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Abstract— We present a case study in proving invariance
for a chaotic dynamical system, the logistic map, based on
Positivstellensatz refutations, with the aim of studying the
problems associated with developing a completely automated
proof system. We derive the refutation using two different forms
of the Positivstellensatz and compare the results to illustrate the
challenges in defining and classifying the ‘complexity’ of such
a proof. The results show the flexibility of the SOS framework
in converting a dynamics problem into a semialgebraic one as
well as in choosing the form of the proof. Yet it is this very
flexibility that complicates the process of automating the proof
system and classifying proof ‘complexity.’

I. I NTRODUCTION

Determining the existence of a solution for a system of
polynomial inequalities, non-equalities and equations

fi(x) ≥ 0, i = 1, . . . , s

gj(x) 6= 0, j = 1, . . . , t (1)

hk(x) = 0, k = 1, . . . , r

wherex ∈ R
m has emerged as an important field of study

in control theory and optimization. This problem has long
been of interest in the field of real algebraic geometry
where they term the set ofx’s that satisfies (1), a (basic)
semialgebraic set. In fact, there is an extensive body of com-
putational algebra literature [1] that deals with algorithmic
tools for manipulating semialgebraic sets. However, these
tools were not widely studied within the control community
until relatively recently, in part because of computational
intractability. This obstacle was reduced when Parrilo [12],
following the pioneering work of Shor [19], introduced
a computational framework based on using the existence
of a Sum-of-Squares (SOS) decomposition as a sufficient
condition for non-negativity of a polynomial. Checking
whether a polynomial has an SOS decomposition can be done
via semidefinite programming (SDP). This SOS relaxation
provides the critical link between the well studied tools from
real algebraic geometry and efficient computation.

This framework has been applied to a wide range of
problems such as the computation of Lyapunov functions
for nonlinear dynamical systems [11], the computation of
tight upper bounds for the structured singular valueµ [16]
in control theory, relaxations for non-convex optimization
problems [4] and time delay systems [10]. Related techniques
have also been applied to model validation, safety and reach-
ability analysis as introduced in [14]. All of these problems
begin as questions about a dynamical system, which are
subsequently reduced to algebraic problems (such as proving

infeasibility of (1)), using existing ideas from control theory
or their extensions. The resulting algebraic question is, in
general, NP hard [8], but SOS relaxations and the Positivstel-
lensatz (P-satz) provide a powerful strategy for overcoming
this apparent intractability. The Positivstellensatz [20] is a
central theorem in real algebraic geometry which basically
states that: there is no solution of (1), if and only if there
exists a polynomial of a particular form (i.e., satisfying a
particular algebraic identity). Such a polynomial is referred
to as a P-satz refutation, certificate, or proof.

One of the main advantages of the P-satz is that because
it is necessary and sufficient, searching for increasingly
higher degree refutations generates a nested hierarchy of
polynomial-time computable relaxations (SDPs) which ex-
hausts co-NP (i.e. the proof space). The Matlab toolbox
SOSTOOLS, developed by Prajna, Papachristodoulou and
Parrilo [15] [16], automates the process of converting an SOS
problem to an SDP, which can then be solved by a variety
of third party software packages. SOSTOOLS then converts
the solution of the SDP into the solution of the original
algebraic problem. Typically when using SOSTOOLS we
employ Stengle’s P-satz [20], less general versions from
Schm̈udgen [18], Putinar [17], and Handelman [6] can also
be used. These forms require more restrictive assumptions,
but provide simpler forms for the structure of refutation. Re-
lated work by Lasserre [7], based on Putinar’s P-satz, focuses
on the dual of the SOS problem. The dual of checking the
non-negativity of a polynomial over a semialgebraic set is
finding a sequence ofmomentsthat represent a probability
measure with support in that set.

