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Abstract—The classical compressed sensing problem is
to find the sparsest solution to an underdetermined system
of linear equations. A good convex approximation to this
problem is to minimize the `1 norm subject to affine
constraints. The Iterative Reweighted Least Squares (IRLS-
p) algorithm (0 < p ≤ 1), has been proposed as a method
to solve the `p (p ≤ 1) minimization problem with affine
constraints. Recently Chartrand et al observed that IRLS-
p with p < 1 has better empirical performance than `1
minimization, and Daubechies et al gave ‘local’ linear and
super-linear convergence results for IRLS-p with p = 1
and p < 1 respectively. In this paper we extend IRLS-p
as a family of algorithms for the matrix rank minimization
problem and we also present a related family of algorithms,
sIRLS-p. We present guarantees on recovery of low-rank
matrices for IRLS-1 under the Null Space Property (NSP).
We also establish that the difference between the successive
iterates of IRLS-p and sIRLS-p converges to zero and that
the IRLS-0 algorithm converges to the stationary point
of a non-convex rank-surrogate minimization problem. On
the numerical side, we give a few efficient implementations
for IRLS-0 and demonstrate that both sIRLS-0 and IRLS-
0 perform better than algorithms such as Singular Value
Thresholding (SVT) on a range of ‘hard’ problems (where
the ratio of number of degrees of freedom in the variable to
the number of measurements is large). We also observe that
sIRLS-0 performs better than Iterative Hard Thresholding
algorithm (IHT) when there is no apriori information on
the low rank solution.

I. INTRODUCTION AND MOTIVATION

The Affine Rank Minimization Problem (ARMP), or
the problem of finding the minimum rank matrix in an
affine set, arises in a broad set of applications such as
model order reduction [18], matrix completion, collab-
orative filtering[4], and quantum tomography [12]. The
problem is as follows,

minimize rank(X)
subject to A(X) = b,

where the action of the linear operator, A : Rm×n →
Rq on X is described by TrAT

i X , i = 1, . . . , p for
A1, . . . , Ap ∈ Rm×n. Note that when X is restricted
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to be a diagonal matrix, ARMP reduces to the classical
compressed sensing problem,

minimize card(x)
subject to Ax = b

(1)

where x ∈ Rn, A ∈ Rm×n and card(x) denotes
the cardinality or number of non-zeros entries of x.
Many algorithms have been proposed as a relaxation to
(1) including `1 minimization, greedy algorithms (e.g.
CoSaMP [19]) and message-passing based algorithms
[1]. Iterative reweighted `1 [5] and Iterative reweighted
least squares (IRLS-p, [20]) with 0 < p ≤ 1 have been
proposed to improve on the recovery performance of
`1 minimization. In this paper, we are interested in the
IRLS-p family of algorithms, with the (k+1)th iteration
of the algorithm is given by

xk+1 = arg min
x

∑
i

wk
i x2

i

s.t. Ax = b (2)

where wk is a weighting vector with wk
i = (|xk

i |2 +
γ)p/2−1, with γ > 0 being a regularization parameter
added to ensure that wk is well defined. x0 is set to
zero, so that first iterate is the least norm solution to
Ax = b.

For the ARMP, algorithms with analogies to the vector
case have been proposed including the Nuclear Norm
Heuristic [9], AdMiRA [15], Reweighted Nuclear Norm
Heuristic [18], etc. Developing efficient implementations
for nuclear norm minimization is an important research
area (see e.g. [2],[10]) since standard semidefinite pro-
gramming solvers cannot handle large problem sizes.

We propose an IRLS-p family of algorithms for
ARMP that minimizes a weighted Frobenius norm ob-
jective at each iteration. It serves to give an efficient im-
plementation for the nuclear norm minimization heuristic
for p = 1, and attempts to improve on its recovery per-
formance for p < 1. Our focus on the IRLS-p algorithm
for ARMP is further motivated by the good convergence
properties of the IRLS-p for the compressed sensing
problem along with recovery performance guarantees
(see e.g. [8]). Chartrand et al [6], [7] showed that IRLS-
p shows better empirical recovery performance than `1
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minimization for p < 1 and a similar performance with
the reweighted `1 algorithm.

