problem is to identify, from noisy ob-
servations, the largest number of linear relations among the underlying data. This
corresponds to the minimum rank ¥, since the rank drops by one for each linear rela-
tion that exists among the ;5. We assume we can estimate X, with high confidence;

i.e., we consider it known. This problem can be expressed as the RMP

minimize Rank(3, — D)
subject to X, — D >0
(2.8)
D>0

D diagonal,
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where ¥, and d = diag D are the optimization variables. Problem (2.8) also arises
in a deterministic setting, where the matrices 3, and X, are interpreted as Gramians
rather than covariances [20].

For the special case where ¥~! is Frobenius equivalent (i.e., there exists J =
diag{+1} such that JX~1J has positive entries), Kalman [57] has shown that the
minimum possible rank is n — 1, and has given a complete characterization of the
solutions. In [99], a lower bound on the minimum rank in problem (2.8) is given.

However, in general no analytical solution is known for (2.8).

2.2.2 Rank of a Hankel matrix

We saw in the previous section that the rank of a covariance matrix plays a central
role in many statistical methods as a notion of complexity of the stochastic model.
The rank of a Hankel matrix has similar significance in model identification prob-
lems in system theory and signal processing. It comes up commonly in problems
that deal with recursive sequences, where the order of the recursion is expressed by
the rank of an appropriate Hankel matrix. Two examples of RMPs involving Hankel

matrices are given in this section.

Reconstructing polygons from moments

Consider a polygonal region P in the complex plane with vertices 2, ..., 2z, ordered

counterclockwise. Complexr moments of P are defined as

Tkék(k—n// 22 dx dy, =7 =0,
P
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where z = x + jy. Using a theorem by Davis [21], we can write the moments as

21
m k
_ kT | *2
T = U,Z'Zi =a y
i=1 :
k
- Zm =

where the a;s are some complex constants. Let H, be the n X n Hankel matrix

consisting of the 7; as follows:

T0 T1 T2 Tn—1
T1 T2 T3 Tn
H, = To T3 T4 Tn+1 (2 9)
Tn—1 Tn Tp+1 -+ Top—2

We now show that m = Rank H,,; that is, the number of vertices of P is the rank of
the Hankel matrix consisting of the complex moments. Let H,, be the leading m xm
block in the above matrix. Note that H,, can be written as H,, = V,,(diaga)V,L,

where V,, is the Vandermonde matrix

1 1 1
21 29 ... Zm
Vin =
m m m
i 21 Ry ... 2y ]

Since the z; are distinct, V,,, has full rank. Thus, Rank H,, = Rankdiaga = m.
For any n > m, the rank of H,, stays equal to m, because the new rows and columns

are linearly dependent on the previous ones. To see this, we write H, as H, =
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V. (diaga)V.T, from which it is clear that Rank H,, < m. Noting that the rank of
the leading block in H,, is m, we conclude Rank H,, = m, for any n > m. This shows
that, in fact, the sequence of the 7;s is recursive of order m.

We now show that estimating the number of vertices from noisy measurements of

the complex moments can be expressed as an RMP. Suppose we have
yszk—i—vk, k=0,...,2n—2,

with some model for the noise vy, for example, white Gaussian with zero mean and a
known variance. Suppose also that the number of vertices m is unknown (we assume
m < n, otherwise the n measurements are not enough to determine the vertices).
The goal is to estimate P, the region with the smallest number of vertices that is
consistent with the measured moments. Let H, be the Hankel matrix formed using

the noisy measurements vy, . .., ¥2, 2. The problem can be expressed as the RMP

minimize Rank H
subject to ||H — Hy||x < €
H Hankel,

where the optimization variables are 7y, ..., To,—2 that form the Hankel matrix H,
and e is the desired tolerance or the noise variance. The first constraint can also be
written as Y oo 2(1; — ;)? < €% Without the constraint that H must be Hankel, this
problem can be solved via SVD. With the Hankel constraint, however, the problem
is hard.

In [37, §5] and [69], more details on this problem and some interesting connections
to the sensor array processing problem mentioned in Section (2.2.1) are given. This
problem comes up in various applications such as signal recovery [83], computed

tomography [69], and inverse potential theory [87].
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h(t)

-
!

t

Figure 2.3: Typical step response specifications.

System realization

Problems involving minimizing the rank of a Hankel matrix also come up in system
realization, e.g., in designing a low-order linear, time-invariant system directly from
convex specifications on its impulse response.

As an example, suppose desired specifications are given as upper and lower bounds
on the first n samples of the step response, as in Figure 2.3. We would like to find
a linear system with lowest order that fits the constraints. The dashed lines in the
figure are meant to capture a typical set of time domain step response specifications:
certain rise-time, slew-rate, overshoot, and settling characteristics. We will discuss
this problem in detail in Chapter 6, along with numerical examples. There we show

that it can be expressed as the RMP

minimize Rank H,
subject to ; <s; <w;, k=1,...,n (2.10)
hn—l—l; sy h2n—1 S R)

where s, = Zle h; denote the terms in the step response, /; and u; are, respectively,



CHAPTER 2. THE RANK MINIMIZATION PROBLEM 18

samples of the lower and upper time domain specifications, and

ho hi ... hpo
H - hi  hy ... Ay
hnfl hn s h2n72

We can readily extend this problem to MIMO (Multi-Input, Multi-Output) systems

by using block-Hankel matrices.

2.2.3 Quadratic and bilinear matrix inequalities as rank con-

straints

Quadratic and Bilinear Matrix Inequalities (BMI) arise in many areas, especially in
control and combinatorial optimization, where they play a central role. In control,
the BMI has been extensively studied as a general framework for many NP-hard prob-
lems. In combinatorial optimization, non-convex quadratic inequalities are essential
because they can capture Boolean or integer constraints on variables. For example,
the constraint z; € {—1, 1} is equivalent to the two constraints 27 < 1, z7 > 1, where
the second inequality is non-convex.

In this section, we show how optimization problems involving quadratic matrix

inequalities and BMIs can be cast as rank constrained problems.

Bilinear Matrix Inequality (BMI) problems

Consider the following problem with a quadratic matrix inequality:

minimize ¢’z

m m (2.11)
subject to C + E x;A; + E zixjBi; <0,
i=1

ij=1
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where x € R" is the optimization variable, and ¢ € R" and the symmetric matrices
A;, B;j, C € R™" are given. This problem is very general, but also non-convex. For
example, if the matrices C, A;, and B,; are diagonal, the constraint in (2.11) reduces
to a set of n (possibly indefinite) quadratic constraints in . Problem (2.11) therefore
includes all quadratic optimization problems. It also includes all polynomial problems
(since by introducing new variables, one can reduce any polynomial inequality to a
set of quadratic inequalities), and all {0, 1} and integer programs.

In control theory, a more restricted bilinear form is often suffieiently general. Here
we split the variables in two vectors x and y, and replace the constraint by a bilinear

matrix inequality (BMI):

minimize ¢’z + b7y

m l m l
subject to D + inAi =+ Zkak + Z inykcik <0.
i=1 k=1

=1 k=1

(2.12)

BMIs include a wide variety of control problems, including synthesis with struc-
tured uncertainty [32, 34, 31|, and fixed-order and fixed-structure controller de-
sign [23]. For more on the BMI and its computational methods, see [33, 81, 35].

We show that problem (2.12) can be cast as a rank-constrained problem. We first

express the problem as

minimize Iz

m m
subject to C + Z.TZAZ + Z wijBij S 0
i=1 ij=1

Wi = ;X ,J=1,...,m

The second constraint can be written as W = za”. This equality is equivalent to the
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following:
W =z
Rank =1, (2.13)
|
since the block matrix above is rank one if and only if the Schur complement of the
(2,2) block is equal to zero, i.e., W — zzl = 0. To see this, we use the result (see,

e.g., [50, §2.2]) that the rank of a Hermitian block matrix is equal to the rank of a

diagonal block plus the rank of its Schur complement, i.e., if C' is invertible, then

A B -
Rank = Rank C' + Rank(4A — BC™"B"). (2.14)
BT C
The constraint (2.13) implies Rank 1+Rank(W —zz”) = 1, or W = zz”. Therefore,

problem (2.11) is equivalent to

minimize Iz

subject to C + Zl‘zA, + Z wijBij S 0
i=1 ij=1 (2.15)
W
Rank <1,
2T 1
where we have replaced the equality in (2.13) with an inequality so that the problem
has the form of (2.3).

Combinatorial optimization problems

Many combinatorial optimization problems can be expressed as rank-constrained

problems in the form of (2.3). We present some examples in this section. Consider
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the quadratic optimization problem

. . . T T
minimize ' Agx + 2byx + ¢
° o (2.16)
subject to z7 A;x + 207z + ¢; <0, i=1,...,L,

where z € R” is the optimization variable. The matrices A; can be indefinite,
and therefore problem (2.16) is a non-convex optimization problem. For example,
it includes all problems with polynomial objective function and polynomial con-
straints [73, §6.4.4], [84].

Define the new variable X € R¥** as X = zz”. As shown in the previous section,

this can be written as
X =z
Rank =1.
zT 1
Noting that

2T Ajx = Tr Ajzz’ = Tr AX,

we can write the quadratic terms in the objective function and the constraints in

terms of X. Thus, problem (2.16) is equivalent to

minimize Tr Ao X + 20z
subject to TrA;X +2blz+¢, <0 i=1,...,L
X =z
Rank <1
2T 1
Except for the rank constraint, all constraints and the objective function are convex in

the optimization variables X and z, therefore this is a rank constrained optimization
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problem as in (2.3). As a simple example, consider the {—1,1} quadratic program

minimize 2T Az + 207z

subject to z? =1, i=1,...,k,
which is equivalent to the rank constrained problem

minimize TrAX + 27z
subject to X; =1 1=1,...,k

(2.17)
Rank [ X -‘ <1.
[ 1]

There exist convex relaxations to problem (2.16), which have been popular in recent
years and are referred to as semidefinite relaxations [42, 58, 79]. For a survey of
semidefinite programming in combinatorial optimization, see [2]. The basic relaxation
can be obtained by simply relaxing the non-convex constraint X = zz” to the convex
constraint X > zz’, which can be written as the Linear Matrix Inequality (LMI)

constraint
X =z

z2f 1

>0

We point out that the same relaxation is obtained if the trace heuristic discussed in

Chapter 5 is applied to problem (2.17).

2.2.4 Other examples
Problems in systems and control

RMPs have been studied extensively in the control literature, since many important
problems in controller design and system identification can be expressed as an RMP.

We pointed out various control applications of the BMI in the previous section. Here
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we list several other examples.

Minimum-order controller design is perhaps the mostly widely studied problem
among these. Its formulation as an RMP is well known. We discuss this problem in
Chapter 6, along with numerical examples. Another problem is model order reduction
in system identification. The problem of minimum order system identification from
frequency domain data is formulated as an RMP and discussed in Chapter 6.

Other applications include reduced-order H,, synthesis and reduced-order yp syn-
thesis with constant scalings [24], problems with intertia constraints [46], exact re-

ducibility of uncertain systems [7], and simultaneous stabilization of linear systems [48].

Fast matrix computations

Low-rank matrix approximations are sometimes used to save computational effort.
As a simple example, suppose we want to compute y = Az, where A € R™*", for
various values of x, and suppose m and n are large. This requires mn multiplications.
If Rank A = r, then A can be factored as A = RL?, where R € R™*" and L € R™*".
Thus, y = RLTx can be computed with only (m + n)r multiplications. If r is much
smaller than m and n, this could lead to significant savings in computation.

The simplest matrix approximation problem is

minimize Rank A
(2.18)

subject to |[A — A]| <,

where A is the optimization variable and € is the tolerance. This problem can readily
be solved via SVD, as we see in Chapter 4. However, often when A has a particu-
lar structure (e.g., Hankel or Toeplitz), A is desired to retain that structure. Such
additional contraints typically make the problem hard.

One application arises in fast image simulation in microlithography. Optical image
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calculation using the Hopkins model involves a double-convolution operation with the
kernel of the imaging system (see [38]). After discretization, this reduces to computing
the quadratic y = 27 Wz for various inputs z and their shifted values. Using a low-
rank approximation to W, referred to as Optimal Coherent Decomposition (OCD), a

fast image simulator is made possible [96].

2.3 The cardinality minimization problem

An important special case of the RMP is minimizing the number of nonzero compo-
nents of a vector z € R" (its cardinality, denoted card x). Other common terms for
cardinality include weight, sparsity, and 0-norm. The term 0-norm can be confusing
since card z is certainly not a norm in the usual sense; it is neither homogeneous of
degree one nor convex (the terminology will be explained below). We will also use the
term sparse in the usual qualitative sense, to describe a vector x € R™ with relatively
few nonzero entries, i.e., one with card x < n.

