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I. INTRODUCTION

Notions such as order, complexity, or dimensionality can

often be expressed by the rank of an appropriate matrix.

For example, a low-rank matrix could correspond to a low-

order realization of a linear system (see, e.g., [1]), to a low-

order controller for a plant (see, e.g., [2]), to a low-degree

statistical model for a random process (see, e.g., [3]), or to a

low-dimensional embedding of data in Euclidean space (see,

e.g., [4]). If the set of feasible models or designs is affine in

the matrix variable, choosing the simplest model can be cast

as an affine rank minimization problem,

minimize rank(X)
subject to A(X) = b,

(1)

where X ∈ R
m×n is the decision variable, and the linear

map A : R
m×n → R

p and the vector b ∈ R
p are

given. In certain instances with very special structure, the

rank minimization problem can be solved by using the

singular value decomposition, or can be exactly reduced to

the solution of linear systems [5], [6]. For the general rank

minimization problem, a variety of heuristic algorithms based

on local optimization, including alternating projections [7]

and alternating LMIs [8], have been proposed. However, in

general, problem (1) is a challenging nonconvex optimization

problem for which all known finite time algorithms have at

least doubly exponential running times in both theory and

practice.

A recent heuristic introduced in [9] minimizes the nuclear

norm over the affine subset. For an m × n matrix X , the

nuclear norm is equal to the sum of the singular values of

X

‖X‖∗ :=
r
∑

i=1

σi(X) , (2)

where σi(X) denotes the ith largest singular value of X
(i.e., square root of the ith largest eigenvalue of X ′X). The

nuclear norm (also known as the Schatten 1-norm, the Ky

Fan r-norm, and the trace class norm) is a convex function,

can be optimized efficiently, and is the best convex approxi-

mation of the rank function over the unit ball of matrices with

norm less than one. When the matrix variable is symmetric
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and positive semidefinite, this heuristic is equivalent to

the trace heuristic often used by the control community

(see, e.g., [5], [10]). The nuclear norm heuristic has been

observed to produce very low-rank solutions in practice, but a

theoretical characterization of when it produces the minimum

rank solution has not been previously available. This paper

provides the first such mathematical characterization.

We delineate a large set of instances where the nuclear

norm heuristic solves (1) by building upon the extensive

literature on a closely related optimization problem—finding

the sparsest vector in an affine subspace. This problem is

commonly referred to as cardinality minimization, since we

seek the vector whose support has the smallest cardinality,

and is known to be NP-hard [11]. When the matrix variable is

constrained to be diagonal, affine rank minimization directly

reduces to affine cardinality minimization problem. More-

over, for diagonal matrices, the sum of the singular values is

equal to the sum of the absolute values (i.e., the ℓ1 norm) of

the diagonal elements. And since singular values are all pos-

itive, the nuclear norm is equal to the ℓ1 norm of the vector

of singular values. Minimization of the ℓ1 norm is a well-

known heuristic for the cardinality minimization problem,

and stunning results pioneered by Candès and Tao [12] and

Donoho [13] have characterized a vast set of instances for

which the ℓ1 heuristic can be a priori guaranteed to yield the

optimal solution. These techniques provide the foundations

of the recently developed compressed sensing or compressive

sampling frameworks for measurement, coding, and signal

estimation. As has been shown by a number of research

groups (e.g., [14], [15], [16], [17] to name a few), the ℓ1
heuristic for cardinality minimization provably recovers the

sparsest solution whenever the sensing matrix has certain

“basis incoherence” properties, and in particular, when it is

randomly chosen according to certain specific ensembles.