This paper has the two main goals of illustrating the
application of P-satz methods to solving problems in control
and dynamical systems, and presenting the issues associated
with further automating SOS proof systems. Analysis of
dynamical systems using SOS methods can be broken into
three steps. The first is reducing the problem, whether it
be feasibility, stability, invariance, safety, reachability, etc.
to one involving emptiness of basic semialgebraic sets. The
second is attempting to prove emptiness using a P-satz
refutation. Finally, one must interpret the output of the proof
method. Problem formulation is currently largely handcrafted
whereas generating the proof can be automated (albeit with
some, often substantial, user expertise required). The step
that involves interpretation of the proof output, however,
has been the least discussed in the literature. Eventually
one would like to automate the whole process but in the
present work we focus on issues surrounding the complete



automation of the last two steps.
The particular application of the P-satz that we focus on is

proving robust invariance of sets for the logistic map using
SOS methods. The SOS framework also allows us to mirror
methods based on considering fixed points and/or periodic
orbits and studying the associated attracting sets but herewe
would like to analyze a larger invariant set. Traditionallyfor
a quadratic recurrence such as the logistic map there are no
systematic methods for proving invariance, in part because
the system is bifurcating to chaos. Although much is known
about the behavior of the logistic map [3] [13], the bulk of
this knowledge was gained through simulation or handcrafted
proofs which will not scale to higher order systems. Our
aim is to not only make definitive statements about a chaotic
system, which in this example are not particularly novel, but
to do so with methods that potentially scale to higher order
systems.

The focus in our discussion of automating proofs is
interpreting the output of the proof system. As mentioned
above the framework developed by Parrilo et. al. allows
one to fix the degree of the polynomials in the P-satz
refutation and then check to see that the proper algebraic
identity is satisfied. However there is no systematic method
for determining the minimum degree polynomials that will
generate a certificate. It is often the case that once certificates
are obtained it is possible to compare proofs and decide
which is ‘shortest’ in terms of some notion of ‘length,’ which
determines the ‘proof complexity.’ Unfortunately, all of these
quoted terms are currently ‘in the eye of the beholder’ and
there are no rigorous definitions or methods of ordering
proof complexity a priori in a way that would allow a
systematic search for short proofs. Notions such as ‘order
of the certificate’ and size of the SDP have been proposed
but both leave some ambiguity as will be discussed in the
sequel. Thus users seem inevitably to be left with some ad
hoc choices when searching for short proofs.

The importance of making precise the notion of ‘proof
complexity’ is motivated by the connections it appears to
have with important features of the system being analyzed.
Of particular interest is the potential to generalize the familiar
concept of condition number through the idea that high proof
complexity implies problem fragility. There have been com-
plexity bounds established for the Schmüdgen and Putinar
versions of the P-satz for basic closed semialgebraic sets
consisting solely of inequalities in [21] and [9] respectively,
but these require a number of assumptions and are simply
bounds on the maximum degree of the polynomials. Other
related ideas are discussed in [5]. Here they introduce a
P-satz calculus that relies on predicate calculus (inference
rules) systematically applied to derive the refutation in a
stepwise manner. In this case they defined ‘proof complexity’
based on the intermediate order of the polynomials and
the number of steps. They do not address any method to
distinguish between two proofs with the same number of
steps and intermediate polynomials of the same order. None
of the prior work deals with the problem of evaluating proof
complexity for a general system or distinguishing levels of

complexity if the order of the refutation is the same.
The logistic map is used as a case study to demonstrate the

proof method because it is a familiar system that is known to
exhibit interesting behavior. It also allows us to discuss how
the selection of the form of the P-satz can change the ‘proof
order’ and to illustrate some of the ambiguities associated
with determining a minimum order proof. Further, it is a
two dimensional system so one can interpret (visualize) the
results graphically. The real value of the tools, of course is
for cases when visualization is difficult due to the system
dimension. However, to illustrate the ideas and concepts it
is useful to start with these simple case studies.

The paper is organized as follows; in section II we provide
some preliminary definitions and the P-satz theorem. A brief
description of the logistic map follows. Section III presents
the invariance proofs and section IV compares the proofs
obtained in III to proofs obtained using other forms of the
P-satz. Finally conclusions and open problems are discussed.