To see that this problem is a special case of the RMP, let the matrix X in (2.1)
be diagonal, i.e., X = diagx. Then Rank X is the same as the number of nonzero
entries of the vector z. The constraint X € C reduces to z € C, where C is the pre-
image of the previous set under the mapping x — diag . In this case, problem (2.1)
is equivalent to searching for the sparsest vector in a convex set. We refer to this as

the Cardinality Minimization Problem (CMP):

minimize cardz
(2.19)

subject to z € C.

This problem comes up in many application areas. In engineering design problems,
x might represent some design variables and C the constraints and specifications. If

x; = 0 corresponds to an element or degree of freedom not used, then a sparse x
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corresponds to an efficient design, i.e., one that uses a small number of elements.
The problem (2.19) is then to find the most efficient (or least complex) design that
meets all the specifications.

A related interpretation occurs in modeling problems. Here x gives the coefficients
of some model, and z € C is the constraint that the model is consistent with (or not
improbable for) the measured or observed data. In this case the problem (2.19) is to
find the simplest model, i.e., the one involving the least number of terms.

Another example comes up in wavelet decomposition of signals. In the decompo-
sition of a signal (e.g., an image) as a linear combination of known basis signals (e.g.,
wavelet, edgelet, Fourier), sparse coefficients lead to signal compression [16].

The CMP (2.19) is also sometimes referred to as the fyp-norm minimization prob-

lem, for the following reason. For p > 1, the standard p-norm is given by

n 1/p
Izl = (Z \xi\”> :
i=1

The p-norm minimization problem is to minimize ||z||, subject to z € C. This is
equivalent to minimizing the pth power of the p-norm, i.e., the problem
minimize Y. |x;[P

g (2.20)
subject to = € C.

For p > 1 this is a convex optimization problem. For 0 < p < 1 the objective makes
sense, but is neither convex nor the pth power of a norm. Now as p — 0, the objective

converges to the cardinality of x:

limz |z;|P = card(z),
=1

p—0 4

so the CMP can be considered as a limit of the p-norm minimization problem (2.20)
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as p — 0. The similarity between the CMP (2.19) and the p-norm minimization
problem (2.20) does not extend too far. For p > 1 the objective in the p-norm
minimization problem is convex, so the problem can usually be solved globally and
efficiently. For p < 1 the objective in the p-norm minimization problem is not convex,
and the problem can have a very large number of local, but not global, minimizers.

The CMP is in general an NP-hard combinatorial problem. To find the global
optimum, we need to check the feasibility of all 2™ sparsity patterns for x. There
are special cases though where the solution can be found efficiently, as discussed in
Chapter 4.

The CMP arises in sparse design problems, e.g., truss design [95, 60] and power-
ground mesh design [13]; in signal processing problems, e.g., recovering sparse signals
in noise [53, 39] and best basis selection [19, 61]; in wavelet decomposition prob-
lems [22, 16]; and many other applications. An application in portfolio optimization

with fixed costs is discussed in detail in Chapter 6, along with numerical examples.



Chapter 3

Semidefinite Embedding

In Chapter 2, we stated the rank minimization problem and gave examples of its wide
range of applications. Beginning in Chapter 4, we describe approaches to (approxi-
mately) solve the RMP. Before discussing solution approaches, however, we present
and prove a useful property of the RMP, semidefinite embedding, that will be used
in the next chapters to extend methods applicable to positive semidefinite RMPs to
any general RMP.

3.1 Positive semidefinite RMP

If the matrix variable X in the RMP (2.1) is constrained to be positive semidefinite
(PSD), i.e., if the feasible set is a subset of the positive semidefinite cone, we call the
problem a positive semidefinite RMP. The PSD cone has properties that aid us in
finding a low-rank matrix; for example, we see later that such a matrix will always lie
on the boundary of the cone. In fact, this is the basis of the analytical anti-centering
and potential reduction methods that we discuss in Chapter 4. In Chapter 5, we
present the trace and log-det heuristics for the RMP and give theoretical results in

support of their use. These methods are also applicable only to PSD matrices.

27
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There are many applications where X is not necessarily PSD, or even square.
Thus, it becomes important to find a way to deal with the general RMP, problem (2.1).
One of the contributions of this dissertation is to resolve this issue by showing that
any general RMP can be embedded in a larger, positive semidefinite RMP. We refer
to this as the semidefinite embedding lemma. In this chapter, we state and prove this

lemma and point out its implications.

3.2 The semidefinite embedding lemma

We show that it is possible to associate with any nonsquare matrix X, a positive

semidefinite matrix whose rank is exactly twice the rank of X.

Lemma 1 Let X € R™*" be a given matriz. Then Rank X < r if and only if there
exist matrices Y = YT € R™™ and Z = Z* € R™*" such that

Y X
RankY + Rank Z < 2r, > 0. (3.1)

Xt z
This result means that minimizing the rank of a general nonsquare matrix X, prob-
lem (2.1), is equivalent to minimizing the rank of the semidefinite, block diagonal
matrix diag(Y, Z):
minimize ; Rank diag(V, Z)
subject to rox >0 (3.2)
Xt z
X e,
with variables X, Y and Z. The equivalence is in the following sense: the tuple
(X*,Y*, Z*) is optimal for (3.2) if and only if X* is optimal for problem (2.1), and

the objective values in both problems are the same (which is why we keep the factor
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5 in the objective).
It is possible to refine the result of Lemma 1 when X is known to have some

structure:

Corollary 1 If X has a block diagonal structure X = diag(Xi,...,Xy), where
X; € R™*™  then without loss of generality, we may assume that the slack vari-
ables have the structure Y = diag(Yi,...,Yy), where Y; = V' > 0 € R™*™  and
Z =diag(Z,,...,Zy), where Z; = ZF > 0 € R™*™.

To see this, note that Rank X = )" Rank X; and apply Lemma 1 to each block to

get
i X;
xXr z

0 i=1,...,N. (3.3)

Corollary 2 If X is symmetric, then without loss of generality, we can take Y = Z.

This is because for any feasible Y and Z for (3.2), say with RankY < Rank 7, it
is possible to choose a real number « > 0, such that replacing Y and Z in (3.2) with

aY is feasible, with lower or equal objective value; see Section 3.3.

3.2.1 Vector case

We showed in Chapter 2 that the cardinality minimization problem is a special case
of the RMP. To obtain this directly from problem (3.2), let X = diagx. Since X
is diagonal and symmetric, it follows from the above corollaries that we can take

Y = Z = diagy, where y € R". The problem then reduces to

minimize Rankdiagy

dia diagx
subject to 5y & (3.4)

diagx diagy
diagz € C,
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in the variables z, y and z. The first constraint above is equivalent to

)
Y 0 i=1,....n (3.5)

Ty Yi
from which it is easy to see that either z; = y; = 0 or y; > |z;|. Therefore, prob-

lem (3.4) reduces to

minimize cardy
subject to |z;| < y; (3.6)
diagz € C,
or equivalently,
minimize cardzx

subject to z € C,

where C is the pre-image of C under the mapping z — diagz.
In Chapter 5, we use the same approach to specialize results about the rank
problem to the cardinality problem. This is useful because it automatically provides

us with heuristic solution methods for the CMP, which has many applications.

3.3 Proof of Lemma

We begin with the following lemma [12, p.28], which is a generalization of the well
known Schur complement condition for positive semidefiniteness [36]:
Let X, Y, and Z be real matrices of appropriate dimensions. Then we have the

following equivalence:

(i) Y>0
(i) XTI-YYhH=0, (3.8)
(i) Z—-XTYtX >0

Y X
Xt z

Vv
(3
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where Y1 denotes the Moore-Penrose psuedoinverse of Y .

Also note that for any X € R™*",
Rank X = n — dim N (X) = m — dim M (X7). (3.9)

We now proceed with the proof of Lemma 1:
Lemma 1 Let X € R™*" be a given matriz. Then Rank X < r if and only if there
exist matrices Y € R™™ and 7 € R™" such that

Y X
RankY + Rank Z < 2r, > 0. (3.10)

Xt z

Proof: We show each direction separately:
(=) Suppose that Rank X = ry < r. Then X can be factored as X = L R, where
L eR™™ and R € R™", and Rank L = Rank R = ry. Set Y and Z to be the

rank ry matrices L LT and R” R, respectively. Then we have

oA = 5 [ LT R } > 0.

Xt z RT
(<) In this direction, conditions (i), (ii) and (iii) in (3.8) must hold. Our goal is to
show that these conditions imply that Rank Y > Rank X and Rank Z > Rank X.

Assume, without loss of generality, that RankY < Rank Z (if this were not
the case, we could write the conditions in (3.8) with Y and Z interchanged). From
condition (ii) of (3.8), since (I — YY) is a projection operator for N'(Y), it follows
that
NXDHDONEY) = dimNXT)>dimN(Y).

Using (3.9), we conclude that Rank Y > Rank X7 = Rank X.
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O
Finally, we prove the claim that when X is symmetric, we can take Y = Z in (3.2).
Specifically, we show that given any feasible Y and Z, we can construct a matrix W
that is feasible when inserted in place of Y and Z in (3.2) and yields an equal or
smaller objective value.
Proof: Again assume, without loss of generality, that RankY < Rank 7. Now
let o be a positive real number and consider the matrix Y. Then for any o > 0,
Rank oY = Rank Y and oY satisfies conditions (i) and (ii) of (3.8). If we can show
that for some oy > 0 condition (iii) is also satisfied, then we can take W = oY and
we are done.
Toward that end, consider the expression for condition (iii), with oY in place of

Y and Z. Noting that (aY)! = 2YT, we can be write this as
’Y — XYTX > 0. (3.11)

Recall that YT can be decomposed as

51 Ur

=Uu,n7'u], (3.12)
0 Uy

s
where Y. contains the nonzero eigenvalues of Y, U; and U, are orthonormal matrices
that span the range space of Y, R(Y’), and the nullspace of Y, N(Y"), respectively,

and satisfy the identity:
UsUy + U U = 1. (3.13)

Note that when X is symmetric, condition (ii) in (3.8) is equivalent to XU, = 0.
Using this relation, and pre- and post-multiplying (3.11) by [U; Up)" and [U; Us],

respectively, we see that (3.11) holds if and only if the following equivalent condition
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holds:
o?Y —UIXYTXU, > 0.

This condition can be satisfied by any o2 > Apa (S Y2UT XY XU ZV2). O

33



Chapter 4

Existing Approaches

This chapter and the next deal with solution approaches to the RMP. In Section 4.1,
we discuss special cases that can be solved efficiently, e.g., analytically or in poly-
nomial time. In general, however, the RMP is NP-hard, and there is little hope of
finding the global minimum efficiently in all instances. What we look for, instead, are
efficient heuristics. Section 4.2 lists the existing heuristic approaches organized into

three groups.

4.1 Cases that can be solved efficiently

There are special cases of the RMP where the global minimum can be found effi-
ciently. By efficiently we mean that a solution can be found in polynomial time,
using, for example, Singular Value Decomposition (SVD) or convex optimization. In
this section, we briefly describe some of these special cases and their solutions. For
each problem, we also give its vector analog, i.e., the corresponding cardinality min-
imization problem. Note that in these examples, we are concerned with finding the
global minimum and ¢ minimizer (which may not be unique). Although we will not

attempt to do it here, in many cases it is possible to characterize all minimizers.

34
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4.1.1 Cases solved via SVD

RMP with a norm-ball constraint

Perhaps the most commonly occurring RMP in the literature and in practice is the

following:

minimize Rank X
(4.1)
subject to || X — A|l <,
where X € R™*" is the optimization variable. The idea is to find a matrix with
lowest rank that approximates A in matrix 2-norm within a tolerance of e.
The solution to this problem is well known, and is based on the singular value
min{m,n} T

decomposition (SVD). Here we show this in a simple way. Let A =) ") O UV}
be the SVD of A. Suppose Rank X < r, which means dim N (X) > n — r. Since the

v; are orthonormal, we have dimspan{vy,...,v,.1} = 7+ 1. So the two subspaces
intersect, i.e., there is a vector z € R" in span{vy, ..., v,41} such that Xz = 0. Thus,
(X-A)z = —Az=-Y"owuulz,

(X = A)z|> = X2 02 (v]2)* > o727,

which yields || X — A|| > o,41. Equality holds for X = "7 | oyu;v]. Therefore, the
smallest possible rank in problem (4.1) is the smallest number r such that 0,41 <,
and a matrix with this rank is given by the sum of the first  dyads in the SVD of A,

i.e.,
r
= E O'i’U,Z"UZT
i=1

The vector analog to the above problem is

minimize cardzx
(4.2)

subject to ||z — al|eo <€,
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where € R". This problem has a trivial solution: for any |a;| < €, set the corre-
sponding z; to zero.
The solution to problem (4.1) remains the same if the spectral norm is replaced
by the Frobenius norm, or, in fact, by any unitarily invariant matrix norm [51, p.
449]. The vector analog of problem 4.1 with Frobenius norm is
minimize card(z)
(4.3)
subject to ||z — alls <,
which means finding the sparsest vector in a given Euclidean ball. We introduce the
(standard) notation zj; for the ith largest component of the vector z € R", so that
2] 2 Zg] =+ = Zn) Is a permutation of z1,...,2,. Using this notation we can
describe the optimal solution of the problem (4.3) above as follows. The optimal
value is the smallest 7 such that > " a[Qi] < €2, and an optimal z is obtained by
taking x; = 0 if a; appears in the sum above, and z; = a; otherwise.
In [66], a more general class of functions is described that can replace the norm

in problem (4.1) and still yield the same optimal solution.