We show, under an assumption on the null space of
A, that IRLS-1 outputs the solution to nuclear norm
minimization, which coincides with the lowest rank solu-
tion to A(X) = b. Regarding convergence, we show the
difference between successive iterates of IRLS-p (with
p = 0, 1) algorithm converges to zero, and the iterates
of the IRLS-0 algorithm converge to a stationary point
of a non-convex rank-surrogate minimization problem.
We also examine a variant of this algorithm called
sIRLS(a.k.a short IRLS), that instead of minimizing the
weighted quadratic objective at each iteration simply
decreases the objective by taking one gradient projection
step. Numerical experiments demonstrate that IRLS-0
and sIRLS applied to the matrix completion problem
performs better than Singular Value Thresholding algo-
rithm (SVT [2]) when the ratio of number of degrees
of freedom to the number of measurements is large, and
performs better than Iterative Hard Thresholding (IHT
[11],[17]) when there is no apriori knowledge of the
rank of the solution. The paper is organized as follows.
In Section II, we propose the IRLS-p algorithm for
ARMP and give convergence and recovery results. In
Section III, we give a few implementations for IRLS-
0 that are tailored for the matrix completion problem.
We demonstrate the numerical performance of IRLS-0
for the matrix completion problem and compare it with
SVT and IHT. The last section discusses future research
directions.

II. IRLS-p FOR ARMP

Notation
Let F(b) be the set of all solutions to A(X) = b. Denote
by RL the set of all rank L matrices, and by eL(X) the
best rank L approximation error of X , i.e., eL(X) =
minY ∈RL

‖Z−Y ‖∗. Denote by PT (H) the projection of
a matrix H onto the set T . Let GL(U, V ) be a subspace
of m× n matrices of rank at most L, whose row space
belongs to the span of V ∈ Rm×L and whose column
space belongs to the span of U ∈ Rn×L. Let SL =
{GL(U, V ) : U ∈ Rm×L, V ∈ Rn×L, UT U = V T V =
I}. Let N (A) denote the null space of the operator A.
Let σi(X) denote the ith largest singular value of X
and ‖X‖ denote its largest singular value. The nuclear
norm of a matrix X is defined as ‖X‖∗ =

∑
i σi(X).

Ik denotes the identity matrix of size k × k.

A. IRLS-p

In this subsection, we give the IRLS-p algorithm for
ARMP. Replacing the objective function in (1) by ‖X‖∗,

we get the nuclear norm minimization heuristic,

min ‖X‖∗
s.t. A(X) = b.

(3)

This heuristic is analogous to `1 minimization and many
algorithms have been proposed to implement the heuris-
tic efficiently for large scale problems, e.g. Singular
Value Thresholding (SVT), Fixed Point Continuation
algorithm (FPCA), etc. We would like to improve on
the recovery performance of the nuclear norm heuris-
tic by considering non-convex approximations to the
rank function. Define the smooth Schatten-p function as
fp(X) = Tr(XT X + γI)p/2. Note that fp(X) is differ-
entiable for p > 0 and convex for p ≥ 1. With γ = 0,
f1(X) = ‖X‖∗, which is also known as the Schatten-1
norm. With γ = 0 and p → 0, fp(X) → rank(X). Thus,
it is of interest to consider the following problem,

minimize fp(X)
subject to A(X) = b

(4)

We note that ∇fp(X) = pX(XT X +γI)p/2−1 (see e.g.
section 4.2 of [16]). The KKT conditions for (4) are
equivalent to

X(XT X + γI)p/2−1 +A∗(λ) = 0
A(X) = b (5)

Let W k
p = (XkT

Xk + γI)p/2−1. The first KKT condi-
tion is equivalent to X = − 1

2A
∗(λ)(XT X + γI)1−p/2.

This is a fixed point equation and a solution can
be obtained by iteratively solving for it as Xk+1 =
1
2A

∗(λ)W k
p
−1 along with the second KKT condition,

A(Xk+1) = b. Note that Xk+1 as just defined satisfies
the KKT conditions to the following convex optimization
problem,

minimize TrW k
p XT X

subject to A(X) = b.
(6)

This idea leads to the IRLS-p algorithm as described
in Table I. Note that we do let p = 0 in the algorithm
in Table I, although it can’t be derived from (4). For
p = 0, IRLS-0 can be seen as the algorithm coming out
of solving iteratively (as outlined previously) the KKT
conditions for the non-convex problem,

min log det(XT X + γI)
s.t. A(X) = b

(7)

with, γ > 0 being a regularization parameter. In the
following subsections, we give convergence and guar-
anteed performance results for the IRLS-1 algorithm.
Some of the results directly extend those for the IRLS-p
algorithm for compressed sensing problem [8]. We also
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Set k = 0, X0 = 0. Do until convergence,
1) W k

p = (XkT
Xk + γkI)

p
2−1 .

2) Xk+1 = arg min
X

Tr(W k
p XT X)

s.t. A(X) = b (8)

3) Set k = k + 1 .