II. PROBLEM DESCRIPTION

A. Basic Definitions and Theorems

The following three definitions are from [2].

Definition 2.1: Given polynomials{g1, . . . , gt} ∈ R[x]
the Multiplicative Monoid generated by the gj ’s,
M(g1, . . . , gt), is the set of all finite products of the
gj ’s including 1.

Definition 2.2: Given polynomials{f1, . . . , fs} ∈ R[x]
the Algebraic Conegenerated by thefi’s is the set

C(f1, . . . , fs) =

{

f

∣

∣

∣

∣

∣

f = λ0 +
∑

i

λiFi

}

whereFi ∈ M(f1, . . . , fs) andλi’s are SOS polynomials.

Definition 2.3: Given polynomials{h1, . . . , hr} ∈ R[x]
the Ideal generated by thehk ’s is the set

I(h1, . . . , hr) :=

{

h

∣

∣

∣

∣

∣

h =
∑

k

µkhk

}

whereµk ∈ R[x].

The solution set of (1) is the basic semialgebraic set

{x | fi(x) ≥ 0, gj(x) 6= 0, hk(x) = 0} (2)

for i = 1, . . . , s; j = 1, . . . , t; andk = 1, . . . , r. We call (2)
the constraint set and emptiness of this set indicates that (1) is
inconsistent. Determining emptiness of a basic semialgebraic
set is addressed in the following theorem, due to Stengle [20].

Theorem2.4 (Positivstellensatz [12]):

{fi(x) ≥ 0, gj(x) 6= 0, hk(x) = 0}
i = 1, . . . , s; j = 1, . . . , t; k = 1, . . . , r

is infeasible inR
n if and only if ∃ F, G, H such that

H + F = −G2

F ∈ C(f1, . . . , fs)

G ∈ M(g1, . . . , gt)

H ∈ I(h1, . . . , hr)



Theorem 2.4 holds for arbitrary systems of polynomial
equations, non-equalities and inequalities over the reals. It
is remarkable in that it allows one to reduce a geometric
problem into an algebraic one without any assumptions on
the polynomials. The result is both necessary and sufficient
meaning it is always possible to find such a relationship.
The main method of generating the infeasibility certificates
follows from the fact that by construction the expression
H + F is nonnegative and as such it being identically equal
to −G2 provides a contradiction. (For further details see [2]).

Definition 2.5: The subset of the coneis the set ofFi’s
from definition 2.2 that are used in the P-satz refutation.

Definition 2.6: Theproof order is the degree of the high-
est order term in the P-satz refutation.

Definition 2.7: The SOS multiplier orderis the order of
each of theλi’s in definition 2.2.

B. System Description

The logistic map is the quadratic recurrence equation

xk+1 = axk(1 − xk) = Q(xk) (3)

wherea, xk ∈ R andk ∈ Z
+ and each value of the parameter

a corresponds to a different dynamical system. It is of interest
in both the physics and mathematics communities because it
is a simple iterative equation that is known to exhibit chaotic
behavior [3]. The most common use of (3) is as model of
population dynamics [13] in Ecology but it can also be used
to model other phenomena. In figure 1 the points indicate the
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Fig. 1. Logistic Map Attractors−2 < a < 4

attracting set or steady state value of (3) for each parameter
a. The map has two fixed points;x = 0 is the attracting
fixed point for−1 < a < 1. At a = 1 there is a transcritical
bifurcation andx = 1− 1

a
becomes the attracting fixed point

until a = 3 when there is a period doubling bifurcation.
There is a similar critical point and bifurcation ata = −1.
The two period attracting sets continue until there is another
set of period doubling bifurcations at1 +

√
6 and 1 −

√
6

respectively. The system then continues to undergo period
doubling bifurcations to chaos, as shown in the right and
left portions of figure 1.