RMP with a single linear constraint

As another example of an RMP with an SVD-based solution, consider the problem

minimize Rank X
subject to TrATX > b (4.4)
[X] <1,

where X € R™*" is the optimization variable and A € R™ ™ and b € R are given.
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Note that Tr AT X defines an inner product in the space of m x n matrices:

(A, X) = i zn: aijzi; = Tr(ATX).
i=1 j=1
(The notation A e X is also sometimes used to denote this inner product.) The idea
is to find a matrix of norm less than one that is close to A in the inner product sense,
i.e., has a large inner product with A.

The optimal solution to this problem can be described as follows. Let X = UX V7
and A = UXVT be the SVDs of X and A. Matrices ¥ and ¥ are p x p where
p = min{m,n}. By von Neumann’s trace theorem [50, §3.3.21], we have Tr AT X <
> F  di0i, where equality holds if U = U and V = V. Since the objective function
and the last constraint in (4.4) do not depend on U and V, we can choose U = U

and V =V to make the trace term large. The problem is thus reduced to

minimize cardo
subject to Y °_ G0, > b (4.5)

o<1, 1=1,...,n,

where 0 € R? denotes the vector of singular values of X. Let r be the smallest

number of terms that satisfy Y. , 6; > b. The optimal solution is then
X*=UxvV", ¥ =diag(l,...,1,0,...,0),

that is, o;, = 1 forv=1,...,7 and 0; = 0 for 2 = r + 1,...,p. Thus, the problem
of minimizing the rank of a matrix subject to one linear constraint can be solved

analytically. The solution is nontrivial if there is more than one linear constraint.
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If X = diagx, the above problem reduces to

minimize cardzx
(4.6)
subject to a’x >0, |z <1

If b < 0, then x = 0 is optimal. Otherwise the problem is to get the weighted sum
>; a;xz; up to or above b using as few nonzero z;s as possible. Once we have z; # 0,
we might as well have z; = sign(a;) in order to get the maximum contribution to
the sum ). a;x; for a fixed cost in the objective. By making the ith component of
nonzero (which adds a cost of one to the objective) we can add the amount |g;| to the
sum. This suggests the following method for obtaining the optimal solution. Order
the |a;| from largest to smallest, and then take as many as needed (starting with the
largest) until the sum is equal to or more than b. Take x; = sign(a;) for each of these,
and z; = 0 for the others. This solution is in fact optimal, and the optimal value is

the smallest 7 such that Y_;_ |a|p > b.

4.1.2 Cases that reduce to convex problems

Sometimes a rank minimization problem does not have an analytical solution, but can
be reduced to a convex problem where the global minimum can be found efficiently.

This happens, for example, in the problem studied by Mesbahi and Papavas-
silopoulos in [68]. They consider minimizing the rank of a positive semidefinite ma-
trix, subject to the constraint that a certain affine transformation of it is also positive
semidefinite. If the feasible set has a special lattice structure, then there exists a
feasible X that has the smallest rank as well as the smallest trace in the feasible set.
Thus, the minimum-rank solution is obtained by solving a trace minimization prob-
lem, which is convex. As a specific example that has been of interest recently because

of its possible relation to the problem of designing minimum order controllers, we
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consider the problem

minimize Rank X
subject to X — Y% M;XM] > Q (4.7)
X >0,

where X € R™™" is the variable, M; € R"*" and @ > 0 are given. It is shown in [68]
that the feasible set of this problem has the desired lattice structure, and that the

minimum-rank solution can be obtained by solving

minimize TrX
subject to X — Ele M;XM! > Q (4.8)
X >0,

which is a semidefinite program. Parrilo in [78] shows, using properties of cone-
invariant LMIs, that the solution to this SDP can be obtained directly by solving a

set, of linear equations.

4.2 Heuristic methods

For small problem sizes, global optimization methods (e.g., branch and bound [6])
may be applied to find the global minimum-rank solution. However, if the problem
has more than a handful of variables, there is little hope of finding methods that can
solve all instances of the RMP exactly and efficiently. What we look for, instead, are
efficient heuristics. A good heuristic is a tractable method that in practice yields very
low-rank solutions, although there is no guarantee on their optimality.

Several heuristics for the RMP have appeared in the literature, often in the context

of a particular application (most often in the area of systems and control). In this
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section, we give an overview of the existing heuristics, organized into three groups.
We list these methods and present the basic idea behind each, independent of the

particular application areas they arise in.

4.2.1 Alternating projections method

The method of alternating projections is based on the fact that the sequence of orthog-
onal projections onto two closed, convex sets converges to a point in the intersection
of the sets, if the intersection is non-empty [43]. It was first applied to statistical
estimation and image restoration problems in [102, 103]. If the sets do not intersect,
the sequence converges to a limit cycle, i.e., a periodic iteration between two points
in the disjoint sets. The distance between these two points gives the shortest distance
between the sets. The hyperplane passing through the midpoint of these points is a
separating hyperplane and yields a proof of infeasibility for the problem.

If one or more of the sets are non-convex, convergence to the intersection is no
longer guaranteed. In this case, we can have a situation where the sets intersect
but the sequence of projections converges to a limit cycle, as depicted in figure 4.1.
However, local convergence is still guaranteed and the method may be used as a
heuristic.

Here we mention how the alternating projections method can be applied to the
RMP (this approach is used in [9] for the low-order controller design problem). We
first fix the desired rank r. The goal is to find a matrix in the intersection of the
following two sets, or determine that the intersection is empty: (i) the set of matrices
of rank 7, and (ii) the constraint set C. Note that the first set is nonconvex, and
therefore convergence to the intersection is not guaranteed. Orthogonal projections

onto these sets are described as follows.
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Rank X <r

Figure 4.1: Illustration of the alternating projections method for the RMP.

Projection onto the set of matrices of rank r, i.e., finding the closest rank r matrix

to the current iterate X;_;, can be done by solving

minimize || X — Xp_1||

subject to Rank X < r.

Commonly used norms are matrix 2-norm and Frobenius norm. This problem can
be solved via SVD and keeping the first r dyads. We denote the solution by X;.
Projection onto the constraint set C can be done by minimizing the distance from X,

to the set C,

minimize || X — X|| (4.9)
subject to X € C, '

which is a convex optimization problem. Note that the norm used in the previous
step should be used in this step. In summary, given a desired value of rank r, we use

the following algorithm to check whether there is any X € C such that Rank X < r:



CHAPTER 4. EXISTING APPROACHES 42

e Choose Xy € C. Set k =1.

e repeat

Xe = Yo Nup!, where X =UZVT,
Xy, = argminge [|X — Xif,
€k = ||Xk_Xk||;

until |€k - ek_1| S €.

If the iterations converge to a feasible point, we stop. If they converge to a limit cycle,
either the problem is infeasible or the method has failed to detect the feasibility. This
ambiguity is due to the fact that the method searches for a feasible point only locally.
Thus, using a different initial point a different result may be obtained, which means
the choice of a suitable initial point is crucial.

This process can be repeated to check the feasibility of other values of rank. We
can vary 7 from 1 to n — 1, or use bisection on r (i.e., iteratively halve the interval).

See [41, chapter 10] and references therein for a detailed discussion of the alter-
nating projection method and its variations and their application to low-order control
design.

We now briefly comment about two drawbacks of the alternating projections
method. A few quantitative examples that illustrate these points are given in Sec-
tion 5.3 of Chapter 5. In general, this method is known to have slow convergence [85]
1. Note that in each iteration, in addition to an SVD, we need to solve problem (4.9).
In some special cases, projection onto C has a simple analytical expression (see [85]).
In these cases, we can afford a large number of iterations since the computation re-

quired per iteration is very low; but in general, each iteration involves solving a convex

LA variation of the method, called directional alternating projections, has improved convergence
properties. However, the number of iterations required can still be quite high as suggested by the
numerical examples given in [85, chapter 10].
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problem, e.g., a semidefinite program.
Another drawback of the method is that the result is highly dependent on the
choice of the initial point, and in many applications, finding a good initial point is

nontrivial.

4.2.2 Interior-point-based methods

Consider a positive semidefinite RMP, i.e., a special case of the RMP with the extra
constraint that X > 0. Reference [20] proposes two heuristics for this problem that
use ideas from interior point methods for convex optimization [73].

The first heuristic, called analytic anti-centering, is based on the properties of
convex logarithmic barrier functions used in interior point (IP) methods [73]. These
barrier functions have the property that they grow to infinity as the boundary of the
feasible set is approached. Minimization of a log-barrier function using the Newton
method produces a point in the interior of the feasible set, known as the analytic
center. Now note that any rank-deficient solution to the positive semidefinite RMP
must lie on the boundary of the semidefinite cone. Hence, the analytic anti-centering
approach takes steps in the reverse Newton direction, in order to maximize the log-
barrier function. This tends to produce points that are on the boundary of the
feasible set, and hence rank deficient. Since this approach involves the maximization
of a convex function, the solutions are not necessarily global optima.

The second heuristic, called potential reduction, is based on interior point poten-
tial reduction methods [73]. The idea is based on the intuitive notion that minimizing
the determinant of a semidefinite matrix tends to produce low-rank solutions. The
rank objective in the positive semidefinite RMP is replaced by the determinant ob-
jective, det X. The resulting optimization problem is then solved using standard
potential reduction [73], exactly as if the objective were convex: the Newton method

is used to minimize a potential function, constructed from a weighted logarithm of the
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objective (det X') and a log-barrier function for the constraints. Of course, now that
the det X objective is nonconvex, there is no guarantee that minimizing the potential
function will produce a global optimum. This approach is easier to implement than
analytic anti-centering and is also reported to have better performance [20].

These heuristics, as given, are applicable only to positive semidefinite RMPs. How-
ever, they can be extended to handle general non-PSD matrices via the semidefinite
embedding lemma that we introduced in Chapter 3.

The main drawback of these methods is that the result is highly sensitive to the
choice of the initial point. The initial point is typically chosen in the vicinity of the
analytic center of the feasible region. The iterations may follow a completely different
path to a different point on the boundary if the initial point is slightly changed. See
reference [20] for more details and examples, and for the application of these methods

to low-order control design.

4.2.3 Factorization, coordinate descent and linearization meth-

ods

The idea behind factorization methods is that Rank(X) < r if and only if X can be
factored as X = FG”, where F € R™*" and G € R"*". That is,

Rank(X) < r <= there exists F € R™", G € R"*" such that X = FG".

For each given r, we check if there exists a feasible X of rank less than or equal to r
by checking if any X € C can be factored as above.

The expression X = FG' is not convex in X, F, and G simultaneously, but it is
convex in (X, F') when G is fixed, and convex in (X, G) when F is fixed.

Various heuristics can be applied to handle this non-convex equality constraint.

We consider the following simple heuristic: Fix F' and G one at a time and iteratively
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solve a convex problem at each step. This can be expressed as
e Choose Fy € R™". Set k = 1.

e repeat

(X'k,Gk) = argmin || X — Fk_lGTHF
xec, cgeR™™"

(Xy, Fy) = argmin || X — FG{||r
xec, FeR™"

er = || Xy — FrGi ||F,

until e, < ¢, or e; and e;_; are approximately equal.

This is a coordinate descent method, since some variables (i.e., coordinates) are fixed
during each minimization step. The errors e, form a monotonically non-increasing
sequence (since at each minimization step, the previous minimizers are still feasible).
This sequence is not guaranteed to converge to the global minimum of the error
|X — FG"||r as a function of X, F, and G; thus, similar to the methods described
in the previous sections, it is not guaranteed to find an X with rank r even if one
exists.

Another heuristic to handle the non-convex constraint X = FGT is to linearize
this equation in F' and G. Assuming the perturbations 6F', G are small enough so
that the second order term is negligible, we get X = FGT + FSGT 4+ 6FGT. This
constraint can be handled easily since it is linear in both JF" and dG. The method is
useful if the initial choice for FGT is close enough to a rank r matrix for the small
perturbations assumption to be valid. This method has been used in BMI problems
that come up in low-authority controller design [45].

