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Abstract—We present a case study in proving invariance infeasibility of (1)), using existing ideas from controletbry
for a chaotic dynamical system, the logistic map, based on or their extensions. The resulting algebraic questionris, i
Positivstellensatz refutations, with the aim of studying thed general, NP hard [8], but SOS relaxations and the Positivste

problems associated with developing a completely automate | tz (P-sat id ful strat f .
proof system. We derive the refutation using two different fornms ensatz (P-satz) provide a powerful strategy for overcgmin

of the Positivstellensatz and compare the results to illustrate the this apparent intractability. The Positivstellensatz][#)a

challenges in defining and classifying the ‘complexity’ of such central theorem in real algebraic geometry which basically
a proof. The results show the flexibility of the SOS framework  states that: there is no solution of (1), if and only if there
in converting a dynamics problem into a semialgebraic one as exists a polynomial of a particular form (i.e., satisfying a

well as in choosing the form of the proof. Yet it is this very . L . L
flexibility that complicates the process of automating the proof particular algebraic identity). Such a polynomial is reger

system and classifying proof ‘complexity.” to as a P-satz refutation, certificate, or proof.
One of the main advantages of the P-satz is that because
|. INTRODUCTION it is necessary and sufficient, searching for increasingly
Determining the existence of a solution for a system ofigher degree refutations generates a nested hierarchy of
polynomial inequalities, non-equalities and equations polynomial-time computable relaxations (SDPs) which ex-
hausts co-NP (i.e. the proof space). The Matlab toolbox
filx) = 0, i=1,...,s SOSTOOLS, developed by Prajna, Papachristodoulou and
gj(x) # 0, j=1,...t (1) Parrilo [15] [16], automates the process of converting a8 SO
he(x) = 0, k=1,...,r problem to an SDP, which can then be solved by a variety

of third party software packages. SOSTOOLS then converts
wherex € R™ has emerged as an important field of studyhe solution of the SDP into the solution of the original
in control theory and optimization. This problem has longlgebraic problem. Typically when using SOSTOOLS we
been of interest in the field of real algebraic geometrgmploy Stengle's P-satz [20], less general versions from
where they term the set of’s that satisfies (1), a (basic) Schmidgen [18], Putinar [17], and Handelman [6] can also
semialgebraic set. In fact, there is an extensive body of-corbe used. These forms require more restrictive assumptions,
putational algebra literature [1] that deals with algamth  but provide simpler forms for the structure of refutatiore-R
tools for manipulating semialgebraic sets. However, thedated work by Lasserre [7], based on Putinar’s P-satz, fesus
tools were not widely studied within the control communityon the dual of the SOS problem. The dual of checking the
until relatively recently, in part because of computationanon-negativity of a polynomial over a semialgebraic set is
intractability. This obstacle was reduced when Parrilo],[12 finding a sequence ahomentshat represent a probability
following the pioneering work of Shor [19], introduced measure with support in that set.

a computational framework based on using the existenceThis paper has the two main goals of illustrating the
of a Sum-of-Squares (SOS) decomposition as a sufficieapplication of P-satz methods to solving problems in cdntro
condition for non-negativity of a polynomial. Checkingand dynamical systems, and presenting the issues assbciate
whether a polynomial has an SOS decomposition can be dowih further automating SOS proof systems. Analysis of
via semidefinite programming (SDP). This SOS relaxatiodynamical systems using SOS methods can be broken into
provides the critical link between the well studied toolsnfr three steps. The first is reducing the problem, whether it
real algebraic geometry and efficient computation. be feasibility, stability, invariance, safety, reachdiletc.