The fact that the ℓ1 heuristic is a special case of the

nuclear norm heuristic suggests that these results from the

compressed sensing literature might be extended to provide

guarantees about the nuclear norm heuristic for the more

general rank minimization problem. In this work, we show

that this is indeed the case, and the parallels are surprisingly

strong. Following the program laid out in the work of

Candès and Tao, the main contribution of this paper is

the development of a restricted isometry property (RIP),

under which the nuclear norm heuristic can be guaranteed to

produce the minimum-rank solution. Furthermore, as in the

case for the ℓ1 heuristic, we discuss several specific examples
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of matrix ensembles for which RIP holds with overwhelming

probability, provided the codimension of the subspace is

Ω(r(m + n) log mn), where m,n are the dimensions of

the matrix, and r is its rank. Finally, we demonstrate that

in practice nuclear-norm minimization recovers the lowest

rank solutions of affine sets with even fewer constraints than

those guaranteed by our mathematical analysis. Our results

considerably extend the compressed sensing machinery in

a so far undeveloped direction by allowing a much more

general notion of parsimonious models that rely on low-rank

assumptions instead of cardinality restrictions.

II. RESTRICTED ISOMETRY AND RECOVERY OF

LOW-RANK MATRICES

The three vector norms that play significant roles in the

compressed sensing framework are the ℓ1, ℓ2, and ℓ∞ norms.

When these norms are applied to the singular values of a

matrix, they result in unitarily invariant matrix norms. The

ℓ1 norm of the singular values is the nuclear norm, the ℓ2
norm of the singular values is the Frobenius norm

‖X‖F :=
√

Tr(X ′X) =

(

r
∑

i=1

σ2
i

)
1

2

,

and the ℓ∞ norm of the singular values is the operator norm

‖X‖ := σ1(X).

Most of our results can be derived by the following program.

Beginning with a result from compressed sensing, we replace

the vector norms with their associated matrix norms, and

then extend the proofs in the vector case to the more general

matrix setting. This section illustrates just how fruitful this

program can be.

Let A : R
m×n → R

p be a linear map and let X0 be a

matrix of rank r. Set b := A(X0), and define the convex

optimization problem

X∗ := arg min
X

‖X‖∗ s.t. A(X) = b. (3)

In this section, we will characterize specific cases when we

can a priori guarantee that X∗ = X0. The key conditions

will be determined by the values of a sequence of parameters

δr that quantify the behavior of the linear map A when

restricted to the subvariety of matrices of rank r. The follow-

ing definition is the natural generalization of the Restricted

Isometry Property from vectors to matrices.

Definition 2.1: Let A : R
m×n → R

p be a linear map.

Without loss of generality, assume m ≤ n. For every integer

r with 1 ≤ r ≤ m, define the r-restricted isometry constant

to be the smallest number δr(A) such that

(1 − δr(A))‖X‖F ≤ ‖A(X)‖ ≤ (1 + δr(A))‖X‖F (4)

holds for all matrices X of rank at most r.

Note that by definition, δr(A) ≤ δr′(A) for r ≤ r′.
The Restricted Isometry Property for sparse vectors was

developed by Candès and Tao in [14], and requires (4) to

hold with the Euclidean norm replacing the Frobenius norm

and rank being replaced by cardinality. Since for diagonal

matrices, the Frobenius norm is equal to the Euclidean

norm of the diagonal, this definition reduces to the original

Restricted Isometry Property of [14] in the diagonal case.1

Unlike the case of “standard” compressed sensing, our

RIP condition for low-rank matrices cannot be interpreted

as guaranteeing all sub-matrices of the linear transform A of

a certain size are well conditioned. Indeed, the set of matrices

X for which (4) must hold is not a finite union of subspaces,

but rather a certain “generalized Stiefel manifold,” which is

also an algebraic variety (in fact, it is the rth-secant variety

of the variety of rank-one matrices). Surprisingly, we are

still able to derive analogous recovery results for low-rank

solutions of equations when A obeys this RIP condition.

Furthermore, we will see in Section III that many ensembles

of random matrices obey the Restricted Isometry Property

with small δr with high probability for reasonable values of

m,n, and p.

The following two recovery theorems will characterize the

power of the restricted isometry constants. Both theorems are

more or less immediate generalizations from the sparse case

to the low-rank case and use only minimal properties of the

rank of matrices and the nuclear norm. The first theorem

generalizes Lemma 1.3 in [14] to low-rank recovery.

Theorem 2.2: Suppose that δ2r < 1 for some integer r ≥
1. Then X0 is the only matrix of rank at most r satisfying

A(X) = b.