Some other heuristics, similar to the ones described here, have been applied to the
problem of reduced order controller design in the control literature (see Chapter 6 for

more details on this problem). This problem has a particular structure, allowing for
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different choices for the variables in a coordinate descent or linearization method. For
example, the dual iteration method in [54] and the successive minimization approach
in [85] are coordinate descent methods applied to this problem, and [25] gives a

linearization method based on a cone-complementarity formulation.

4.2.4 Summary and Remarks

In this section, we gave an overview of existing heuristics for the RMP. These heuris-
tics were grouped as: alternating projections, interior-point-based methods, and fac-
torization methods. We presented the basic idea behind each group of methods, and
pointed out some of their properties. Note that, as is typical for any local optimiza-
tion method, all the methods mentioned above require a suitable initial point and are
sensitive to it, that is, the result may be significantly affected by choosing a slightly
different initial point. Although in some cases special properties of the problem can
be exploited to pick a suitable starting point, in general this is a non-trivial task.

In Chapter 5, we present other heuristics for the RMP, that can be applied to
any general RMP, do not require a user-specified initial point, and have several other
benefits. They also perform very well in practice. In Section 5.3, we give several
examples to illustrate how these heuristics work compared to the methods mentioned

in this chapter.



Chapter 5

Trace and Log-det Heuristics

In the first half of this chapter, we focus on the trace heuristic. We start from the
well-known fact that minimizing the trace of a PSD matrix over a convex set tends
to yield a low-rank solution, and then we develop a new, general heuristic that can
handle any matrix. We refer to this general method as the nuclear norm heuristic.
In the second half of the chapter, we introduce and discuss a related heuristic that we
refer to as the log-det heuristic. We then give illustrative examples to demonstrate

how these heuristics work compared to the ones described in Chapter 4.

5.1 Trace heuristic

In this section, we first state the trace heuristic for the positive semidefinite case.
We use the semidefinite embedding lemma of Chapter 3 to extend this heuristic to
the general case. We then show that the resulting general heuristic is equivalent to
minimizing the sum of the singular values of the matrix. This quantity is a matrix
norm called the nuclear norm. For the special case of minimizing the cardinality of
a vector (i.e., the CMP), we show that this heuristic reduces to minimizing the ¢,

norm of the vector. Furthermore, we provide insight into the nuclear norm heuristic

47



CHAPTER 5. TRACE AND LOG-DET HEURISTICS 48

by showing that, in fact, it minimizes the convex envelope of the rank function over

a bounded set of matrices.

5.1.1 Positive semidefinite case

A well-known heuristic for the RMP when the variable X € R™"*" is positive semidef-

inite is to replace the rank objective in (2.1) with the trace of X and solve

minimize TrX
subject to X €C (5.1)
X >0.

One way to see why this heuristic works is to note that Tr X = Y, X;(X), which
is the same as ||A(X)|s = Y i, [Mi(X)| for a PSD matrix where the eigenvalues are
non-negative. It is known that to obtain a sparse vector, minimizing the ¢;-norm of
the vector is an effective heuristic (see Section 5.1.7). Thus, minimizing the ¢;-norm
of A(X) renders many of the eigenvalues as zero, resulting in a low-rank matrix.
The trace heuristic has been used in many applications; see for example [68, 77,
78]. Its popularity stems from the fact that problem (5.1) is a convex optimization

problem, which can be solved very efficiently and reliably in practice.

5.1.2 Symmetric non-PSD case

We can extend the trace heuristic to handle problems where X is symmetric but not

necessarily positive semidefinite. Intuitively, the extension is to minimize the sum of
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absolute values of the eigenvalues, i.e.,

minimize Z?:l 1A (X))
subject to X € C.

(5.2)

It turns out that this problem can be written as an SDP and thus readily solved. It
is equivalent to the SDP

minimize Tr X, 4+ Tr X_

subject to X = X, — X_
X, >0, X_2>0
X eC.

(5.3)

To see this, note that the function ) . , [A\;(X)] is convex in X (in fact, it is a matrix

norm; see Section 5.1.3 for details). If X = X, — X_, convexity implies that

2 (X))

IN

3 (0 (X)) + 22 N (X))
= (0 N(X) + 20 (X)) (5.4)
LTr X, +TrX_).

We show that there exist feasible X, and X for which the above inequality is tight.
Let X = QAQT be the eigenvalue decomposition of X. We group the non-negative
and negative eigenvalues as the diagonal entries of A, and A_, respectively. We group

the corresponding eigenvectors as () and ()_, to obtain

Ap 0 QT

X=QAQ" =[Q; Q-]
0 A_ QT

The inequality in (5.4) is tight if we choose X; = Q+A;Q7T and X_ = Q_A_QT,

which are feasible for problem (5.3). Thus, we have shown that (5.3) is equivalent to
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(5.2).

5.1.3 General case: nuclear norm heuristic

As it stands, the trace heuristic (5.1) can be applied only to problems where the
matrix whose rank is to be minimized is positive semidefinite. The extension to
problems where X is non-PSD, or more generally, non-square, is not obvious, as the
trace is not even defined for non-square matrices. Nevertheless, there are various
important applications of the RMP where the variable is not square. Two examples
that are described in Chapter 6 are system realization with time-domain specifications
and low-order system approximation. A natural question is whether this simple and
effective heuristic can be extended to handle the general RMP.

The answer is indeed yes. The lemma we introduced in Chapter 3 enables us to

embed any general RMP

minimize Rank X
(5.5)

subject to X € C,

where X € R™*" is the optimization variable and C is a convex set, in a larger,

positive semidefinite one:

minimize Rank diag(Y, Z)

Yy X
subject to >0 (5.6)
Xt Z
X e,

where Y € R™ ™ and Z € R™" are additional (slack) variables. Since the arguments

of the rank function in (5.6), Y and Z, are known to be positive semidefinite, direct



CHAPTER 5. TRACE AND LOG-DET HEURISTICS o1

application of the trace heuristic in (5.1) yields

minimize Trdiag(Y, 2)
Yy X
subject to >0 (5.7)
Xt z

X e,

which is again a convex optimization problem in variables X, Y and Z, and hence
can be solved efficiently.
Next, we derive an equivalent form of (5.7) that provides insight into this heuristic
and its relation to the original RMP. We show that (5.7) is equivalent to
minimize || X]||.

(5.8)
subject to X € C,

where || X ||, = Y™™ 6,(X) is called the nuclear norm or the Ky-Fan n-norm of
X; see, e.g., [50]. This norm is the dual of the spectral (or the maximum singular
value) norm. Since the spectral norm is denoted by || - ||, we use || - ||« to denote its

dual. The equivalence of problems (5.7) and (5.8) results from the following lemma.

Lemma 2 For X € R™" and t € R, we have || X||. <t if and only if there exist
matrices Y € R™™ and Z € R™™" such that

Y X
>0, TrY+TrZ<?2t (5.9)
XT z

Proof: (<) Let Y and Z satisfy the relations (5.9) above, and let X = USV7”
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be the SVD of X. Here, X is of size » x r, where r is the rank of X. We have

vut —-uvT Yy X
Tr >0
-vur vyt Xt Z

since the trace of the product of two PSD matrices is always non-negative. This yields
TrUUTY —TrUVIXT - TeVUTX + TeVVTZ > 0. (5.10)

Since the columns of U are orthonormal, we can add more columns to complete them
to a full basis; i.e., there exists U such that [U U|[U U|" = I, or UUT + UUT = 1.
Since Tr UUTY > 0, we have

TeUU'Y < Te(UU" + UUT)Y = TrY.

Similarly, for V we have TrVVTZ < TrZ. Also, TrVUTX = TrVIVT = Tr ¥,
and TrUVTXT = TrUSU” = Tr 3. If we substitute for all the terms in (5.10), we

get
TrY +TrZ —-2TrY > 0,

TrY < L(TrY + Tr 2),
TrY = | X, <t
(=) Suppose || X||. < t. We show Y and Z can be chosen to satisfy the rela-
tions (5.9). f Y = UXUT +~I and Z = VEVT + 41, then

TrY +Tr Z =2Tr Y +v(p+q) = 2| X[l +v(p + 9),

so if we choose v = %, we have TrY + Tr 7 = 2t.
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Also note that

v x| [user UEVT-I_’_ [ 1 0]
| x7" z | | vsuT vevT | 7[0 |
_ Y 1 SUT VT 441,
v
which is PSD. 0

In other words, the condition ||X||. < t can be represented as an LMI. This
observation was made also in [92, §3.1]. It is now straightforward to show that the
generalized trace heuristic (5.7) and the nuclear norm minimization problem (5.8) are

equivalent. We simply write (5.7) as

minimize ¢
subject to TrY + Tr 7 < 2t
Yy X
XT z
X e,

>0

with variables X, Y, Z and ¢. Then we apply the above lemma to get

minimize ¢
subject to || X||. <t
X e,

with variables X and ¢. This is equivalent to (5.8). In the next section we show how

this problem is related to the original RMP.
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g(w)

Figure 5.1: Illustration of convex envelope of a function. g(z) is the convex enve-
lope of f(x).

5.1.4 Convex envelope of rank

In this section we explore the relation between the RMP (5.5) and the nuclear norm
(or the generalized trace) heuristic (5.8) in more detail. This leads to an interesting
interpretation of the nuclear norm heuristic: in effect, this heuristic minimizes the
conver envelope of the rank function over a bounded set.

The convex envelope of f : C — R is defined as the largest convex function g such
that g(z) < f(x) for all x € C; see, e.g., [49]. This means that among all convex
functions, g is the one that is closest (pointwise) to f.

In situations such as problem (5.5) where the objective function is non-convex, its
convex envelope can serve as a tractable convex approximation that can be minimized
efficiently. The minimum of the convex envelope can then serve as a lower bound on
the true minimum, and the minimizing argument can serve as an initial point for a
more complicated non-convex local search, if needed. This is discussed in Section 5.2.
The following theorem gives the convex envelope of the rank function over the set of

matrices with bounded norm.

Theorem 1 On the set S = {X € R™" | || X|| < 1}, the conver envelope of the
function $(X) = Rank X is deny (X) = || X]]. = S 6,(X).
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Thus, the nuclear norm heuristic in effect minimizes the convex envelope of the
rank function. The proof of the theorem is given in the next section.

Theorem 1 has the following implications for the RMP and the heuristic (5.8).
Suppose the feasible set is bounded by M; i.e., for all X € C, we have || X| < M.
The convex envelope of Rank X on {X € R™" | || X| < M} is given by || X]|,,
so Rank X > || X||, for all X € C. Let pmp denote the optimal value of the
rank minimization problem (5.5) and p, the optimal value of the trace minimization

problem (5.8). Then

1

prmp Z M Dtr-

In other words, by solving the heuristic problem, we obtain a lower bound on the
optimal value of the original problem (provided we can identify a bound M on the
feasible set). Note that the nuclear norm is the tightest convex lower approximation
to the rank function over the set S; thus among all convex approximations, it yields
the tightest global lower bound on rank.

For comparison purposes, here we examine another approach to extending the
trace heuristic to the general case. This approach yields a different convex approx-
imation to rank, which does not have the convex envelope property. Perhaps the
easiest way to relate the rank of a general, non-square matrix to that of a PSD ma-
trix is to observe that Rank X = Rank(XX™). Since X X7 is positive semidefinite,

one can directly apply the trace heuristic to get

minimize Tr(XX7)
subject to X €C.

Here Tr(XX”T) = Y, 0:(X)?, the squared Frobenius norm of X, serves as a convex
approximation to rank. Note that this is the /o-norm of the vector of singular values.

It is known that minimizing the fo-norm of a vector, unlike the ¢;-norm, often does
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not yield a sparse vector. Therefore we cannot expect to obtain a sparse set of singular
values or a low-rank matrix using the Frobenius norm. Minimizing Tr(X X7) over C

can also be written as the SDP

minimize TrY

) Y X
subject to
Xt 1
X eC.

Comparing this problem to (5.7) shows that these two problems are the same, except
that the variable Z in (5.7) is replaced by the identity, thus reducing the degrees of
freedom in the optimization. We conclude that the convex envelope property of the

nuclear norm plays an important role in the effectiveness of heuristic (5.8).

5.1.5 Proof of the convex envelope theorem

We now prove Theorem 1, using the notion of conjugate functions. The conjugate f*

of a function f :C — R, where C C R", is defined as

f*(y) = sup{(y, =) = f(2) |z € C},

where (y,z) denotes the inner product in R". A basic result of convex analysis is
that the conjugate of the conjugate, f**, is the convex envelope of the function f,
provided some technical conditions (which are valid here) hold. See theorem 1.3.5
in [49] for more details.