This framework has been applied to a wide range db one involving emptiness of basic semialgebraic sets. The
problems such as the computation of Lyapunov functionsecond is attempting to prove emptiness using a P-satz
for nonlinear dynamical systems [11], the computation ofefutation. Finally, one must interpret the output of theqir
tight upper bounds for the structured singular valugl6] method. Problem formulation is currently largely handieaf
in control theory, relaxations for non-convex optimizatio whereas generating the proof can be automated (albeit with
problems [4] and time delay systems [10]. Related techsiqusome, often substantial, user expertise required). The ste
have also been applied to model validation, safety and readhat involves interpretation of the proof output, however,
ability analysis as introduced in [14]. All of these probkem has been the least discussed in the literature. Eventually
begin as questions about a dynamical system, which aome would like to automate the whole process but in the
subsequently reduced to algebraic problems (such as grovipresent work we focus on issues surrounding the complete



automation of the last two steps. complexity if the order of the refutation is the same.

The particular application of the P-satz that we focus on is The logistic map is used as a case study to demonstrate the
proving robust invariance of sets for the logistic map usingroof method because it is a familiar system that is known to
SOS methods. The SOS framework also allows us to mirr@xhibit interesting behavior. It also allows us to discuse h
methods based on considering fixed points and/or periodibe selection of the form of the P-satz can change the ‘proof
orbits and studying the associated attracting sets butvaere order’ and to illustrate some of the ambiguities associated
would like to analyze a larger invariant set. Traditiondtly ~with determining a minimum order proof. Further, it is a
a quadratic recurrence such as the logistic map there are twed dimensional system so one can interpret (visualize) the
systematic methods for proving invariance, in part becausesults graphically. The real value of the tools, of cousse i
the system is bifurcating to chaos. Although much is knowfor cases when visualization is difficult due to the system
about the behavior of the logistic map [3] [13], the bulk ofdimension. However, to illustrate the ideas and concepts it
this knowledge was gained through simulation or handatlaftés useful to start with these simple case studies.
proofs which will not scale to higher order systems. Our The paper is organized as follows; in section Il we provide
aim is to not only make definitive statements about a chaot&gome preliminary definitions and the P-satz theorem. A brief
system, which in this example are not particularly novet, budescription of the logistic map follows. Section Il presen
to do so with methods that potentially scale to higher ordghe invariance proofs and section IV compares the proofs

systems. obtained in Ill to proofs obtained using other forms of the
The focus in our discussion of automating proofs id>-satz. Finally conclusions and open problems are disdusse
interpreting the output of the proof system. As mentioned Il. PROBLEM DESCRIPTION

above the framework developed by Parrilo et. al. aIIowi\ Basic Definitions and Theorems
one to fix the degree of the polynomials in the P-satz" ) o
refutation and then check to see that the proper algebraic 1 he following three definitions are from [2].

identity is satisfied. However there is no systematic method Definition 2.1: Given polynomials{g¢,...,¢:} € R[x]
for determining the minimum degree polynomials that willthe Multiplicative Monoid generated by the g;’s,
generate a certificate. It is often the case that once catéic M(gq,...,¢9:), is the set of all finite products of the
are obtained it is possible to compare proofs and decidg’s including 1.

which is ‘shortest’ in terms of some notion of ‘length, whic  pafinition 2.2: Given polynomials{fi, ..., f,} € R[x]|

determines the ‘proof complgxity.’ Unfortunately, all dfelse o Algebraic Conegenerated by thg;’s is the set
qguoted terms are currently ‘in the eye of the beholder’ and
there are no rigorous definitions or methods of ordering _ _ e
proof complexity a priori in a way that would allow a Clfrenf) = {f f= /\O+Zi:)\’Fl}
systematic search for short proofs. Notions such as ‘order, , .
of the certificate’ and size of the SDP have been proposéN erefi € M(fi,..., f;) andA;'s are SOS polynomials.
but both leave some ambiguity as will be discussed in the Definition 2.3: Given polynomials{fy, ..., h.} € R[x]
sequel. Thus users seem inevitably to be left with some 4B€ Ideal generated by thé,’s is the set
hoc choices when searching for short proofs.