The proof of this theorem is an immediate consequence of

our definition of the constant δr. Assume, on the contrary,

that there exists a rank r matrix X satisfying A(X) = b
and X 6= X0. Then Z := X0 − X is a nonzero matrix of

rank at most 2r, and A(Z) = 0. But then we would have

0 = ‖A(Z)‖ ≥ (1−δ2r)‖Z‖F > 0 which is a contradiction.

This is an identical argument to that given by Candès and

Tao and no adjustment is necessary in the transition from

sparse vectors to low-rank matrices. The key property used

is the sub-additivity of the rank: rank(A+B) ≤ rank(A)+
rank(B). Using a somewhat more complicated argument, we

can formulate a weak ℓ1-type recovery theorem whose proof

mimics the approach in [15], but for which a few details need

to be adjusted when switching from vectors to matrices.

Theorem 2.3: Suppose that r ≥ 1 is such that δ5r < 1/10.

Then X∗ = X0.

We will need two technical lemmas, both of which are

proven using elementary linear algebra in the appendix. The

first shows for any two matrices A and B, we can decompose

B as the sum of two matrices B1 and B2 such that rank(B1)
is not too large and such that B2 and A have orthogonal row

and column spaces. In this case, the second lemma shows

that ‖A + B2‖∗ = ‖A‖∗ + ‖B2‖∗. This will be the key

decomposition for proving Theorem 2.3.

1In [14], the authors define the restricted isometry properties with squared
norms. We note here that the analysis is identical modulo some algebraic
rescaling of constants. We choose to drop the squares as it greatly simplifies
the analysis.
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Lemma 2.4: Let A and B be matrices of the same dimen-

sions. Then there exist matrices B1 and B2 such that

1) B = B1 + B2

2) rank(B1) ≤ 2 rank(A)
3) AB′

2 = 0 and A′B2 = 0
4) 〈B1, B2〉 = 0
Lemma 2.5: Let A and B be matrices of the same di-

mensions. If AB′ = 0 and A′B = 0 then ‖A + B‖∗ =
‖A‖∗ + ‖B‖∗.

We now proceed to a proof of Theorem 2.3.

Proof: [of Theorem 2.3] By optimality of X∗, we have

‖X0‖∗ ≥ ‖X∗‖∗. Let R := X∗ −X0. Applying Lemma 2.4

to the matrices X0 and R, there exist matrices R0 and Rc

such that R = R0 + Rc, rank(R0) ≤ 2 rank(X0), and

X0R
′
c = 0 and X ′

0Rc = 0. Then,

‖X0‖∗ ≥ ‖X0 + R‖∗
≥ ‖X0 + Rc‖∗ − ‖R0‖∗
= ‖X0‖∗ + ‖Rc‖∗ − ‖R0‖∗,

(5)

where the middle assertion follows from the triangle inequal-

ity and the last one from Lemma 2.5. Rearranging terms, we

can conclude that

‖R0‖∗ ≥ ‖Rc‖∗. (6)

Next we partition Rc into a sum of matrices R1, R2, . . .,
each of rank at most 3r. Let Rc = U diag(σ)V ′ be the

singular value decomposition of Rc. For each i ≥ 1 define

the index set Ii = {3r(i − 1) + 1, . . . , 3ri}, and let Ri :=
UIi

diag(σIi
)V ′

Ii
(notice that 〈Ri, Rj〉 = 0 if i 6= j). By

construction, we have

σk ≤ 1

3r

∑

j∈Ii

σj ∀ k ∈ Ii+1, (7)

which implies ‖Ri+1‖2
F ≤ 1

3r
‖Ri‖2

∗. We can then compute

the following bound
∑

j≥2

‖Rj‖F ≤ 1√
3r

∑

j≥1

‖Rj‖∗

=
1√
3r

‖Rc‖∗ ≤ 1√
3r

‖R0‖∗

≤
√

2r√
3r

‖R0‖F ,

(8)

where the last inequality follows because rank(R0) ≤ 2r
and ‖X‖∗ ≤

√
2r‖X‖F for all matrices of rank at most 2r.