Part 1. Computing ¢*: The conjugate of the rank function ¢, on the set of matrices

with spectral norm less than or equal to one, is

¢"(Y) = ”i‘ﬁEJ“ YIX - ¢(X)), (5.11)
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where (Y, X) = Tr YT X is the inner product in R™". Let ¢ = min{m,n}. By von

Neumann’s trace theorem [50],

TrY'X < iai(Y)ai(X), (5.12)

i=1
where 0;(X) denotes the ith largest singular value of X. Given Y, equality in (5.12)
is achieved if Ux and Vx are chosen equal to Uy and Vy, respectively, where X =
UxYxVE and Y = Uy Xy Vil are the SVDs of X and Y. The term ¢(X) in (5.11) is
independent of Ux and Vyx, therefore to find the supremum, we pick Uy = Uy and

Vx = V4 to maximize the first term. It follows that

¢*(Y) = sup (Z oi(Y)oi(X) — RankX) )

[IXN1<t \ ;=1

If X =0, we have ¢*(Y) = 0 for all Y. If RankX = r, 1 < r < g, then
¢*(Y)=>"I_,0s(Y) — r. Hence, ¢*(Y") can be expressed as

r q
¢"(Y) = max {0, o(Y)—-1,..., Zai(Y) — T, Zai(Y) - q} .
i=1 i=1
The largest term in this set is the one that sums all positive (o;(Y) — 1) terms. We
conclude that
0 Y[ <1
YiqgoY)—r o (Y)>1land o,1(Y) <1 (5.13)

= ;1:1 (UZ(Y) - 1)-1-7

() =

where a, denotes the positive part of a, i.e., a; = max{0,a}.

Part 2. Computing ¢**: We now find the conjugate of ¢*, defined as
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¢ (Z) = Slil/p(Tr ZTY — ¢*(Y)),

for all Z € C™*™. As before, we choose Uy = Uz and Vy = V7 to get

¢"*(Z) = sup (Z 0i(Z)oi(Y) - ¢*(Y)> :

Y \i=
We will consider two cases, ||Z]| > 1 and || Z|| < 1:

If || Z]| > 1, we can choose o1(Y") large enough so that ¢**(Z) — oo. To see this,

note that in . .
9" (2) = sup (Z 0i(Z)oi(Y) — (Z oi(Y) - 7“)) ,

the coefficient of o1 (Y) is (01(Z) — 1) which is positive.
Now let || Z]| < 1. If ||Y]| £ 1, then ¢*(Y) = 0 and the supremum is achieved for

o;(Y)=1,i=1,...,q, yielding

q

$"(2) =) _0i(Z) = Z|..

=1

We now show that if ||Y|| > 1, the argument of the sup is always smaller than the
value given above. By adding and subtracting the term ) !, 0;(Z) and rearranging

the terms, we get

T

Zoi(Y)oz-(Z) - Z(oz-(Y) —1)
Zai(Y)ai(Z) - Z(o,-(Y) —1)— Za,-(Z) + Zai(Z)
D (@(Y)=1)(0:(2) =)+ Y (oY) = 1oi(2) + > 0:(2)
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The last inequality holds because the first two sums on the third line always have a
negative value.

In summary, we have shown
¢ (2) = |1 Z]l-

over the set {Z | ||Z|| < 1}. Thus, over this set, ||Z||, is the convex envelope of the
function Rank Z. O

5.1.6 Intuitive interpretation

The following provides a simple way to visualize and understand the nuclear norm
heuristic. The rank of a matrix X in R™*" equals the number of singular values
greater than zero, which can be written as

min{m,n}

RankX = > I.(0:i(X)), (5.14)
i=1
where the function 7, is the indicator function for the positive reals R, :

A 1 >0,

0 z<0.

I(z)

Figure 5.2 shows the rank function and its convex envelope for the case of a 1 x 1
(scalar) matrix. Note that in this case X has only one singular value o(X) = |X|,
and Rank X = I, (|X|). The figure suggests that the convex envelope of rank over
the set of matrices bounded by M may be obtained by replacing each I (0;(X)) term
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Figure 5.2: Basic idea behind the convex envelope approximation of Rank X:
when X is a 1 x 1 (scalar) matrix, it has only one singular value o(X) = | X|; then
Rank X = I, (|X|), which has the convex envelope 37| X| = &0(X).

in (5.14) by -2 0;(X) to get

min{m,n}

ban(X) =22 3 0i(X) = XL, (515)

=1

which agrees with the results in Section 5.1.4.

5.1.7 Vector case: /;-norm minimization

We now consider the special case where the matrix X is diagonal, i.e., X = diagz,
z € R". Recall from Chapter 3 that in this case, the RMP reduces to the cardinality
minimization problem (CMP).

Consider the CMP in the form of (3.4). Applying the trace heuristic (5.1) to this
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problem yields
minimize Trdiagy
dia diagx
subject to sY s
diagr diagy
diagz € C.
Using the same discussion as in Section 3.2.1 of Chapter 3, we can simplify this
problem to
minimize > y;
subject to |z;| < y;
diagz € C,
which is equivalent to

minimize Y | |z (5.16)
subject to z €C,

where C is the pre-image of C under the mapping = — diagz, and |z, = Y, |z;]
denotes the ¢;-norm of z. Problem (5.16) is the well-known ¢;-norm heuristic for car-
dinality minimization and has been used in various applications; e.g., actuator/sensor
placement in low-authority control [44], wavelet decomposition of signals using basis
pursuit [17, 16], and robust estimators in statistics [52].

Not surprisingly, ||z]|; is also the convex envelope of card z over {z | |||, < 1}
The nuclear norm heuristic can thus be considered as an extension of the #; heuristic
to the matrix case. In Chapter 6, Section 6.5, we apply the ¢; heuristic to the problem

of portfolio optimization with fixed costs.

5.2 Log-det heuristic

We now discuss another heuristic for the RMP that we refer to as the log-det heuristic.

We first state the heuristic for the case of positive semidefinite matrices, where we
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use the log-det function as a smooth surrogate for rank, and propose an iterative
linearization and minimization scheme for finding a local minimum. We show that
the resulting heuristic can be viewed as a refinement of the trace heuristic. We then
apply the log-det heuristic to the general (non-square) case using the semidefinite
embedding lemma of Chapter 3, and give an intuitive justification for the heuristic.
We then show how applying this heuristic to diagonal matrices yields a new iterative

heuristic for the CMP.

5.2.1 Positive semidefinite case

Consider the RMP with X € R™", X > 0. The log-det heuristic can be described as
follows: rather than solving the RMP, use the function logdet(X + §I) as a smooth
surrogate for Rank X and instead solve the problem

minimize logdet(X + 61)

(5.17)
subject to X € C,

where § > 0 can be interpreted as a small regularization constant. The idea of using
a log-det type function to obtain low-rank solutions to LMI problems is not entirely
new—a similar idea also appears in the potential reduction method of [20] for positive
semidefinite matrices (see Chapter 4). However, we take a different approach to
finding a local minimum of this function over the constraint set C.

Note that the surrogate function logdet(X + ) is not convex (in fact, it is con-
cave). However, since it is smooth on the positive definite cone, it can be minimized
(locally) using any local minimization method. We use iterative linearization to find

a local minimum. Let X denote the kth iterate of the optimization variable X. The
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first-order Taylor series expansion of logdet(X + 6I) about X, is given by
logdet(X + 01) =~ logdet(Xy, + 6I) + Tr(Xy + 1)~ (X — Xp). (5.18)

Here we have used the fact that Vlogdet X = X ! when X > 0. Hence, one
could attempt to minimize logdet(X + 6I) over the constraint set C by iteratively

minimizing the local linearization (5.18). This leads to

Xjy1 = argmin Tr(X; + 61) 7' X. (5.19)
XeC

The new optimal point is X1, and we have ignored the constants in (5.18) because
they do not affect the minimization.

Since the function logdet(X + 67) is concave in X, at each iteration its value
decreases by an amount more than the decrease in the value of the linearized objective.
Based on this observation, it can be shown (e.g., using the global convergence theorem
in [65, p.187]) that the sequence of the function values generated converges to a local
minimum of logdet(X + 0I).

Note that the trace heuristic can be viewed as the first iteration in (5.19), starting
from the initial point Xy = I. Therefore, we always pick Xy = I, so that X is the
result of the trace heuristic, and the iterations that follow try to reduce the rank of

X, further.

5.2.2 General case

In order to extend the log-det heuristic to the general case, we appeal to Lemma 1
again, and recall the equivalence between the RMP (2.1) and its PSD form (3.2). Since
the matrix diag(Y, Z) is semidefinite, the log-det heuristic (5.17) can be applied. This
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yields
minimize logdet(diag(Y, Z) + 61)
Y X
subject to >0 (5.20)
Xt z

X eC.

Linearizing as before, we obtain the following iterations for solving (5.20) locally:

diag(Yji1, Zk41) = argmin Tr(diag(Yy, Zx) + 01) ' diag(Y, Z)
_ Y X
subject to >0 (5.21)
XT z

X e,

where each iteration is an SDP in the variables X, Y and Z.

Figure 5.3 provides an intuitive interpretation for the heuristic. It shows the basic
idea behind the Tr X and log det(X + §I) approximations of Rank X. The objective
functions for the trace and log-det heuristics are shown for the scalar case, i.e., when

z € R and o(z) = |z|.

5.2.3 Vector case: iterative /;-norm minimization

We now study the log-det heuristic in the vector case, as we did with the trace
heuristic in Section 5.1.7. Consider the special case of the diagonal rank minimization

problem (3.4). Applying the log-det heuristic to this problem yields

minimize ), log(y; + 0)
subject to |z;| <wy; ,i=1,...,n

xECT,
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1 |zl
Rank z

-M \/ M z
log ¢

Figure 5.3: The rank, trace, and log-det objectives in the scalar case

or, equivalently,
minimize ), log(|z;| + J)
subject to z € C,
where € R" is the optimization variable. Iterative linearization of the concave

objective function gives the following heuristic for vector cardinality minimization:

(k+1) _ : |4
x = argmin » —~——. (5.22)
Note that if the initial point is chosen as z(® = [1, 1,..., 1], the first iteration will

minimize ||z||;. Thus the first iteration is the same as the ¢; heuristic that we derived
in Section 5.1.7 as the vector version of the trace heuristic.

A closer look at this iterative procedure shows that in each step, a weighted
/1 norm of the vector = is minimized. This yields an intuitive interpretation of the
method: if :L'Z(k) is small, its weighting factor in the next minimization step, (atgk) +6)71,
is large. So the small entries in = are generally pushed towards zero as far as the

constraints on x allow, and thus yield a sparse solution.
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See [63] for more about the iterative #; minimization procedure, and its application

to the problem of portfolio optimization with fixed transaction costs.

5.3 Illustrative examples and comparisons

In the previous chapter, we listed several groups of heuristics for the RMP: alternating
projections, factorization, and analytic anti-centering/potential reduction. In this
chapter we presented the trace and log-det heuristics. The goal of the following
examples is to give an idea of how well various heuristics work, in terms of finding a

low-rank solution. In these examples, we consider the RMP

minimize Rank X
subject to X = Ag+ > 1 | z;A; (5.23)
X >0,

where z € R" is the optimization variable.
Example 1. We first present a simple example with only two variables so that a
graphical representation is possible. The purpose is to illustrate how various heuristics

work. Consider problem (5.23) with z € R?, and with Ay, A; and A, given such that

9—z, 3 0 0 0
39—z 0 0 0
A(z) = Ag + 71 4; + 1245 = 0 0 -1 0 0
0 0 0 —Z1 + T2 0

| 0 0 0 0 :v1+x2—2_

The feasible region is shown in Figure 5.4, where the solid lines depict the bound-
ary of the set. The curved boundary corresponds to the constraint that the top 2 x 2

block in A be positive semidefinite. Similarly, the linear boundaries correspond to
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X2

Rank A(z) = 3

Rank A(z) =2

X

Figure 5.4: Feasible region for the problem in Example 1.

the other diagonal terms in A being non-negative. The goal is to pick an x in this
set such that A(z) has the lowest possible rank. Such a point has to lie on the inter-
section of the largest number of boundaries. Thus, it can also be solved by solving a
set of linear and quadratic problems that check if the boundaries intersect. But since
every combination of boundaries has to be taken into account, it is a combinatorial
problem. We can see from the figure that the point [1, 1]7, which is on the crossing
of three boundary lines, yields the global minimum of 2 for Rank A(z). The rank at
6, 6]7 and [1, 7.875]" is 3, and at all other (non-corner) boundary points it is 4. In
the interior of the set, A(z) is clearly of full rank.

We apply the alternating projections method, the factorization method described
in section 4.2.3 of Chapter 4, and the trace heuristic described in this chapter, to this
RMP.