TABLE I
IRLS-P ALGORITHM FOR MATRIX RANK MINIMIZATION WITH

0 ≤ p ≤ 1

study the convergence of IRLS-0. Note that the IRLS-
p family of algorithms for rank minimization are an
appropriate extension of the corresponding algorithms
for compressed sensing. While exploring efficient im-
plementations for IRLS-p, we found a more efficient
class of gradient based algorithms which we call sIRLS-
p (a.k.a short IRLS) which have similar convergence
properties as IRLS-p. We described these subsequently.

B. IRLS-1 algorithm

We show that the difference between successive it-
erates of the IRLS-1 algorithm converges to zero. We
also show under certain conditions on the null space of
the operator A that the IRLS-1 algorithm outputs the
minimum nuclear norm solution, which coincides with
the lowest rank solution to A(X) = b. In the following
paragraphs, we drop the subscript on W k

1 for ease of
notation.

To analyze the convergence of the iterates, we define
a function,

J 1(Z,W, γ) =
1
2
(Tr(WZT Z) + γ Tr(W ) + Tr(W−1)).

The second step of the IRLS-1 algorithm (Table I with
p = 1) is equivalent to:

Xk+1 = arg minZ∈F(b) J 1(Z,W k, γk)

We choose γk+1 as γk+1 = min{γk, σK+1(Xk+1)/N},
where K, N are fixed integers to be described later. Also
note that

W k+1 = arg min
W�0

J 1(Xk+1,W, γk+1),

and

J 1(Xk+1,W k+1, γk+1) ≤ J 1(Xk+1,W k, γk+1)
≤ J 1(Xk+1,W k, γk)
≤ J 1(Xk,W k, γk). (9)

We now have the following lemmas that can be easily
shown.

Lemma II.1. For each k ≥ 1, we have

‖Xk‖∗ ≤ J 1(X1,W 0, γ0) := D (10)

where W 0 = I , γ0 = 1. Also, σj(W k) ≥ D−1, j =
1, 2, . . . ,min{m,n}

Lemma II.2. The necessary and sufficient condition for
X∗ to be the minimizer of

min Tr WXT X
s.t. A(X) = b

(11)

is Tr(WX∗T Z) = 0 for all Z ∈ N (A).

The following result shows that the difference between
the succesive iterates of the IRLS-1 converges to zero.
The proof parallels the result in [8].

Theorem II.3. Given any b ∈ Rp, the iterates of IRLS-
1, {Xn} satisfy

∑∞
n=1 ‖Xn+1 −Xn‖2F ≤ 2D2, where

D is as defined in (10). In particular we have that
lim

n→∞

(
Xn −Xn+1

)
= 0

The following definition plays an important role in the
performance analysis of IRLS-1.

Definition II.4. We say that the map A : Rm×n → Rp

has Null Space Property (NSP) of order L for δ > 0 if

‖PT (H)‖∗ ≤ δ‖PT⊥(H)‖∗ (12)

holds for all T ∈ SL and for all H ∈ N (A).

Lemma II.5. Assume that NSP (12) holds for order 2L
(for some positive integer L) and γ < 1. Then, for any
Z,Z

′ ∈ F(b), we have

‖Z
′
− Z‖∗ ≤

1 + δ

1− δ

(
‖Z

′
‖∗ − ‖Z‖∗ + 2eL(Z)

)
(13)

Proof: Let the SVD of Z be Z =[
UL Ũ

] [
ΣL 0
0 Σ̃

] [
VL Ṽ

]T
, where ΣL

corresponds to the top L singular values of Z. Define
the projection operators, PU = ULUT

L ,PV = VLV T
L ,

PU⊥ = Ũ ŨT and PV ⊥ = Ṽ Ṽ T . Let T = {X :
X = PUY PV + PUY PV ⊥ + PU⊥Y PV ∀Y ∈ Rm×n}
and let T⊥ be the orthogonal complement of T . Let
S = {X : X = PUY PV ∀Y ∈ Rm×n}. Then,

‖PT⊥(Z − Z
′
)‖∗ ≤ ‖PT⊥(Z

′
)‖∗ + ‖PT⊥(Z)‖∗

≤ ‖Z
′
‖∗ − ‖PS(Z

′
)‖∗ + eL(Z)

≤ ‖Z‖∗ + ‖Z
′
‖∗ − ‖Z‖∗

−‖PS(Z
′
)‖∗ + eL(Z)