The importance of making precise the notion of ‘proof I(hy, ... ) = {h h = Zﬂkhk}
complexity’ is motivated by the connections it appears to k
have with important features of the system being analyzed. Whereux € R[x].
Of particular interest is the potential to generalize theif@r  The solution set of (1) is the basic semialgebraic set
concept of condition number through the idea that high proof . 4 _
complexity implies problem fragility. There have been com- Bl fix) 20, 9500) £0. hu(x) = 0} )
plexity bounds established for the Scimigen and Putinar fori=1,....s;j=1,....¢;andk =1,...,7. We call (2)
versions of the P-satz for basic closed semialgebraic sdf¢ constraint set and emptiness of this set indicates hat (
consisting solely of inequalities in [21] and [9] respeetiy inconsistent. Determining emptiness of a basic semiatgebr
but these require a number of assumptions and are sim@§tis addressed in the following theorem, due to Stengle [20
bounds on the maximum degree of the polynomials. Other
related ideas are discussed in [5]. Here they introduce aTheorem2.4 (Positivstellensatz [12]):
P-satz calculus_that relies_ on predi(_:ate calculus (_inf:eer_en (f:(x) >0, g;j(x)#0, hu(x)=0}
rules) systematically applied to derive the refutation in a ) i
stepwise manner. In this case they defined ‘proof complexity i=Losg=L. k=17
based on the intermediate order of the polynomials and infeasible inR™ if and only if 3 F, G, H such that
the_number of steps. They do not address any method to H+F=_G2
distinguish between two proofs with the same number of Fec
steps and intermediate polynomials of the same order. None €C(f1,--0 15
of the prior work deals with the problem of evaluating proof G € M(g1,---,9t)
complexity for a general system or distinguishing levels of HeI(hy,... h)



Theorem 2.4 holds for arbitrary systems of polynomiallhe proof method discussed herein allows one to search for
equations, non-equalities and inequalities over the rédtls refutations that guarantee emptiness of basic semialigebra
is remarkable in that it allows one to reduce a geometrisets. In general, the union of basic semialgebraic sets does
problem into an algebraic one without any assumptions amot necessarily yield a basic semialgebraic set, so in some
the polynomials. The result is both necessary and sufficienases we will not be able to do a proof search over the
meaning it is always possible to find such a relationshipunion directly. However, this is not a limitation of the meth

The main method of generating the infeasibility certifisatebecause any semialgebraic set can be written as the union
follows from the fact that by construction the expressiomf basic semialgebraic sets [2]. This guarantees that we can
H + F is nonnegative and as such it being identically equallways break a given semialgebraic set into subsets and sinc
to —G? provides a contradiction. (For further details see [2])the union of two empty sets is clearly empty one can make
a determination about the entire region of interest by using
separate proofs for each subset. This approach is remitiisce
of branch-and-bound methods used in global optimization,
Definition 2.6: The proof orderis the degree of the high- where the feasible set is divided iteratively by branching o

Definition 2.5: The subset of the coni the set ofF;’s
from definition 2.2 that are used in the P-satz refutation.

est order term in the P-satz refutation. the decision variables. Although we will not pursue it insthi
Definition 2.7: The SOS multiplier ordeiis the order of Paper, a similar approach can be used for proving a set to be
each of the\;’s in definition 2.2. empty, we refer to this approach as ‘SOS branch-and-prove’.

In this example we begin with two branches;
B. System Description

2 .
The logistic map is the quadratic recurrence equation {(2z-1)"-1<0(a~1)(a—4) <0} (4

{a®*(22 —1)2 = (a—2)2<0;(a+2)(a—1) <0} (5)