In the alternating projections method, in the first step (r = 4) the initial point z
is picked randomly, and in the next steps it is chosen to be the result of the previous
step. Similarly, in the factorization method, the initial Fj is random, and in the next

steps it is chosen as a square-root of the A(x) obtained in the previous step.
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Method r Zopt # of iterations
Factorization 4 [1.000, 5.688] 2 (4 SDPs)
3 [1.000, 7.875] 4 (8 SDPs)
2 | feasible point not found
Alternating projections | 4 [2.765, 7.557] 2
3 [1.000, 7.875] 37
2 | feasible point not found
Trace 2 [1.000, 1.000] 1

Table 5.1: Results for Example 1.

The results are shown in Table 5.1. We see that the global minimum, with a rank
of 2, is found by the trace heuristic (i.e., one iteration of the log-det heuristic). This
involves solving an SDP with 2 variables and 5 constraints. The two other methods
manage to find only a rank 3 matrix, with higher computational effort. Note that
same behavior is observed with various randomly chosen initial points, although for
both methods, there exist initial points that do yield a rank 2 solution. This fact
further emphasizes that these two methods are sensitive to the choice of the starting
point.

Example 2. As a larger example, we consider problem (5.23) with z € R®. The
matrices A; € R"”*'® are diagonal, and are chosen randomly. Thus the constraints
are simply a set of 15 linear inequalities. As before, the minimum rank is achieved at
a point where the largest number of the constraints are tight.

We again apply the three heuristics and compare the results. The initial points for
the factorization and alternating projections methods are chosen as in the previous
example. The results are given in Table 5.2.

Example 3. In the following examples, we compare the trace and log-det heuris-
tics with the interior-point-based methods on two simple examples. These methods
are introduced and studied in detail in the dissertation of Johan David [20], where

many small numerical examples are given. We quote two examples of [20] here for
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Method r # of iterations

Factorization 7 3

6 | feasible point not found

5 | feasible point not found
Alternating projections || 7 9

6 | feasible point not found

5 | feasible point not found
Trace ) 1

Table 5.2: Results for Example 2.

Figure 5.5: Figure shows feasible region, the analytic center, and the paths followed
by the potential reduction iterations towards the boundary for two examples taken

from [20].

69
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comparison purposes. Both problems are RMPs in the form of (5.23) with two vari-
ables, with feasible regions shown in Figure 5.5. The initial point is chosen in the
vicinity of the analytic center of the constraints. The lines show the paths followed
by the iterations in the potential reduction method towards the boundary. We see
that in both examples, the point that the paths converge to is highly sensitive to
the initial point, i.e., a small change in the initial point may significantly change the
results.

For comparison, we apply the trace and log-det heuristics to these two examples.
In example shown on the left, the trace heuristic (i.e., one iteration of log-det) yields
x = [2, 2] where Rank A(z) = 3, the global minimum in this case. In example shown
on the right, the log-det heuristic converges in 3 iterations and yields z = [1, 1] where

Rank A(z) = 2, again the global minimum.

5.3.1 Conclusions and remarks

We note that the methods presented in this and the previous chapter are all heuristics;
we can always find special examples in which one method outperforms the others.
Therefore, we do not claim that the trace/log-det heuristics yield lower rank solutions
than other methods in all problem cases. However, the random examples given in
this section suggest that the trace/log-det heuristics, besides having several important
benefits over the other methods, often do perform better as well.

The main benefits of the new heuristics are as follows:
e They can be applied to any general RMP.

e There is no need for user-specified initial points, because the nuclear norm
heuristic provides a low-rank solution that can be used as an initial point for

further log-det iterations.
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e For the nuclear norm heuristic, it is possible to show (through the convex enve-
lope result) in what sense the heuristic is optimal, and what kind of behavior
could be expected from it. It also provides global lower bound on the minimum
rank, if the feasible set is bounded (which is often the case in practice). This
is in contrast to other heuristics that do not provide such information. Such

bounds can be used in branch-and-bound methods in global optimization.

e The log-det iterations require solving a convex problem at each step, which can
be done very efficiently. Typically only a few steps are needed as the log-det

iterations converge very fast in practice.

e Unlike the alternating projections and factorization methods, these heuristics
do not require checking the feasibility for all values of rank, thus saving the

extra computational effort.



Chapter 6

Applications

In this chapter, several rank minimization problems are considered that arise in a
variety of areas, ranging from control and system identification, to statistics and
psychometrics, and finance. The problems are solved (approximately) using the trace
and log-det heuristics presented in the previous chapter. The goal is to demonstrate
the effectiveness of these heuristics in producing low-rank solutions in practice.
Recall that in general, the trace heuristic, as well as each iteration of the log-det
heuristic, require solution of an SDP. We use the software SDPSOL [101]. In some
cases, e.g., minimum-order system approximation in the single-input, single-output
(SISO) case, each iteration can be written as a second-order cone program (SOCP),
which can be solved more efficiently than an SDP. Some existing SOCP solvers include

SOCP [64] and MOSEK [4].

6.1 System realization with time-domain constraints

In this section, we discuss the problem of designing a low-order, discrete-time, linear
time-invariant (LTI) dynamical system, directly from convex specifications on the

first n time samples of its impulse response. Some typical specifications are bounds

72
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on the rise-time, settling-time, slew-rate, overshoot, etc. This problem can be posed
as one of minimizing the rank of a Hankel matrix over a convex set.
We begin with a fact about linear systems that can be derived from standard re-

sults in [15, 86]. We denote by H,, the Hankel matrix with parameters hy, ho, ..., ho, 1 € R,

hi  ho hs ... hy,
h2 h3 h4 ... hn_|_1
H, = hs hy hs e hn—|—2 . (61)
| hn hn—l—l hn—|—2 R hQn—l ]
Fact 1 Let hy, hs, ..., h, be given real numbers. Then there exists a minimal LTI

system of order r, with state space matrices A € R™", B € R™! and C € R,
such that
CA™'B=h, i=1,...,n,

if and only if

r= min Rank H,,,
hn41y--hoan—1€
where H, is a Hankel matriz whose first n parameters are the given hy, ha, ..., hy,
and whose last n — 1 parameters, hpi1,...,han_1 € R, are free variables.

In other words, there exists a linear time invariant system of order r whose first
n impulse response samples are hq,...,h,, if and only if the minimal-rank Hankel
matrix has rank . Once hy, ..., hy, 1 are known, a state space description {4, B,C}
can be easily obtained [75].

Note that the constraints in the Fact 1 are only on the first n samples, even though
hnit, ..., hon_1 also appear in the Hankel matrix. These extra variables are left free

in the optimization. Thus, they are chosen in a way so as to minimize the overall
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Figure 6.1: Step response specifications (dashed) and actual step response obtained
after 5 iterations of the log-det heuristic

rank of the Hankel matrix.

To see how the facts above can be used to design low-order systems directly from
specifications, consider the specifications on the step response shown in Figure 6.1.
The goal is to find the minimum-order system whose step response fits in the region
defined by the dashed lines, up to the 16th sample. The dashed lines are meant to
capture a typical set of time-domain step response specifications: certain rise-time,
slew-rate, overshoot, and settling characteristics and an approximate delay of four

samples. The problem can be expressed as

minimize Rank H,
subject to ; <s; <w;, k=1,...,n (6.2)
hn+17 R h2n—1 € R7
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Figure 6.2: Log of the singular values o1,...,05 of H, at each iteration

where s, = Zle h; denote the terms in the step response, and l; and u; are, re-
spectively, samples of the lower and upper time domain specifications (shown by the
dashed lines).

This problem is an RMP with no analytical solution. Note also that the opti-
mization variable H,, is not positive semidefinite. We apply the generalized trace and
log-det heuristics described in Chapter 5 to this problem. Because of the approximate
four-sample delay specification, we do not expect that the specifications can be met
by a system of order less than four.

After five iterations of the log-det heuristic, a fourth-order system is obtained with
the step response shown in Figure 6.1. Thus, all the specifications can be met by a
linear time-invariant system of order exactly four. In this example, we set § = 1075.
Figure 6.2 shows the logarithm of the nonzero Hankel singular values. We see that the

rank of the 16 x 16 matrix H,, drops to 5 after the first iteration, and the next four
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iterations bring the rank to 4, which in this case happens to be the global minimum.

6.2 Minimum-order system approximation

In this section, we apply the nuclear norm heuristic to the problem of minimum-
order system approximation. Such problems arise, for example, in model reduction
problems that come from overparametrization in subspace system identification [56,
67, 75]. They also arise in H,, model reduction [47].

Let p1,...,pny € C be a set of complex numbers with conjugate symmetry, .e.,
whenever p; is complex, there is some j such that p; = p;. We consider the family of

proper rational matrices given by

R;
5_pi’

N

H(s)=Ro+ Y (6.3)
i=1

where R; € C™*" satisfy conjugate symmetry: whenever p; = p;, we have R; = Rj.

We consider p;, the poles of the rational matrix H, as fixed; the residues R; are

the variables that we will use for approximation (subject to the conjugate symmetry

constraint). The McMillan degree, i.e., the order of a minimal state-space realization,

of the rational matrix H is given by

N
deg(H) = ) Rank R; = Rankdiag(Ri, ..., Ry).
i=1
Our goal is to determine values of the residue matrices R; that minimize the McMillan
degree over some set of acceptable approximations.

Let wy,...,wx € R, and suppose G}, € C™*™ are given. We can interpret the wy,



CHAPTER 6. APPLICATIONS 7

and Gy as sampled frequencies and the measured frequency response matrix, respec-

tively. As a criterion for acceptable fit, we use the simple conditions

| H (jwr) — Gil| <€, k=1,...,K

h Y

i.e., that the matrix H, evaluated at the given frequencies, should approximate the
given data (in spectral norm) within a tolerance e.

The problem of finding the minimum-order approximation is then given by

minimize Rankdiag(Ry,...,Ry)
subject to [|H (jwg) — Gkl <€, k=1,...,K (6.4)
Rj = Rz fOl" pj = ﬁi,

where the optimization variables are the R; € C™*". Note that H(jwg) is a linear
function of the variables R;. The objective can also be expressed as the rank of the
block-diagonal matrix with blocks Ry, ..., Ry, so this problem has the form of the
RMP (2.1) (with complex matrices instead of real matrices). For a discussion of
optimization over an affine family of linear systems, see [12, §10.1].

Using Schur complements, we can replace the first constraint in (6.4) by its LMI

equivalent. Then applying the generalized trace heuristic, we obtain the following

SDP:

minimize YN, TrY; + Tr Z;

Y, R
subject to >0 2=1,...,N
R Z
: (6.5)
el H(jwy) — G
(o) ’“1 >0 k=1,...,K
(H(jwr) — Gp)* a |

Rj = RZ for pj = ﬁi,
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Figure 6.3: Original 8th order data (solid), and 6th order approximation (dashed).

where R; e C™*" Y =Y* € C™™ and Z = Z* € C™*" are the variables.

Note that (6.5) is a complex SDP. Since Y; and Z; are Hermitian, their traces
are real, so the objective is real. The complex constraints in (6.5) can in turn be
expressed as real LMIs, using the fact that for any Hermitian matrix X € C™*", the

matrix inequality X > 0 is equivalent to

| ®x —%X-|>O
| sx ®x |

which is an ordinary (real) LMI in the (real) matrix variables X and SX.
We demonstrate the techniques above on numerical data, generated from a generic
system model. We use an 8th-order, 2-input 2-output transfer matrix F', which is

normalized so that ||F||« = sup, ||F'(jw)|| = 1. The frequencies wy, k =1,..., K =



CHAPTER 6. APPLICATIONS

[N
o

McMillan degree

Dual Spectral Norm
o 1S3 o
o © B 92 N ©
(3] = ul N ol w

o

)

0.1

I
0.2 0.3 0.4 0.5 0.6

Tolerance €

o

0.1

I
0.2 0.3 0.4 0.5 0.6

Tolerance ¢

0.7

Figure 6.4: Tradeoff curves. The horizontal axis gives the approximation tolerance
€. The top plot shows the MacMillan degree obtained by the nuclear norm heuristic.
The bottom plot shows the minimum nuclear norm.
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128 are chosen as linearly spaced from 0 Hz to 1 Hz, and G|, was taken as the value of
the 8th-order model at wy: Gy = F'(jwy). For the poles py, ..., pg, we take the poles of
F, which appear in four complex conjugate pairs. T'wo pairs are clustered at £0.10 Hz,
and the other two are around +£0.24 Hz. The system approximation problem then
becomes a model reduction problem: we keep the poles of the original system and
modify the residue matrices. The goal is to reduce the order while respecting a given
error level.

As an example, (6.5) is solved with ¢ = 0.05 (—=26dB). The result is a 6th-
order approximation. Figure 6.3 shows the magnitude plot of the original system
(F) and the approximation result (i.e., H). Using the generalized trace (or nuclear
norm) heuristic (6.5) for a range of values of the tolerance € from very small to 0.55,
we obtain the tradeoff curve in Figure 6.4. The staircase curve is the actual rank
objective from (6.4), evaluated for the optimizer of (6.5). This provides an upper
bound on the optimal rank objective in (6.4). The lower curve is the objective value

of (6.5). For more details on this problem, see [26].