Finally, note that the rank of R0 + R1 is at most 5r, so we

may put this all together as

‖A(R)‖ ≥ ‖A(R0 + R1)‖ −
∑

j≥2

‖A(Rj)‖

≥ (1 − δ5r) ‖R0 + R1‖F − (1 + δ3r)
∑

j≥2

‖Rj‖F

≥
(

(1 − δ5r) −
√

2

3
(1 + δ3r)

)

‖R0‖F

≥
(

(1 − δ5r) − 9

11
(1 + δ3r)

)

‖R0‖F .
(9)

By assumption A(R) = A(X∗ − X0) = 0, so if the factor

on the right-hand side is strictly positive, R0 = 0, which

further implies Rc = 0 by (6), and thus X∗ = X0. Simple

algebra reveals that the right-hand side is positive when

9δ3r + 11δ5r < 2. Since δ3r ≤ δ5r, we immediately have

that X∗ = X0 if δ5r < 1/10.

The rational number (9/11) in the proof of the theorem is

chosen for notational simplicity and is clearly not optimal. A

slightly tighter bound can be achieved working directly with

the second to last line in (9). The most important point is that

our recovery condition on δ5r is an absolute constant, inde-

pendent of m, n, r, and p. We shall discuss in the next section

that linear transformations sampled from several families

of random matrices with appropriately chosen dimensions

have δr small with overwhelming probability. The analysis

is again similar to the compressive sampling literature, but

several details specific to the rank recovery problem need to

be employed.

III. NEARLY ISOMETRIC FAMILIES

The following definition characterizes a class of probabil-

ity distributions obeying certain tail bounds. Our main result

is that when we sample linear maps from such distributions,

they will obey the Restricted Isometry Property (4) as p, m,

and n tend to infinity at appropriate rates.

Definition 3.1: Let A be a random variable that takes

values in linear maps from R
m×n to R

p. We say that A
is nearly isometrically distributed if for all X ∈ R

m×n

E[‖A(X)‖2] = ‖X‖2
F (10)

and for all 0 < ǫ < 1 we have,

P(|‖A(X)‖2 − ‖X‖2
F | ≥ ǫ‖X‖2

F )

≤ 2 exp
(

−p

2
(ǫ2/2 − ǫ3/3)

) (11)

and for all t > 0, we have

P

(

‖A‖ ≥ 1 +

√

mn

p
+ t

)

≤ exp(−γpt2) (12)

for some constant γ > 0.

There are two ingredients for a random linear map to be

nearly isometric. First, it must be isometric in expectation.

Second, the probability of large distortions of length must

be exponentially small. The exponential bound in (11) guar-

antees union bounds will be small even for rather large sets.

This concentration is the typical ingredient required to prove

the Johnson-Lindenstrauss Lemma (cf [18], [19]).

The majority of nearly isometric random maps are de-

scribed in terms of random matrices. For a linear map A :
R

m×n → R
p, we can always write its matrix representation

as

A(X) = A vec(X) , (13)

where vec(X) denotes the vector of X with its columns

stacked in order on top of one another, and A is a p × mn
matrix. We now give several examples of nearly isometric

random variables in this matrix representation. The most
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Fig. 2. (left) Error, as measured by the Frobenius norm, between the recovered image and the ground truth. Observe that there is a sharp
transition to near zero error at around 1200 measurements. (right) Zooming in on this transition, we see fluctuation between high and low
error when between 1125 and 1225 measurements are available.

For each (n, p, r) triple, we repeated the following proce-

dure ten times. A matrix of rank r was generated by choosing

two random n × r factors YL and YR with i.i.d. random

entries and setting Y0 = YLY ′
R. A matrix A was sampled

from the Gaussian ensemble with p rows and n2 columns.

Then the nuclear norm minimization

min
X

‖X‖∗
s.t. A vec(X) = A vec(Y0)

(18)

was solved using the SDP solver SeDuMi on the formulation

(17). We declared Y0 to be recovered if ‖X−Y0‖F /‖Y0‖F <
10−3. Figure 4 shows the results of these experiments for

n = 30 and 40. The color of the cell in the figures reflects

the empirical recovery rate of the ten runs (scaled between

0 and 1). White denotes perfect recovery in all experiments,

and black denotes failure for all experiments.