≤ ‖PS(Z)‖∗ − ‖PS(Z
′
)‖∗ + ‖Z

′
‖∗

−‖Z‖∗ + 2eL(Z)

≤ ‖PT (Z − Z
′
)‖∗ + ‖Z

′
‖∗

−‖Z‖∗ + 2eL(Z)

655



where the second inequality follows from the
fact that nuclear norm of a 2 × 2 block matrix
is lower bounded by the sum of the nuclear
norms of the diagonal blocks (Note that ‖Z ′‖∗ =
‖

[
UL Ũ

]T
Z
′ [

VL Ṽ
]
‖∗ ≥ ‖UT

L Z
′
VL‖∗ +

‖ŨT Z
′
Ṽ ‖∗ = ‖PS(Z

′
)‖∗ + ‖PT⊥(Z

′
)‖∗). Using (12),

we have that

‖PT (Z − Z
′
)‖∗≤δ‖PT⊥(Z − Z

′
)‖∗

≤δ(‖PT (Z − Z
′
)‖∗ + ‖Z

′
‖∗

−‖Z‖∗ + 2eL(Z))

Thus,

‖PT (Z − Z
′
)‖∗≤

δ

1− δ

(
‖Z

′
‖∗ − ‖Z‖∗

)
+

2δ

1− δ
eL(Z)

(14) together with (14) implies that

‖Z − Z
′
‖∗≤‖PT (Z − Z

′
)‖∗ + ‖PT⊥(Z − Z

′
)‖∗

≤1 + δ

1− δ
(‖Z

′
‖∗ − ‖Z‖∗ + 2eL(Z))

The following lemma gives sufficient conditions for
recovery of low-rank matrices using nuclear norm min-
imization and can be shown using the previous lemma.

Lemma II.6. Assume that NSP (12) holds for order 2L
and δ < 1. Suppose that F(b) contains a rank L matrix.
Then this matrix is the unique nuclear norm minimizer
in F(b). We denote this minimizer by X∗. Then, we have
that ∀Y ∈ F(b),

‖Y −X∗‖∗ ≤ 2
1 + δ

1− δ
eL(Y ) (14)

We now show that the iterates of the IRLS-1 converge
to the nuclear norm solution which also turns out to be
the unique low rank solution under NSP.

Theorem II.7. Let K be chosen so that A satisfies
NSP of order 2K, with δ < 1. Also assume that
limn→∞ γn = 0. Then, for each b ∈ Rq, the output
of IRLS-1 converges to X̄ , with X̄ being of rank K.
Also in this case, X̄ = X∗, the unique nuclear norm
minimizer and X̄ is also the unique rank K solution to
A(X) = b.

Proof: We give a proof for the simpler case where
γn = 0 for n ≥ n0 + 1. By definition, γn0+1 =
min{γn0 , σK+1/N}. Since γn0 6= 0, σK+1(Xn0) = 0
implying that Xn0 is of rank K. Thus, by Lemma II.6
we have that Xn0 is the unique nuclear norm minimizer.

The proof for the case where γn > 0 ∀n can be shown
using standard convergence arguments.

As an extension of the above theorem, one can also
consider the case where limn→∞ γn = γ̄ > 0.

C. IRLS-0

In this section we give a convergence result for the
IRLS-0 algorithm. We define an appropriate function that
can be used to show convergence as follows:

J 0(X, W, γ) = Tr(WXT X) + γ TrW − log det W

Note that the above function is strictly convex in W and
also in X (because W is positive definite). As in (9),

J 0(Xk+1,W k+1, γk+1) ≤ J 0(Xk+1,W k, γk+1)
≤ J 0(Xk+1,W k, γk)
≤ J 0(Xk,W k, γk) (15)

Analogous to Lemma II.1 we have:

Lemma II.8. For each k ≥ 1, we have

log det(XkT
Xk) ≤ J 0(X1,W 0, γ0) := E

σj(W k) ≥ e−E , j = 1, 2, . . . , t
(16)

where, t = min{m,n}.
Analogous to Theorem II.3 we have the following:

Theorem II.9. Given any b ∈ Rq, the iterates of IRLS-0,
{Xn} satisfy

∞∑
n=1

‖Xn+1 −Xn‖2F ≤ 2e2E , (17)

where E is as defined in (16). In particular we have that
lim

n→∞

(
Xn −Xn+1

)
= 0

Using this theorem we can show the following:

Theorem II.10. Every cluster point of the iterates {Xk}
of IRLS-0 is a stationary point of (7) with γ = γmin =
lim γk.