III. I NVARIANCE PROOFS

We focus on invariance of the largest closed invariant set.
Note that the complement of that set is also invariant as
all points in the complement eventually become unbounded.

The proof method discussed herein allows one to search for
refutations that guarantee emptiness of basic semialgebraic
sets. In general, the union of basic semialgebraic sets does
not necessarily yield a basic semialgebraic set, so in some
cases we will not be able to do a proof search over the
union directly. However, this is not a limitation of the method
because any semialgebraic set can be written as the union
of basic semialgebraic sets [2]. This guarantees that we can
always break a given semialgebraic set into subsets and since
the union of two empty sets is clearly empty one can make
a determination about the entire region of interest by using
separate proofs for each subset. This approach is reminiscent
of branch-and-bound methods used in global optimization,
where the feasible set is divided iteratively by branching on
the decision variables. Although we will not pursue it in this
paper, a similar approach can be used for proving a set to be
empty, we refer to this approach as ‘SOS branch-and-prove’.
In this example we begin with two branches;

{(2x − 1)2 − 1 ≤ 0; (a − 1)(a − 4) ≤ 0} (4)

{a2(2x − 1)2 − (a − 2)2 ≤ 0; (a + 2)(a − 1) ≤ 0} (5)

based on the geometry of the region of interest, which is

0 ≤ x ≤ 1 1 ≤ a ≤ 4

1 − 1

a
≤ x ≤ 1

a
0 ≤ a ≤ 1

1

a
≤ x ≤ 1 − 1

a
−2 ≤ a ≤ 0.

(6)

Figure 2 outlines the region (6) in heavy black lines.
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Fig. 2. Invariant Set: Logistic Map

A. Branch 2:1 ≤ a ≤ 4

For the region described by the set (4) one can verify
invariance through the following proposition;

Proposition3.1: Given a > 0 the region0 ≤ x ≤ 1 is
invariant if and only if0 < a ≤ 4.

Proof:
SufficiencyGivena > 0 and{x | 0 ≤ x ≤ 1} is invariant,
⇒ 0 ≤ ax(1 − x) ≤ 1 ⇒ 0 ≤ x(1 − x) ≤ 1

a
.

Note x(1 − x) is a parabola with a max atx = 1

2

⇒ 1

4
≤ 1

a
⇒ a ≤ 4.

NecessityGiven 0 < a ≤ 4 and0 ≤ x ≤ 1.
⇒ 0 ≤ x(1 − x) ≤ 1

4
⇒ 0 ≤ ax(1 − x) ≤ a 1

4
≤ 1



This proof is hard to automate because it relies on obser-
vations about the system and heuristics. It also requires
knowledge of regions outside the set of interest. Such a
proof method is system dependent and lacks the flexibility to
analyze different aspects of the system with the same steps.

For a more general proof method one can appeal to the
machinery provided in theorem 2.4. Here proving invariance
is equivalent to proving











(2x − 1)2 ≤ 1

(a − 1)(a − 4) ≤ 0

(2ax(1 − x) − 1)2 > 1











= ∅ (7)

Condition (7) means that for allx such that(2x − 1)2 ≤ 1
future points in the orbit of the logistic map,Q(x), will never
intersect the region outside of(2x− 1)2 ≤ 1, (i.e. all future
points remain inside).

In this framework a constraint set for (7) is defined by

f1(a, x) = (2x − 1)2 − 1 ≤ 0

f2(a, x) = (a − 1)(a − 4) ≤ 0

f3(a, x) = 1 − (2ax(1 − x) − 1)2 ≤ 0

f3(a, x) 6= 0.

(8)

Given this constraint set the P-satz refutation is of the form

0 = −f2
3 − p13f1f3 + p123f1f2f3, where (9)

p13(a, x) =
4

3
− 2

3
a +

1

3
a2 − xa2 + x2a2

p123(a, x) =
1

3
.