Tp1 = azp(l — zp) = Q(w) 3)
based on the geometry of the region of interest, which is

wherea, z,, € R andk € Z*™ and each value of the parameter 9 y 9
a corresponds to a different dynamical system. It is of irdere 0<z<1 1<a<4
in both the physics and mathematics communities because it ] 1 e 1 0<a<l
is a simple iterative equation that is known to exhibit ci@ot Ta=t=y == (6)
behawo_r [3]. The_most common use of _(3) is as model of 1 <r<1- 1 9<a<0
population dynamics [13] in Ecology but it can also be used a a

to model other phenomena. In figure 1 the points indicate thﬁgure 2 outlines the region (6) in heavy black lines.
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Fig. 1. Logistic Map Attractors-2 < a < 4 Fig. 2. Invariant Set: Logistic Map

attracting set or steady state value of (3) for each paramete
a. The map has two fixed points; = 0 is the attracting A. Branch 2:1 <a < 4

fixed point for—1 < a < 1. At a = 1 there is a transcritical

bifurcation andr = 1 — 1 becomes the attracting fixed point . For the region described by the set (4) one can verify

until @ = 3 when theﬁe is a period doubling bifurcation.mvanance through the following proposition;

There is a similar critical point and bifurcation at= —1. Proposition3.1: Givena > 0 the region0 < z < 1 is
The two period attracting sets continue until there is agoth invariant if and only if0 < a < 4.

set of period doubling bifurcations at+ /6 and1 — /6 Proof:

respectively. The system then continues to undergo periodSufficiencyGivena > 0 and{z | 0 < = < 1} is invariant,
doubling bifurcations to chaos, as shown in the right and = 0<az(l—2)<1 = 0<z(l—z) <L

left portions of figure 1. Note z(1 — z) is a parabola with a max at= 3
1 1
I1l. I NVARIANCE PROOFS S 1<tooa<a
We focus on invariance of the largest closed invariant set. 47 a

Note that the complement of that set is also invariant as NecessityGiven0 < a <4 and0 < z < 1.

all points in the complement eventually become unbounded. = 0<z(1-2)<1 = 0<az(l-2z)<a; <1 =



This proof is hard to automate because it relies on obsdt-is clear that the proof of proposition 3.1 could not be
vations about the system and heuristics. It also requirebrectly applied for the branch-2 < a < 1, and that the
knowledge of regions outside the set of interest. Such 80S method is far more general.
proof method is system dependent and lacks the flexibility t?V PROOF COMPLEXITY AND AUTOMATION OF PROOES
analyze different aspects of the system with the same steps.’ i ] ] ]

For a more general proof method one can appeal to the The following discussion focuses on the branch with
machinery provided in theorem 2.4. Here proving invariancé < 4, but the basic ideas generalize. In section Il the

is equivalent to proving proofs were generated using the Stengle version of the P-
satz (Theorem 2.4). This theorem implies that if we search
2z-1)*<1 over the entire cone, monoid and ideal of the inequalities,
(a—1D(a—4)<0;, =0 (7) non-equalities and equalities respectively, and find s
(2az(1—z)—1)2 > 1 and H that satisfy the identity, then the set is empty. This

is very general and in practice we choose to start with some
Condition (7) means that for alt such that(2z — 1) <1  sypset of each of these objects. For example given a system
future points in the orbit of the logistic ma@)(z), will never  gych as (8), one tends to begin by setting the multiplicative
intersect the region outside ¢2 — 1)* < 1, (i.e. all future  monoid of the non-equality equal tbfs}. Then we select

points remain inside). some subset o€(f1, f2, f3) such as the first three terms of
In this framework a constraint set for (7) is defined by the genera| expression
_ 12 _
fila,z)=(22-1)"-1<0 po+Zpifi+ Zl%‘jfifj"’ Z pijkfifife+... (12)
fola,z) =(a—1)(a—4) <0 ®) (i} {irj.k}
fa(a,2) =1 — (2az(l —x) —1)* <0 from definition 2.2. Initially the order of the SOS multiplge
fa(a,x) #0. (p;’s) is selected to ensure that each expression in the

refutation has the same degree (usually in each variable).
If this does not yield a certificate one can proceed in a
number of ways. These include: adding or subtracting terms

Given this constraint set the P-satz refutation is of thenfor

0=—f3 = pisfifs+psfifofs, where ) from the subset of the cone (and/or multiplicative monoid),

o 2 1o o 59 or increasing the order of the certificate or a combination
pig(a,x) = 3 30 tge mredra (10) Of both. There are also a number of heuristics that can be
proa(a, z) = }' used depending on what caused the refutation to fail. If for
3 example SOSTOOLS gives a positive answer with numerical