D. sIRLS-p

In this subsection, we describe the sIRLS-p (a.k.a
short IRLS) algorithm and show its convergence for
the matrix completion problem, where we would like
to complete a low-rank matrix given only a subset
of its entries. Although we don’t discuss it here, the
algorithm can easily be extended to solve for general
affine constraints. The matrix completion problem is as
follows,

minimize rank(X)
subject to PΩ(X) = PΩ(X0),
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Set k = 0. X0 = 0.
Do until convergence,

1) W k
p = (XkT

Xk + γkI)
p
2−1

.
2) Xk+1 = PΩc (Xk − αkXkW k

p ) + PΩ(X0)
3) Set k = k + 1.

TABLE II
SIRLS-p FOR MATRIX COMPLETION PROBLEM

where X0 is a matrix we would like to recover, PΩ :
Rn×n → Rn×n is an operator that samples entries
Xij from X where (i, j) ∈ Ω. sIRLS has a simple
structure for the matrix completion problem and is given
as in Table II. In the next section, we give a fast
implementation (IRLS-GP, Table III) for IRLS-p where
each iterate is obtained through a gradient projection
algorithm. Thus, sIRLS-p can be thought of as IRLS-
p with each of its iterates solved approximately (i.e.
terminating at the first iteration in the gradient projection
algorithm instead of until convergence). Hence the name
short IRLS even though sIRLS doesn’t involve solving a
least squares problem. We observe in the next section
that sIRLS-0 is much faster than IRLS-0 for matrix
completion with little or no loss in performance as
evidenced by successful recovery in most easy and hard
problem instances (a precise notion of easy/hard will
be given in the implementation section). We now give
convergence results for sIRLS-p.

Theorem II.11. The difference between successive iter-
ates of the sIRLS-p converges to zero.

Interestingly, for a fixed γ, sIRLS-p (0 < p ≤ 1) can
be viewed as a Gradient Projection algorithm applied
to (4) and sIRLS-0 can be viewed as a Gradient Pro-
jection algorithm applied to (7) with matrix completion
constraints. We therefore have the following theorem for
sIRLS-p.

Theorem II.12. Every cluster point of sIRLS-p is a sta-
tionary point of the smooth Schatten-p function, fp(X)
over the constraint set, {X : PΩ(X) = PΩ(X0)} with
γ = γmin.

It can be also shown that every cluster point of sIRLS-
0 is a stationary point of (7) with matrix-completion
constraints. Note that for p = 1, both IRLS-1 and
sIRLS-1 converge to the global minimum of the smooth
Schatten-1 problem (4).

III. ALGORITHM IMPLEMENTATION AND
NUMERICAL RESULTS

In this section, we give a fast implementation of the
IRLS-p algorithm for the Matrix Completion problem.

Set k = 0, X0 = 0. Do until IRLS iterates converge,

1) W k
p = (XkT

Xk + γkI)
p
2−1. Set Xold = Xk .

2) Do until gradient projection iterates converge,
a) Xnew = PΩc (Xold − 2

Lk XoldW k
p ) +

PΩ(X0)
b) Xold = Xnew

3) Set Xk+1 = Xnew, k = k + 1.

TABLE III
IRLSp-GP FOR MATRIX COMPLETION

We also give numerical comparisons of sIRLS-p with
other algorithms. For ease of notation throughout this
section, we shall refer to IRLS-p and sIRLS-p as IRLS
and sIRLS respectively unless we specifically refer to
the algorithms with p = 0 or p = 1.

A. A fast gradient projection based implementation of
IRLS for Matrix Completion

IRLS for matrix completion problem is similar to
that in Table I with the constraints A(X) = b re-
placed by PΩ(X) = PΩ(X0). The implementation
we describe in this section solves each iteration of
IRLS approximately so that the overall computational
time is smaller but at the same time the performance
in terms of recovering low-rank solutions for different
problem instances is preserved. Now, each iteration of
IRLS solves a quadratic program (QP). We note that
calculating PΩ(X) is computationally cheap. Thus, the
gradient projection algorithm could be used to solve the
quadratic program (QP) in each iteration of the IRLS.
The implementation IRLSp-GP is as in Table III. The
step size used in the gradient descent step is 2/Lk,
where Lk is the Lipschitz constant of the gradient of the
quadratic objective, Tr(W kXT X) at the kth iteration
of IRLS. We also warm start the gradient projection
algorithm to solve for the (k + 1)th iterate of IRLS
with the solution of the kth iterate of IRLS and find that
this speeds up the convergence of the gradient projection
algorithm in subsequent iterations. At each iteration
of IRLS, computing the weighting matrix involves an
inversion operation which can be expensive for large
n. To work around this, we observe that the singular
values of subsequent iterates of IRLS cluster into two
distinct groups, so that a low rank approximation of the
iterates (by setting the smaller set of singular values
to zero) can be used to compute the weighting matrix
efficiently. Computing the singular value decomposition
(SVD) can be expensive. Randomized algorithms (see
e.g. [13]) can be used to compute the top r singular
vectors and singular values of a matrix X with small
approximation errors if σr+1(X) is small. We describe
our computations of the weighting matrix below.
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Computing the Weighting matrix efficiently
Let UΣV T be the truncated SVD of Xk (keeping top
r terms in the SVD with r being determined at each
iteration) so that U ∈ Rm×r,Σ ∈ Rr×r, V ∈ Rn×r.
Then W k−1 ∼ (UΣV T )T (UΣV T ) + γkI . It is easy
to check that W k ∼ V (Σ2 − 1