(10)

Noting thatf3 = −a(ax2 − xa + 1)f1 and
p13 = 1

3
f2 + a(x2a − ax + 1), (9) can be written as

−f2
3 − 1

3
f2f1f3 + f2

3 +
1

3
f1f2f3 = 0. (11)

B. Branch 2:−2 ≤ a ≤ 1

The proof in (9) gives us both necessary and sufficient
conditions for invariance of the region (4) using a more
general proof method that extends to higher order systems
and alternative definitions off1, f2 and f3. For example
one can manipulate (5) into

f1(a, x) = a2(2x − 1)2 − (a − 2)2 ≤ 0

f2(a, x) = (a + 2)(a − 1) ≤ 0

f3(a, x) = (a − 2)2 − a2(2ax(1 − x) − 1)2 ≤ 0

f3(a, x) 6= 0

and employ (9), exactly the same P-satz refutation with

p13(a, x) =
1

3
+

1

3
a +

1

3
a2 − xa2 + x2a2

p123(a, x) =
1

3
.

Substitutingp13 = 1

3
f2 + (a2x2 − xa2 + 1) and

f3 = −f1(a
2x2 − xa2 + 1) into (9)

−f2
3 − 1

3
f2f1f3 + f2

3 +
1

3
f1f2f3 = 0.

It is clear that the proof of proposition 3.1 could not be
directly applied for the branch−2 ≤ a ≤ 1, and that the
SOS method is far more general.

IV. PROOFCOMPLEXITY AND AUTOMATION OF PROOFS

The following discussion focuses on the branch with1 ≤
a ≤ 4, but the basic ideas generalize. In section III the
proofs were generated using the Stengle version of the P-
satz (Theorem 2.4). This theorem implies that if we search
over the entire cone, monoid and ideal of the inequalities,
non-equalities and equalities respectively, and find someF,G

and H that satisfy the identity, then the set is empty. This
is very general and in practice we choose to start with some
subset of each of these objects. For example given a system
such as (8), one tends to begin by setting the multiplicative
monoid of the non-equality equal to{f3}. Then we select
some subset ofC(f1, f2, f3) such as the first three terms of
the general expression

p0 +
∑

i

pifi +
∑

{i,j}

pijfifj +
∑

{i,j,k}

pijkfifjfk + . . . (12)

from definition 2.2. Initially the order of the SOS multipliers
(pi’s) is selected to ensure that each expression in the
refutation has the same degree (usually in each variable).
If this does not yield a certificate one can proceed in a
number of ways. These include: adding or subtracting terms
from the subset of the cone (and/or multiplicative monoid),
or increasing the order of the certificate or a combination
of both. There are also a number of heuristics that can be
used depending on what caused the refutation to fail. If for
example SOSTOOLS gives a positive answer with numerical
errors, removing the monomials in the SOS multipliers that
have ‘very small’ coefficients can often resolve the issue.
Experience using SOSTOOLS and SDP solvers allows a
user to develop additional intuition regarding how to change
things for a specific problem.

Clearly, this procedure leaves a great deal of flexibility
in forming the refutation, both a strength and a weakness.
In the present work this flexibility was exploited in order
to generate proofs that were easy to write down and check.
There was a structure that allowed one of thefi’s to be
written in terms of another, which made using a combination
of pairwise products and the triple product of the inequalities
to form the cone a natural choice. Intuition allowed us to
manipulate the form of the proof by hand, but currently this
cannot be automated.

Alternatively, one may want to come up with a proof using
only the first two terms of (12). In fact, Putinar in [17]
showed that given a compact set

K = {x | qi(x) ≥ 0, i = 1, . . . , n}
where the highest degree homogeneous parts of theqi’s have
no common zeros inRn, except at0, then any strictly positive
q0 on K belongs to the additive conep0 +

∑n

i=1
piqi.