Noting that f3 = —a(az? — za + 1) f; and errors, removing the monomials in the SOS multipliers that
pr3 = %fz + a(z?a — ax + 1), (9) can be written as have fvery smgll’ coefficients can often resolve the issue.
1 1 Experience using SOSTOOLS and SDP solvers allows a

—f2— —fofifs + fi4+ = fifafzs =0. (11) user to develop additional intuition regarding how to cheng

3 3 things for a specific problem.
B. Branch 2:-2<a <1 Clearly, this procedure leaves a great deal of flexibility

The proof in (9) gives us both necessary and sufficierip forming the refutation, both a strength and a weakness.
conditions for invariance of the region (4) using a mordn the present work this flexibility was exploited in order
general proof method that extends to higher order systeri® generate proofs that were easy to write down and check.
and alternative definitions of;, f» and f;. For example There was a structure that allowed one of th&s to be
one can manipulate (5) into written in terms of another, which made using a combination
of pairwise products and the triple product of the ineqiesit

fila,z) = a*(2e—1)* — (@ -2)* <0 to form the cone a natural choice. Intuition allowed us to
fola,z) = (a+2)(a—1) <0 manipulate the form of the proof by hand, but currently this
fa(a,z) = (a —2)* — a*(2az(l —z) —1)2 <0 cannot be automated.

fs(a,z) £0 Alternatively, one may want to come up with a proof using

) ) only the first two terms of (12). In fact, Putinar in [17]
and employ (9), exactly the same P-satz refutation with  ghowed that given a compact set

1 1 1 .
pi3(a,x) = 3 + ga—i— gaz — za® + 2%a® K={x|¢(x)>0,i=1,...,n}
(a,2) = 1 where the highest degree homogeneous parts af;théave
Pr2sl@,®) = 3- no common zeros iR™, except ab, then any strictly positive

go on K belongs to the additive cone + >, piq;.
This theorem implies that for the brandh< a < 4, if
f3+p1f1+p2fe = po, Wwherep;’s are SOS polynomials then

1 1
—f3i - gh2fifs + f5+ 3f1f2f3 =0. {A1<0,£,<0, f3<0, f3#0}=0. (13)

Substitutingp,3 = %fg + (a?2? —za® + 1) and
f3 = —fi(a®2® — xa® + 1) into (9)



If we apply this form we get a refutation where the order ofelative magnitude of the residudlA”= — b| which is
the SOS multipliers are shown in table I. This refutation iseturned by the SDP solver. For the details of transforming

an SOS problem into (16) see [15].

Polynomial | Order in x | Order ina Searching for a valid certificate of the form (9), where the
g (1) 2 2 degree of13 andp,,3 are selected so that the degree iand
Pa 8 4 x is the same for every term, requires solving an SDP that
TABLE | has size66 x 25. Similarly finding a valid certificate using

the form (15) where the SOS multipliers are again chosen to
higher order than the refutation (9) and so it is easy to sefatch the degree of each term in the equation, (as in table I1)
that the proof is longer. It turns out that if we instead applyequires solving an SDP with siz&85 x 45. Given this one
Putinar's P-satz to the equivalent set may be tempted to conclude that the refutation (9) is ‘sinorte
or has lower ‘complexity’ than (15), which certainly seeros t

g 2
{fl <0./250 f3<0, f5> 0} (14) better agree with human perception. However there are some
the refutation becomes ambiguities associated with these numbers (for example a
) problem with a sparsd matrix is likely much easier to solve
—f3 +pufi +p2f2 +psfs = po. (15)  than a dense one), and conditioning has not been taken into

The order of each of the SOS multipliers is shown in tabl&ccount. _
II. This refutation (15) only uses the SOS multipliers of the In fact, these numbers are merely representative for proofs
first order monomials in the cone, so one may argue it is that have the same basic structure as those discussed herein

simpler form than (9). In fact, the Putinar P-satz may b&ecause it is hard to quantify the hand manipulations and
heuristics that went into generating (9) and (15). For examp