6.3 Reduced-order controller design

In this section we study the application of trace and log-det heuristics to the well-
known problem of reduced-order controller design. The most important considera-
tions in the practical implementation of controllers using fixed-point DSP processors
today are computation time, memory usage, and the effects of finite precision arith-
metic. All of these are directly related to the order of the controller being imple-
mented. Thus, in practice, it is highly desirable to achieve the specified performance
with the lowest possible controller order.

As a specific example, consider the discrete-time linear time-invariant system P,
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K

Figure 6.5: Closed loop feedback system with plant P and controller K.

described by the state-space equations

z(k+1) = Az(k) + Byw(k) + Bu(k)
y(k) = Cox(k) + Dyw(k).

Here z € R" is the state; w € R™ and u € R™ are the disturbance and control
inputs, respectively; z € R™ and y € R"™ are the performance and measured outputs,
respectively. Assume that the system is stabilizable and detectable. The goal is to
find a stabilizing linear time-invariant controller K of minimum order, which when
hooked up to the system as in Figure 6.5, makes the closed loop l5-gain from w to z
less than some prescribed level ~.

It is shown in [29, 55] that there exists a linear time-invariant stabilizing controller
K of order ng < n that achieves a performance level v, if and only if there exist

symmetric positive definite matrices R, S € R™" such that

R I
Rank <n+ng, (6.6)
I S



CHAPTER 6. APPLICATIONS 82

and

Exy

>0
|1 5]
' .7 | ARAT-R  ARCT B,
Nis | 0 Nia |0
— C]_RAT —’YI+ C]_RCIT Dll <0
0 |1 0 |1 (6.7)
: : By A
i v | ATsa—s  ats, | or
Not | O Nop | 0O
— BTSA  —~I+BTSB, | DT, <0,
0 |7 0 |7
- - | C Dy ‘ -1

where N, and N are orthonormal bases for the null spaces of [BI Df,] and
[Cy Dq], respectively. Once appropriate R and S have been found, the state-space
matrices of the controller K can be obtained directly from R and S and the state-space
matrices of the plant P; see [29, 55].

The computation of the minimum-order controller K that achieves a performance

level v can thus be cast as the following RMP:

R I
I S (6.8)

minimize Rank
subject to (6.7).

This is a well-studied problem, and various heuristics have appeared in the literature,
e.g., the potential reduction method [20], the alternating projections method [41],
the cone-complementarity approach [25], and the dual iteration method [54]. Still,
the search for new and better heurisics for this important problem continues. In this
section, we apply the trace and log-det heuristics to problem (6.8) and present some

numerical results.



CHAPTER 6. APPLICATIONS

10 10

Figure 6.6: Maximum singular value plots: open loop system (solid), closed loop
system with 29th-order controller corresponding to 7y,pt (dashed), and closed loop
system with 20th-order controller corresponding to a 5% relaxation of 7,p (dash-
dot). (Note that the open loop response does not appear to be very high order. This
is because the higher order dynamics show up significantly in the smaller singular
values, which are not plotted here.)
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Yopt Relaxation (%) || 0 | 2 | 5 | 10
Controller Order 29 | 251201 19

Table 6.1: Tradeoff between performance level v and controller order.

As a specific example, we take P to be a model of a MIMO high-speed flexible
positioning mechanism. The model P has five inputs (n, = 4,n, = 1), three outputs
(ny = 2,n, = 1), and overall order n = 29.

The following procedure is used to design a low-order controller for P. First,
the minimum achievable performance level 7, is computed by minimizing v subject
to (6.7)—this is a standard semidefinite program in v, R and S. The controller
computed from the R and S associated with v, has order 29, and gives the closed
loop response shown by the dashed line in Figure 6.6. We then relax the performance
level yopt by 2%, 5%, and 10%, and solve (6.8) approximately using the trace and log-
det heuristics for each of the relaxed v values. This yields the approximate tradeoff
between minimum controller order and achievable performance shown in Table 6.1.

Beyond a 5% relaxation of the performance level, it is not possible to get significant
reductions in the controller order without large degradation in performance. Thus, a
reasonable choice might be the controller associated with the 5% relaxation of v,ps.
This controller has order 20, and results in the closed loop response shown by the
dash-dotted line in Figure 6.6. To within less than 0.5 dB, the controller achieves

essentially the same performance, but with a 30% reduction in the number of states.

6.4 Euclidean distance matrix problems

Euclidean distance matrix (EDM) problems deal with constructing configurations of
points from information about interpoint (Euclidean) distances. A simple example

is reconstruction of the geographical map of a set of cities given pairwise inter-city
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distances [11, p. 16].

A matrix D € R™™" is called a Euclidean distance matriz if there exist points
T1,...,Z, in R" such that D;; = ||lz; — z;]|>. The dimension of the space in which
the points lie, r, is called the embedding dimension. Let X € R™" denote the matrix
containing the z; as columns, i.e., X = [z; ... x,]. The relation between the matrix

of inner products B = X7 X and the distance matrix D is then
D = diag B 17 + 1 (diag B)" - 2B,

where

Dy = ||zl + llz;|I* — 227 x; = By + Bj; — 2By;.

LetV =1- %llT be the projection matrix onto the hyperplane 172z = 0. Multiplying
a vector by V' “centers” the vector by subtracting the mean of all coordinates from
each coordinate, i.e., by shifting the origin to the centroid of the points. Multiplying
D by V on both sides yields

VDV = V(diagB 17 + 1 (diag B)T — 2B)V
= —2VBV
= —2XTX,

where X = XV, and columns of X are the centered z;s. The matrix —%VDV is
sometimes called the double-centered distance matrix.

Schoenberg in 1935 [82] gave the necessary and sufficient conditions for a matrix
to be an EDM with given embedding dimension. In our notation, this result shows
that D = DT € R™" is an EDM with embedding dimension r if and only if the

following hold:
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VDV <0, (6.10)
Rank(VDV) <. (6.11)

The conditions above make intuitive sense; for example, we can show that the distance
properties
1/2 1/2 1/2 .
D=0, D;j=Dj>0, and Dij/ < Dik/ + Dké , for any 4,7, k,

can be derived from (6.9) and (6.10). To show the positivity of D;;, note that (6.10)
is equivalent to ' Dz < 0 for any x on the hyperplane 172 = 0. Let z be a vector
with 1 in the ¢th position, —1 in the jth position, and zeros everywhere else. Then
"Dz < 0 gives D;; > 0.

To derive the triangle inequality, let  be a vector with entries z; and x; at the ¢

and jth positions, and —(z; + z;) at the kth position. From z7 Dz < 0 it follows

Dik: Dj 0 —(.TZ + .’L'j)
which can be re-written as
0 Djj Dy 1 0
1 0 -1 Z;
[ 2 = ] Dy 0 Dy 0 1 <0,
01 —1 x;
Dj, D; 0 -1 -1

for all x;,z; € R, which means the product of the three matrices above is negative
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semidefinite. Multiplying out the matrices, we have

—2Djy Dij = Djr — D

To be negative semidefinite, the determinant of this 2 x 2 matrix should be positive,

which yields 4D Djy, > (D;; — D, — Dy)?. Taking square-roots, we get

QD%QD%Z > |Dij — Djr, — Dig| > Dyij — Djy, — Dy

Rearranging the terms as (Dzlk/ > Djl-

22)2 > D;; and taking square-roots again yields
the triangle inequality Di,i 24 D,if > Dz.lj/ ? for any 7,7 and k.

Condition (6.11) deals with the embedding dimension. It implies that VDV can
be factorized as VDV = —2X7X with X € R™", where the columns of X give an
embedding in R".

Problems involving EDMs arise in a variety of fields, such as Multi-Dimensional
Scaling (MDS) in psychometrics and statistics, and in computational chemistry. In
psychometrics, the information about interpoint distances is usually gathered through
a set of experiments where subjects are asked to make quantitative (e.g., in metric
MDS) or qualitative (e.g., in non-metric MDS) comparisons of objects. In statistics,
such problems occur in extracting the underlying geometric structure of distance data.
They have also been used in marketing research, in order to detect the number and
nature of dimensions underlying the perceptions of different brands or products [40].
In chemistry, they come up in inferring the 3-dimensional structure of a molecule
(molecular conformation) from information about its interatomic distances [71, 70,
90].

If the EDM D is known exactly, the corresponding configuration of points (up to a

unitary transform) can be obtained by finding a square-root of —%VDV. However, in
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practice, typically only partial data, noisy measurements or incomplete information
on D is available. It is often desired to find an EDM that not only is consistent with
the measurements, but also requires the smallest number of coordinates to represent
the data, i.e., has the smallest embedding dimension. This problem can be expressed

as the RMP
minimize Rank(—V DV)

subject to D; =0
VDV >0
D e,

(6.12)

where C is a convex set denoting the prior information on D. For example, we may

have interval constraints on the distances, i.e.,

where matrices L and U denote the lower and upper bounds. Another common
constraint is for D to be close to the measured distance matrix D (e.g., in matrix
2-norm or Frobenius norm),

|D ~ Dlloe < e,

where € is a given tolerance. The measure of closeness can also be the Lipschitz

distance, which is defined as

§(D, D) = log [ max =2 max —~ | .

Bounding the Lipschitz distance by some ¢ results in the following set of linear con-

straints on D:

D Di;
M < (expe)=2, for all i, j, k, .
ki ij
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Another type of constraint comes up in non-metric MDS, where only the “order” of
the measured distances is considered, rather than the absolute distances themselves.
This happens, for example, in non-metric MDS in psychometrics, where the data are
human judgments on a pair of stimuli. The human mind may distort distances in a
monotonic fashion; therefore only the information on the order of distances is reliable.
The order information translates simply to linear inequality constraints on the entries
of D, which is convex and can be easily handled.

The trace and log-det heuristics can be applied to this RMP. Our numerical
experiments show that they work well, yielding EDMs with very low embedding
dimensions.

As an example, consider 30 randomly generated points in R®, with all coordinates
distributed uniformly over the interval [0, 1]. Let D be the matrix of squared distances
corrupted by additive Gaussian noise, with zero mean and covariance 0.01. This
matrix has full rank (with probability one) because of the noise, which obscures the
underlying geometric structure. We would like to find the D close to D in Frobenuis

norm, with the smallest embedding dimension. This can be expressed as the RMP

minimize Rank(—VDV)

subject to D;; =0,
VDV >0
ID =Dl <e,

where we assume the tolerance € to be 0.05]D||r. Applying the log-det heuristic
to this problem results in a D with a (correct) embedding dimension of 5 after 2

iterations (with § = 107°).
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6.5 Portfolio optimization with fixed transaction
costs

The Cardinality Minimization Problem (CMP) was discussed in Section 2.3 of Chap-
ter 2 as a special case of the RMP. In this section we consider an application that
arises in finance, the problem of portfolio optimization with fixed transaction costs.
We show that the fixed-costs term can be expressed as a cardinality constraint, then
we apply a variation of the ¢;-norm and iterative ¢;-norm heuristics (i.e., the trace and
log-det heuristics for the vector case) to obtain a sparse solution and global bounds
on the optimal value. For more details on this problem and other portfolio selection
problems, as well as the iterative ¢;-norm heuristic, see [63].

Consider an investment portfolio that consists of holdings in some or all of n assets.
This portfolio is to be adjusted by performing a number of transactions, after which
the portfolio will be held over a fixed time period. The investor’s goal is to maximize
the expected wealth at the end of the period, while satisfying a set of constraints
on the portfolio. These constraints typically include limits on exposure to risk, and
bounds on the amount held in each asset. Let w € R"™ denote the vector of current
holdings in the assets. The total current wealth is then 17w. The dollar amount
transacted in the ith asset is specified by z;, with z; > 0 for buying, and z; < 0 for
selling. Then x € R" is the vector of transactions. After transactions, the adjusted
portfolio is w + z. Representing the sum of all transaction costs associated with x by
#(x), the budget constraint is 17z + ¢(z) = 0.

The adjusted portfolio w + x is then held for a fixed period of time. At the end
of that period, the return on asset ¢ is the random variable a;. All random variables
are on a given probability space, for which E denotes expectation. We assume that
we know the first and second moments of the joint distribution of a = [a4, ..., ay]%,

i.e., Ea = @ and E(a — @)(a — a)T = . A riskless asset can be included, in which
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case the corresponding a; is equal to its (certain) return, and the ith row and column
of ¥ are zero. The end of period wealth is a random variable, W = a” (w + ), with

expected value and variance given by
EW=a"(w+z), EW-EW)?= (w+2)'S(w+2).