This theorem implies that for the branch1 ≤ a ≤ 4, if
f3+p1f1+p2f2 = p0, wherepi’s are SOS polynomials then

{f1 ≤ 0, f2 ≤ 0, f3 ≤ 0, f3 6= 0} = ∅. (13)



If we apply this form we get a refutation where the order of
the SOS multipliers are shown in table I. This refutation is

Polynomial Order in x Order ina

p0 8 6
p1 6 6
p2 8 4

TABLE I

higher order than the refutation (9) and so it is easy to see
that the proof is longer. It turns out that if we instead apply
Putinar’s P-satz to the equivalent set

{

f1 ≤ 0, f2 ≤ 0, f3 ≤ 0, f2
3 > 0

}

(14)

the refutation becomes

−f2
3 + p1f1 + p2f2 + p3f3 = p0. (15)

The order of each of the SOS multipliers is shown in table
II. This refutation (15) only uses the SOS multipliers of the
first order monomials in the cone, so one may argue it is a
simpler form than (9). In fact, the Putinar P-satz may be

Polynomial Order in x Order ina

p0 8 4
p1 6 4
p2 8 2
p3 4 2

TABLE II

preferable when automating a proof system for low order
systems because it is known that a proof of this form always
exists [17], (under the assumption mentioned above). This
allows one to iteratively search for a proof by changing only
the degree of the SOS multipliers. However, the resulting
proof may not be computationally tractable due to the size
of the associated SDP.

The order of the refutations (9) and (15) are the same,
therefore if we were to define ‘proof complexity’ as simply
the order of the proof both of these proofs would have the
same ‘length’. It is clear however that the proof (9) is much
easier to verify and makes a lot more sense to a human, than
SOS multipliers that contain every monomial with degree of
x ≤ 6 and a ≤ 4 as is the case forp1 in (15). In this
case it seems that the order of the SOS multipliers may be
a better measure, but this is not true in all cases. In larger
systems all of the SOS multipliers may be a very high order
with many monomials, and then the method of comparison
becomes more challenging.

An appealing alternate means of classifying ‘proof com-
plexity’ is the computational cost of solving the correspond-
ing SDP, which is a function of the size and conditioning
of the SDP. The discussion in the sequel is based on the
SeDuMi solver (for details see [22]). The SDP size is given
by the dimension ofA in

minimize cT x

subject to AT x = b, X ∈ K (16)

where x = vec(X), and K denotes the cone of positive
semidefinite matrices. The conditioning is related to the

relative magnitude of the residual‖AT x − b‖ which is
returned by the SDP solver. For the details of transforming
an SOS problem into (16) see [15].

Searching for a valid certificate of the form (9), where the
degree ofp13 andp123 are selected so that the degree ina and
x is the same for every term, requires solving an SDP that
has size66 × 25. Similarly finding a valid certificate using
the form (15) where the SOS multipliers are again chosen to
match the degree of each term in the equation, (as in table II),
requires solving an SDP with size485× 45. Given this one
may be tempted to conclude that the refutation (9) is ‘shorter’
or has lower ‘complexity’ than (15), which certainly seems to
better agree with human perception. However there are some
ambiguities associated with these numbers (for example a
problem with a sparseA matrix is likely much easier to solve
than a dense one), and conditioning has not been taken into
account.

In fact, these numbers are merely representative for proofs
that have the same basic structure as those discussed herein
because it is hard to quantify the hand manipulations and
heuristics that went into generating (9) and (15). For example
in (9) we set−f2

3 − p13f1f3 + p123f1f2f3 = p0 and forced
the coefficients ofp0 to be small. Some of the monomials
in both p13 and p123 were also removed because their
coefficients were very small compared to the others. Making
these changes required some additional constraints which
increased the size of the SDP to283×74. This new number is
not really an accurate characterization of ‘proof size’ because
implementation of these extra constraints is user dependent
and a user with more expertise may have been able to achieve
the same goals with a lesser increase in computational cost.
Further the size that results from heuristic changes may
be an artifact of the way the SOSTOOLS software was
designed/implemented, (i.e. some heuristics may make the
software do things in a less than optimal manner). In order
to make the comparison one could make the same changes
to the proof in (15) and then try to compare SDP sizes.
However, attempting to forcep0 in (15) to be equal to
zero results in there being no refutation of the same order.
Also, manually manipulating terms is much harder and may
require a larger addition of constraints because thepi’s are
higher order. It is also possible that different heuristicscan
be applied to improve certain properties of (15) and these
may change the size of that SDP.