Polynomial ]| Order in x | Order ina in (9) we set—f2 — p13f1f3 + p12s3f1f2f3 = po and forced
Po 8 4 the coefficients ofpy to be small. Some of the monomials
Z; g ‘2‘ in both p;3 and pi23 were also removed because their
3 Z > coefficients were very small compared to the others. Making
TABLE Il these changes required some additional constraints which

increased the size of the SDP283 x 74. This new number is
preferable when automating a proof system for low ordemot really an accurate characterization of ‘proof size'saese
systems because it is known that a proof of this form alwayisnplementation of these extra constraints is user depénden
exists [17], (under the assumption mentioned above). Thand a user with more expertise may have been able to achieve
allows one to iteratively search for a proof by changing onlyhe same goals with a lesser increase in computational cost.
the degree of the SOS multipliers. However, the resultingurther the size that results from heuristic changes may
proof may not be computationally tractable due to the sizee an artifact of the way the SOSTOOLS software was
of the associated SDP. designed/implemented, (i.e. some heuristics may make the
The order of the refutations (9) and (15) are the samspftware do things in a less than optimal manner). In order
therefore if we were to define ‘proof complexity’ as simplyto make the comparison one could make the same changes
the order of the proof both of these proofs would have thto the proof in (15) and then try to compare SDP sizes.
same ‘length’. It is clear however that the proof (9) is muciHowever, attempting to forcey, in (15) to be equal to
easier to verify and makes a lot more sense to a human, thaero results in there being no refutation of the same order.
SOS multipliers that contain every monomial with degree ofAlso, manually manipulating terms is much harder and may
x < 6 anda < 4 as is the case fop; in (15). In this require a larger addition of constraints becausetfe are
case it seems that the order of the SOS multipliers may Wegher order. It is also possible that different heuristies
a better measure, but this is not true in all cases. In largee applied to improve certain properties of (15) and these
systems all of the SOS multipliers may be a very high ordemay change the size of that SDP.
with many monomials, and then the method of comparison For all of the results shown in this paper the SDP is ill-
becomes more challenging. conditioned, which is not surprising because the question
An appealing alternate means of classifying ‘proof combeing asked is not robust. If one were to shift the border
plexity’ is the computational cost of solving the corresgon of the region in figure 2 outwards by any amount the
ing SDP, which is a function of the size and conditioningeegion would no longer be invariant. For the logistic map
of the SDP. The discussion in the sequel is based on tliee equation describing the invariant set is simple but in
SeDuMi solver (for details see [22]). The SDP size is givemany cases the boundary of the invariant region of a chaotic
by the dimension of4 in system is fractal. For example if one were to look at the
complex version#, a € C) of the same map, (which would
(16) effectively double the order of the problem) one would get
a parameterization of the Mandelbrot set. The problem of
wherez = ved X), and K denotes the cone of positive identifying the boundary of the Mandelbrot set is known to
semidefinite matrices. The conditioning is related to thee undecidable in the sense of Turing.

minimize Tz
subjectto ATz =b, X ek



V. CONCLUSIONS If one does not obtain a proof using the initial subset

for proving invariance in a chaotic dynamical system based Not unique. Approaches such as manually checking the
on P-satz refutations. Construction of the proofs was earri Magnitude of each coefficient of each SOS multipliers and
terms in the refutation. The flexibility of the proof system@ USer choose the terms to include and to manipulate the
Putinar’s form of P-satz. These additional proofs alsoneio ~ Clever tricks that do not scale well.
us to ((jje?jqnstr?hte thet ((:;lg)call_nﬁttluredpﬁf prot)llem d_eflrglz)n VIl. ACKNOWLEDGMENTS
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Some parts of constructing the proof (finding a refutation)

require a human in the loop, even when using SOSTOOLS.