These experiments demonstrate that the logarithmic factors

and constants present in our scaling results are somewhat

conservative. For example, as one might expect, low-rank

matrices are perfectly recovered by nuclear norm minimiza-

tion when p = n2 as the matrix is uniquely determined.

Moreover, as p is reduced slightly away from this value, low-

rank matrices are still recovered 100 percent of the time for

most values of r. Finally, we note that despite the asymptotic

nature of our analysis, our experiments demonstrate excellent

performance with low-rank matrices of size 30 × 30 and

40×40 matrices, showing that the heuristic is practical even

in low-dimensional settings.

Intriguingly, Figure 4 also demonstrates a “phase transi-

tion” between perfect recovery and failure. As observed in

several recent papers by Donoho and his collaborators (See

e.g. [25]), the random sparsity recovery problem has two

distinct connected regions of parameter space: one where

the sparsity pattern is perfectly recovered, and one where no

sparse solution is found. Not surprisingly, Figure 4 illustrates

an analogous phenomenon in rank recovery. Computing

explicit formulas for the transition between perfect recovery

and failure is left for future work.

V. DISCUSSION AND FUTURE DEVELOPMENTS

Having illustrated the natural connections between affine

rank minimization and affine cardinality minimization, we

were able to draw on these parallels to determine scenarios

where the nuclear norm heuristic exactly solves the rank

minimization problem. These scenarios directly generalize

conditions for which the ℓ1 heuristic succeeded and ensem-

bles of linear maps for which these conditions hold. Fur-

thermore, our experimental results displayed similar recovery

properties to those demonstrated in the empirical studies of

ℓ1 minimization. Inspired by the success of this program,

we are excited about pursuing several directions that are

natural continuations of this work. These include producing

alternative measurement ensembles to those described in

Section III, providing analysis of the nuclear norm heuristic

when the measurements are noisy, and discussing numerical

alternatives to interior point methods.

Finally, we note that sparsity and low-rank are only two

particular measures of parsimony. Our work suggests that

there may be other kinds of easy-to-describe parametric mod-

els where the search for parsimonious models is amenable

to exact solutions via convex optimization techniques. Char-

acterizing this broader notion of parsimonious modeling is

an exciting line of future inquiry.
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APPENDIX

Proof: [of Lemma 2.4] Consider a full singular value

decomposition of A

A = U

[

Σ 0
0 0

]

V ′,
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and let B̂ := U ′BV . Partition B̂ as

B̂ =

[

B̂11 B̂12

B̂21 B̂22

]

.

Defining now

B1 := U

[

B̂11 B̂12

B̂21 0

]

V ′,

B2 := U

[

0 0

0 B̂22

]

V ′,

it can be easily verified that B1 and B2 satisfy the conditions

(1)–(4).

Proof: [of Lemma 2.5] Partition the singular value

decompositions of A and B to reflect the zero and non-zero

singular vectors

A =
[

UA1 UA2

]

[

ΣA

0

]

[

VA1 VA2

]′

B =
[

UB1 UB2

]

[

ΣB

0

]

[

VB1 VB2

]′
.

The condition AB′ = 0 implies that V ′
A1

VB1 = 0, and

similarly, A′B = 0 implies that U ′
A1

UB1 = 0. Hence, there

exist matrices UC and VC such that UAB := [UA1 UB1 UC ]
and VAB := [VA1 VB1 VC ] are orthogonal matrices. Thus,

the following are valid singular value decompositions for A
and B:

A = UAB





ΣA

0
0



V ′
AB

B = UAB





0
ΣB

0



V ′
AB .

In particular, we have that

A + B =
[

UA1 UB1

]

[

ΣA

ΣB

]

[

VA1 VB1

]′
.

This shows that the singular values of A + B are equal to

the union (with repetition) of the singular values of A and

B. Hence, ‖A + B‖∗ = ‖A‖∗ + ‖B‖∗ as desired.

WeA3.2
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