γk Ir)V T + 1
γk In. Thus

the computation of the weighting matrix is of O(nr2)
saving significant computational costs. We choose r to
be min{rmax, r̂} where r̂ is the largest integer such that
σr̂(Xk) > 10−2 × σ1(Xk) (this is justified since in our
experiments X0 is generated randomly and has a reason-
able condition number). Also, since the singular values
of Xk tend to separate into two clusters, we observe that
this choice eliminates the cluster with smaller singular
values and gives a good estimate of the rank r to which
Xk can be well approximated. We find that combining
warm-starts for the gradient projection algorithm along
with the use of randomized algorithms for SVD compu-
tations speeds up the overall computational time of the
gradient projection implementation considerably.

B. Behavior of IRLS-p

We begin our numerical experiments by examining
the behavior of IRLS-0 and its sensitivity to γk (regu-
larization parameter in the weighting matrix, W k). We
then compare sIRLS-1, IRLS-1 with sIRLS-0, IRLS-0
and Singular Value Thresholding (SVT), an algorithm for
nuclear norm minimization. Note that in this subsection,
by IRLS-p we refer to the implementation IRLSp-GP
given in Table III.

We find that the IRLS-0 works well when γk are
chosen appropriately. We let γk = γ0/(η)k, where
γ0 is the initial regularization parameter and η is a
scaling parameter. For this sensitivity experiment (and
subsequent experiments), the support set Ω is generated
using bernoulli {0, 1} random variables with a mean
support size of q where q/n2 is the bernoulli probability
for an index (i, j) to belong to the support set. X0

of rank r is generated as Y Y T , where Y ∈ Rn×r is
generated using iid gaussian entries, X0 is normalized
so that its maximum singular value is 1. All experiments
are conducted in Matlab on a Intel 3 Ghz core 2 duo
processor with 3.25 GB RAM.

We let γ0 = γc‖X0‖22 where γc is a proportional
parameter that needs to be estimated. For the sensitivity
analysis of IRLS (with respect to γ0 and η), we consider
recovery of matrices of size 500× 500. As can be seen
from figure 1, choosing γc is critical to the performance
of IRLS-0. Small values of γc (< 10−3) don’t give
good recovery results (premature convergence). However
larger values of γc might lead to delayed convergence.
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Fig. 1. n = 500, rank = 5,η = 1.15. Sensitivity of IRLS to γ0.
γ0 = γc ∗ ‖X0‖22. Top to bottom: Recovery error using IRLS for
‖X0‖2 = 1
5

Hence as a heuristic, we observe that γc = 10−2 works
well for IRLS-0. We use a similar heuristic for IRLS-1.

Note that for a n × n matrix of rank r, r(2n − r) is
the number of degrees of freedom in the matrix. Define,
FR (degrees of freedom ratio) to be r(2n−r)

q and SR
(sampling ratio) to be q

n2 . Thus if FR is large (close
to 1), recovering X0 becomes harder (as the number
of measurements is close to the degrees of freedom)
and conversely if FR is close to zero, recovering X0

becomes easier. Based on this observation, we conduct
experiments over Easy problems (FR < 0.4) and Hard
problems (FR > 0.4). Figure 2 looks at the sensitivity
of the IRLS algorithm to the scaling parameter, η. We
observe that for a good choice of γ0 (described earlier),
η depends on the hardness of the problem (i.e. on rank
of X0 and SR). More specifically, η seems to have an
inverse relationship with FR. From Figure 2 it is clear
that η = 1.15 works well if rank of X0 equals 5 (i.e. FR
= 0.17). We also observed that η = 1.1 and η = 1.05
work well when rank of X0 equals 10 (FR = 0.2) and 15
(FR = 0.33) respectively. To simplify the choice of η, we
fix η = 1.1 if FR < 0.4 and η = 1.03 if FR > 0.4. We
define the recovery to be successful when the relative
error, ‖X − X0‖F /‖X0‖F ≤ 10−3 and unsuccessful
recovery otherwise. For each problem (easy or hard)
we consider, the results are reported over 10 random
generations of the support set, Ω and X0. We use NS to
denote the number of successful recoveries for a given
problem.