The budget constraint can also be written as the inequality 17z + ¢(z) < 0. With
some obvious assumptions (@; > 0, ¢ > 0), solving an expected wealth maximization
problem with either form of the budget constraint yields the same result.

We summarize the portfolio selection problem as

maximize a’ (w + )
subject to 17z + ¢(z) <0 (6.13)

w+z €S,

where S C R" is the set of feasible portfolios. Typical constraints on the portfolio
include upper bounds on the variance, bounds on the amount of shorting allowed on
each asset (i.e., w; +x; > —s;), bounds on total shorting, etc.

We assume the transaction costs to be separable, i.e., the sum of the transaction

costs associated with each trade is
n
d(z) = ili),
i=1

where ¢; is the transaction cost function for asset ¢. The simplest model for transac-
tion costs is that there are none, i.e., ¢(xz) = 0. A better model of real transactions
costs is a linear one, with the costs for each transaction proportional to the amount
traded. However, in practice, transaction costs are not linear, and a fixed charge for

any nonzero trade is common.
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Figure 6.7: Fixed plus linear transaction costs ¢;(x;) as a function of transaction
amount z;. There is no cost for no transaction, i.e., ¢;(0) = 0.

We consider a simple model that includes fixed plus linear costs. Let 8;" and 3;
be the fixed costs, and a; and a; be the cost rates associated with buying and selling
asset 7. The fixed-plus-linear transaction costs function is illustrated in Figure 6.7.

To simplify notation, we assume equal costs for buying and selling. The transac-

tion costs function is then ¢(z) =Y. | ¢(z;), with

0, z; =0
pi(zi) = (6.14)

Bi + ag|xi|, x; #0.
In general, costs of this form lead to a hard combinatorial problem. The simplest way
to obtain an approximate solution is to ignore the fixed costs, and solve for ¢;(x;) =
a;|x;|. If the B; are very small, this may lead to an acceptable approximation. In
general, however, it will generate inefficient solutions with too many transactions. On
the other hand, by considering the fixed costs, we discourage trading small amounts
of a large number of assets. Thus, we obtain a sparse vector of trades; i.e., one with
many zero entries, or a small cardinality. This means most of the trading will be
concentrated in a few assets, which is a desirable property. Thus, problem (6.13)

can be considered as a problem with a constraint on the cardinality of the vector of
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trades. To see this directly, we can rewrite the budget constraint as
'z + ) il + ) Bily () <0,
i=1 i=1

where I, (.) in the last term is the indicator function defined in Section 5.1.6. The
term ). ;1 (z;) is the same as the cardinality function cardz = >, I (z;) except
that each term has a weight §;. We show that the /;-norm and iterative ¢;-norm
heuristics can readily be extended to this problem.

We use the basic idea of replacing ¢; with its convex envelope. The convex envelope
of ¢; in the interval [—[;, u;] is

<@+Odi>l'i, a:ZZO

Us

—<é+6¥i)$z‘, z; <0,

£ (z7) = (6.15)

li

as shown in Figure 6.8. Using ¢;** for ¢, relaxes the budget constraint, in the sense
that it enlarges the search set. Consider the portfolio selection problem (6.13), with
;¢ in place of ¢;,

maximize @' (w + 7)
subject to 1Tz + 37" ¢&(z;) <0 (6.16)

w+x€S.

This corresponds to optimizing the same objective subject to the same portfolio con-
straints, but with a looser budget constraint. Therefore the optimal value of (6.16)
is an upper bound on the optimal value of the unmodified problem (6.13).

Note that in most cases the optimal transactions vector for the relaxed prob-

lem (6.16) will not be feasible for the original problem (6.13). The unmodified budget
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Figure 6.8: The convex envelope of ¢; over the interval [I;, u;], is the largest convex
function smaller than ¢; over the interval. For fixed plus linear costs, as shown here,
the convex envelope is a linear transaction costs function.

constraint will not be satisfied by the solution of the modified program, except in the
very special case when each transaction amount z; is either [;, u;, or 0. These are the
three values for which the convex envelope and the true transaction costs function
agree.

We now show how to apply the iterative #;-norm heuristic for finding a feasible,
suboptimal portfolio. The feasibility of the portfolio is obtained by ensuring that
the modified transaction costs function g,gf agrees with the true ¢; at the solution
transactions ;.

Consider the following procedure: Let z° be the solution to problem (6.16), and
apply the iterations

azk(%) = (L + Oéz') EZIR

AN
¥ = argmax a’ (w+z) (6.17)
e+ 350, 3!“%) <0
w+r €S
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If the iterations converge, i.e., if two successive iterates are close to each other, the
solution z* will be nearly feasible for the original problem (see Figure 6.9). This is

seen by noting that for =7 > 4,

Gat) = (g o) il = fibaulal] = o)

and for z7 =0,
Gi(w}) = 0 = oi(a}).

Note that while Eﬁ;(z’[) < ¢i(x}) for all xf, this inequality is tight except when z is
on the order of §. In a sense, § in this problem defines a soft threshold for deciding
whether a given z] is considered zero, ¢.e., whether the corresponding transaction
should be performed or not. In a practical implementation of the portfolio trades, a
hard threshold is needed, and the x} of order ¢ or smaller should be taken as zero.

Note that upper and lower bounds on the global optimum for the expected end of
period wealth are given by a’z° and a’z*.

For numerical examples, we consider problem (6.13) with fixed plus linear trans-
action costs, a limit on shorting of s; per asset, and a bound on the variance of o.
We first describe an example with 10 stocks, plus a riskless asset. The mean and
covariance of the risky assets was estimated from one year of daily closing prices of

10 stocks from the S&P 500. The parameters used are

wl,...,wnzl/ll
ai,...,oq0 = 1%, o =0
Bi,---,B10 = 0.01, Bi1=0

S1y-..,810 = 005, S11 = 0.5.

The small size of this problem allows us to compute the exact solution, that is the

global optimum, by combinatorial search. Figure 6.10 displays the resulting tradeoff
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Figure 6.9: One iteration of the iterative £; algorithm. Each of the nonconvex
transaction costs (plotted as a solid line) is replaced by a convex one (plotted as a
dashed line) that agrees with the nonconvex one at the current iterate. If two suc-
cessive iterates are the same, then the iterates are feasible for the original nonconvex
problem.

curve, with expected return plotted against standard deviation of return. Four curves
are shown: the upper bound; the exact solution; the heuristic solution; and the
solution computed without regard for fixed cost. Note that the upper bound is close
to the heuristic solution. Note also that the heuristic nearly coincides with the exact
solution. For the heuristic, we used § = 1073.

In Figure 6.11, still for the same 11 assets example, oy,.x Was kept constant at 0.15,
and the problem was solved for a range of fixed costs 5. The optimal expected return
is plotted as a function of fixed costs, with the four curves obtained by the same
procedure as in the previous figure. Again we can see that the difference between
our heuristic and the optimal is very small. In this figure we can also see the cost
of ignoring the transaction costs, which, naturally, increases with increasing fixed
transaction costs.

As a second and larger example, we considered 100 stocks, plus a riskless asset,
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Figure 6.10: Example with 10 stocks plus riskless asset, plot of expected return as
a function of standard deviation. Curves from top to bottom are: 1. global upper
bound (solid), 2. true optimum by exhaustive search (dotted), 3. heuristic solution
(solid), and 4. solution computed without regard for fixed costs (dotted). Note that
curves 2 and 3 nearly coincide.
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Figure 6.11: Example with 10 stocks plus riskless asset, plot of expected return
as a function of fixed transaction costs. Curves from top to bottom are: 1. global
upper bound (solid), 2. true optimum by exhaustive search (dotted), 3. heuristic
solution (solid), and 4. solution computed without regard for fixed costs (dotted).
Note that curves 2 and 3 nearly coincide.
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Figure 6.12: Example with 100 stocks plus riskless asset, plot of expected return as
a function of standard deviation. Curves from top to bottom are: 1. global upper
bound (solid), 2. heuristic solution (solid), and 3. solution computed without
regard for fixed costs (dotted).

using the parameters

wi, ..., wier = 1/101

at, ..., a0 = 1%, a0 =0
B, -+, Broo = 0.001, P11 =0
S1,.-.,8100 = 0.005, S101 = 0.5.

Figure 6.12 displays the resulting tradeoff curve. The curves shown are the upper

bound, the heuristic solution, and the solution computed without regard for fixed
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costs. Our numerical experiments indicate that convergence occurs in about 4 itera-

tions or less for a wide range of problems.



Chapter 7

Conclusions

We studied the Rank Minimization Problem and listed many applications from a wide
range of fields. Since the RMP is known to be NP-hard in general, we focused on
efficient, but approximate, heuristic methods. We summarized the existing heuristics
in three groups: alternating projections, interior-point-based methods, and factoriza-
tion and linearization methods. Briefly, the main shortcomings of these methods are
as follows: they are highly sensitive to the choice of initial point; are slow in general;
and do not provide any information on the global minimum.

We presented new heuristics based on convex optimization. We started from the
well-known fact that minimizing the trace of a positive semidefinite matrix tends to
yield a low-rank matrix. We extended this heuristic to the case of general matrices
using our semidefinite embedding lemma, which enabled us to embed a general RMP
in a (larger) positive semidefinite one. The generalized heuristic is equivalent to
minimizing the nuclear norm of the matrix. We showed that the nuclear norm is
the convex envelope of the rank function over the set of matrices with spectral norm
less than one, a result that provides theoretical backing for the heuristic. In the
vector case (i.e., the CMP), this heuristic reduces to the known ¢;-norm heuristic for

obtaining sparse vectors.

101
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As another heuristic, we used the (non-convex) log-det function as an approxi-
mation to rank. The trace heuristic provides a low-rank solution that can serve as
a suitable starting point for a local optimization method to minimize the log-det
function. Any local method can be used here; we used an iterative linearization and
minimization method. This results in iterative weighted-trace minimization, which
tends to reduce the rank further and refine the result of the trace heuristic. The log-
det heuristic readily extends to general matrices using the semidefinite embedding
lemma. In the vector case, this heuristic reduces to a new iterative ¢;-norm heuristic
for the CMP.

The main benefits of the new heuristics are as follows:
e They can be applied to any general RMP.

e There is no need for user-specified initial points, because the nuclear norm
heuristic provides a low-rank solution that can be used as an initial point for

further log-det iterations.

e The nuclear norm heuristic is optimal in the sense that it minimizes the convex
envelope of the rank function over the set of matrices with bounded spectral
norm. It also provides a global lower bound on the minimum rank, if the feasible

set is bounded (which is often the case in practice).

e The log-det iterations require solving a convex problem at each step, which can
be done very efficiently. Typically only a few steps are needed as the log-det

iterations converge very rapidly in practice.

e Unlike the alternating projections and factorization methods, these heuristics
do not require checking feasibility for all values of the rank, thus saving the

extra computational effort.
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Finally, we demonstrated the effectiveness of the proposed heuristics on applied prob-

lems from different fields, e.g., system identification, control, statistics and finance.

7.1 Future Research

e Large-scale problems. Many rank minimization problems that arise in prac-
tice are large-scale. Typically, they are also very sparse and highly structured.
Examples include problems in combinatorial optimization, network flow opti-
mization, image processing, and system approximation. If solvers for large-scale
semidefinite programming become available, the heuristics we presented can be
applied to large-scale RMPs that are important in practice. Large-scale semidef-
inite programming is currently an active area of research; see list of references

given in Chapter 1.

e FErtensive numerical experiments. Since the methods we discussed are all heuris-
tics, none can be claimed to yield a better solution in all problem cases. A care-
ful study of the computational behavior of the methods requires benchmarking
problems of various types and sizes, and a large number of simulations for each.

This is a topic to be addressed.

e New applications. We showed that the RMP arises in many different fields.
Searching for new applications in these fields, and also fields that we did not

cover, e.g., biological systems, can be a direction for further work.



Appendix A

Notation and Glossary

R™
RM™X™

Rank X

Tr X

det X

1]

X[

1X

Ai(X)

oi(X)

1

diag(Xi,..., X,)
X >0 (X >0)

X>Y (X>Y)

cardz

The set of real numbers.

The set of real m-vectors.

The set of real m x n matrices.

The rank of X.

The trace of X.

The determinant of X.

The spectral (maximum singular value) norm of X.

The nuclear norm of X.

The Frobenius norm of X.

The 4th largest eigenvalue of X.

The 4th largest singular value of X.

The identity matrix (of appropriate dimensions).

The block diagonal matrix with diagonal blocks X1,..., X,,.
X is positive (semi-)definite, 4.e., X = XT and 27Xz > 0
(27X z > 0) for all nonzero z.

X —Y is positive (semi-)definite.

The cardinality of the vector .
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PSD
SDP
LMI
RMP
CMP

Positive Semidefinite
Semidefinite Programming
Linear Matrix Inequality
Rank Minimization Problem

Cardinality Minimization Problem
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