For all of the results shown in this paper the SDP is ill-
conditioned, which is not surprising because the question
being asked is not robust. If one were to shift the border
of the region in figure 2 outwards by any amount the
region would no longer be invariant. For the logistic map
the equation describing the invariant set is simple but in
many cases the boundary of the invariant region of a chaotic
system is fractal. For example if one were to look at the
complex version (x, a ∈ C) of the same map, (which would
effectively double the order of the problem) one would get
a parameterization of the Mandelbrot set. The problem of
identifying the boundary of the Mandelbrot set is known to
be undecidable in the sense of Turing.



V. CONCLUSIONS

In this paper we presented a case study using a method
for proving invariance in a chaotic dynamical system based
on P-satz refutations. Construction of the proofs was carried
out using Stengle’s P-satz with the goal of minimizing
the order of the SOS multipliers and the total number of
terms in the refutation. The flexibility of the proof system
was illustrated by generating two additional proofs using
Putinar’s form of P-satz. These additional proofs also allowed
us to demonstrate the critical nature of problem definition
since defining the set (13) slightly differently as in (14)
allowed us to generate a lower order proof. The order of the
SOS multipliers for the original proofs was then compared to
the order of SOS multipliers obtained using Putinar’s form
of P-satz with the same order certificate. The accompanying
discussion illustrated the current difficulty with trying to
define a minimum order proof.

SOS methods are very powerful but their use has not yet
reached an ideal level of automation. They have a lot of
flexibility which in many cases is beneficial but can also be
problematic. The advantage is that a tremendous variety of
problems can be reduced to something that SOS methods,
(particularly through SOSTOOLS) can address. This makes
it the most promising research direction to pursue for a
remarkably broad class of problems in controls, dynamical
systems, and many other areas. The problem arises because
there are many ways to formulate the constraint set for a
given problem, and many ways to structure the refutation and
we do not yet have a means to determine optimal choices.
Further, once a certificate has been obtained, a systematic
method of comparing or classifying proof complexity even
for proofs of the same order is not well understood.

VI. OPEN PROBLEMS

In this paper we focused on proving particular properties
of a dynamical system after the problem had been reduced
to the form (1). Yet as was shown in section IV the ability of
SOSTOOLS to find a low order refutation is closely tied to
how the problem is formulated. Another example of this issue
was in section III where the choice to express the constraint
0 ≤ x ≤ 1 as (2x − 1)2 − 1 was not arbitrary, in fact the
problem formulation was iterated along with the search for
a refutation. This iteration puts a human into the loop and a
systematic means of finding an optimal problem formulation
is still lacking. In this case the handcrafted method is fine
because the problem is low order and has few constraints but
this aspect of the method does not always scale well.

Even with a systematic method to formulate problems as
semialgebraic sets further research is needed in the imple-
mentation of the so called ‘SOS branch and prove’ method.
In the present work the invariant set was the union of two
basic semialgebraic sets. In general, especially in problems
of higher order this will not be the case and deciding when to
branch and finding appropriate basic semialgebraic subsets,
so far, is problem dependent and not general.

Some parts of constructing the proof (finding a refutation)
require a human in the loop, even when using SOSTOOLS.

If one does not obtain a proof using the initial subset
of the cone, monoid or ideal the path to fix the problem
is not unique. Approaches such as manually checking the
magnitude of each coefficient of each SOS multipliers and
then eliminating the ones that are small compared to others
can be automated more easily than intuition. Intuition helps
a user choose the terms to include and to manipulate the
degree of the terms in the refutation, however it relies on
clever tricks that do not scale well.
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