IRLS-0, sIRLS-0, IRLS-1, sIRLS-1 are successful
in recovering all problem instances for all the easy
problems considered while SVT is successful in all
problems except 4,7 and 9 (Table IV). IRLS-0 takes
fewer iterations to converge successfully than IRLS-1 for
the easy problems and has a lower computational time.
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Fig. 2. n = 500 γc = 1e− 2. Top to bottom: Recovery error using
IRLS for rank equal to 5.

sIRLS-1 takes more number of iterations to converge
as compared to IRLS-1 but because it has a lower per
iteration cost, it takes significantly lower computational
time than IRLS-1. The same holds true for sIRLS-0.
Both sIRLS-0 and sIRLS-1 have computational times
comparable with SVT. We use the implementation of
SVT available at [3]. For hard problems, Table V shows
that sIRLS-0 and IRLS-0 are successful in almost all
problems considered, while sIRLS-1 doesn’t successfully
recover 4 problems. We also found that SVT wasn’t
successful in recovering any of the hard problems. Also,
sIRLS-0 takes few more iterations to converge than
IRLS-0 but has siginificantly lower computational times
as compared to both IRLS-0 and sIRLS-1.

C. Comparison of algorithms for Exact Matrix Comple-
tion

From the previous results, it is clear that sIRLS-0
is both fast and has a good performance among the
family of sIRLS-p, IRLS-p algorithms. Hence in the
experiments below, we compare sIRLS-0 with IHT [11]
over both easy and hard problems. We observed in our
experiments that when the rank of X0 is known, sIRLS-
0 is as good as IHT in performance and computational
time. A possible disadvantage of IHT is that it can be
sensitive to the knowledge of the rank of the low rank
solution X0. Thus, our experiments compare sIRLS-
0 and IHT over easy and hard problems without any
prior knowledge on the rank of X0. When the rank of
X0 is unknown we use a heuristic for determining the
approximate rank of Xk at each iteration for sIRLS-0
and IHT. We choose r (the rank at which the SVD of
Xk is truncated) to be min{rmax, r̂} where r̂ is the
largest integer such that σr̂(Xk) > α × σ1(Xk). For
IHT and sIRLS-0 we find that α = 10−1 works well for
easy problems, α = 5 × 10−2, 10−2 respectively work
well for hard problems. The justification this choice was

mentioned previously. The SVD computations in IHT
and sIRLS-0 are based on a fast yet accurate randomized
algorithm for SVD computations [14]. Also, we find
that a step-size of 1.5 seems to work very well for
IHT. As can be seen from Table VI, the two algorithms
are successful on all easy problems and also have a
comparable computational times. For hard problems,
however, sIRLS-0 has a distinct advantage over IHT in
recovery. IHT has unsuccessful recovery in four of the
problems, while sIRLS-0 is not fully successful in only
the second problem which has a high FR. Thus, when the
rank of X0 is not known apriori, sIRLS-0 has a distinct
advantage over IHT in successfully recovering X0 for
hard problems.

IV. SUMMARY AND FUTURE WORK

In summary, we presented the IRLS-p family of al-
gorithms to the affine rank minimization problem. We
considered the convergence properties of IRLS-1 and
IRLS-0 showing that the difference between successive
iterates of both the algorithms converge to zero. Under
some assumptions on null space of the operator, we also
showed that IRLS-1 converges to the unique nuclear
norm solution which also coincides with the lowest rank
solution satisfying the affine constraints. We also showed
that IRLS-0 (as well as sIRLS−p) converges to the
stationary point of the problem of minimizing a smooth
rank-surrogate function. We gave an efficient gradient
projection based implementation for IRLS-0, making use
of the structure of the matrix completion operator.

Our first set of numerical experiments show that IRLS-
0 and sIRLS-0 have a better recovery performance than
SVT (an efficient implementation for nuclear norm mini-
mization). We also give a heuristic for tuning the param-
eters of IRLS-0 algorithm for better performance. Our
second set of experiments demonstrate that sIRLS−0
compares favorably in terms of performance and com-
putational time with IHT when the rank of the low rank
matrix to be recovered is known. When information
on rank is absent, sIRLS-0 seems to have a distinct
advantage in performance over IHT. Future work could
focus on giving performance guarantees and convergence
rate results for IRLS-0 and sIRLS-0. Other non-convex
formulation ideas (e.g. decomposing the variable X into
a product of two low rank matrices) may possibly be
combined with IRLS-0 algorithm to make way for even
faster algorithms. A unified perspective on different non-
convex heuristics for rank minimization is desirable, and
insights in this direction would be useful.
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Problem IRLS-1 sIRLS-1 IRLS-0 sIRLS-0 SVT
n r q

n2 FR # iter Time # iter Time # iter Time # iter Time # iter Time
100 10 0.57 0.34 133 4.49 132 1.63 54 0.79 59 0.84 170 5.69
200 10 0.39 0.25 140 4.49 140 2.41 60 1.34 63 1.31 109 3.74
500 10 0.2 0.2 160 24.46 163 8 77 9.63 98 4.97 95 5.9
500 10 0.12 0.33 271 37.47 336 13.86 220 22.74 280 11.03 - -

1000 10 0.12 0.17 180 113.72 195 32.21 109 55.42 140 20.80 85 10.71
1000 50 0.39 0.25 140 134.30 140 102.64 51 59.74 60 61.32 81 49.17
1000 20 0.12 0.33 241 156.09 284 57.85 188 96.20 241 43.11 - -
2000 20 0.12 0.17 180 485.24 190 166.28 100 235.94 130 98.55 73 42.31
2000 40 0.12 0.33 236 810.13 270 322.96 170 432.34 220 227.07 - -

TABLE IV
COMPARISON OF IRLS(IRLS-1,SIRLS-1,IRLS-0,SIRLS-0) WITH SVT. PERFORMANCE ON EASY PROBLEMS FR < 0.4.

Problem sIRLS-1 IRLS-0 sIRLS-0
n r q

n2 FR # iter NS Time # iter NS Time # iter NS Time
40 9 0.5 0.8 4705 4 163.2 1385 10 17.36 2364 9 30.22
100 14 0.3 0.87 10000 0 545.91 4811 10 89.51 5039 7 114.54
500 20 0.1 0.78 10000 0 723.58 4646 8 389.66 5140 10 315.57

1000 20 0.1 0.4 645 10 142.84 340 10 182.78 406 10 97.15
1000 20 0.06 0.66 10000 0 1830.98 2679 10 921.15 2925 10 484.84
1000 30 0.1 0.59 1152 10 295.56 781 10 401.98 915 10 244.23
1000 50 0.2 0.49 550 10 342 191 10 239.77 270 10 234.25

TABLE V
COMPARISON OF SIRLS-1,IRLS-0 AND SIRLS-0. PERFORMANCE ON HARD PROBLEMS FR ≥ 0.4

Problem sIRLS-0 IHT
n r q

n2 FR # iter NS Time # iter NS Time
100 10 0.57 0.34 59 10 0.84 37 10 0.79
200 10 0.39 0.25 63 10 1.31 44 10 1.49
500 10 0.2 0.2 98 10 4.97 70 10 5.16
500 10 0.12 0.33 280 10 11.03 204 10 8.26

1000 10 0.12 0.17 140 10 20.80 103 10 17.71
1000 50 0.39 0.25 60 10 61.32 34 10 80.24
1000 20 0.12 0.33 241 10 43.11 177 10 34.81
2000 20 0.12 0.17 130 10 98.55 97 10 90.21
2000 40 0.12 0.33 220 10 227.07 166 10 202.2

TABLE VI
COMPARISON OF SIRLS-0 AND IHT. PERFORMANCE OF SIRLS ON EASY PROBLEMS FR < 0.4.

Problem sIRLS-0 IHT
n r q

n2 FR # iter NS Time # iter NS Time
40 9 0.5 0.8 2364 9 30.22 5000 0 51.40

100 14 0.3 0.87 5039 7 114.54 5000 0 75.63
500 20 0.1 0.78 5140 10 315.57 5000 0 583.04
1000 20 0.1 0.40 406 10 97.15 280 10 72.67
1000 20 0.06 0.66 2925 10 484.84 10000 0 1175.45
1000 30 0.1 0.59 915 10 244.23 660 10 213.95
1000 50 0.2 0.49 270 10 234.25 203 10 186.15

TABLE VII
COMPARISON OF SIRLS-0 AND IHT. PERFORMANCE ON HARD PROBLEMS FR ≥ 0.4.
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