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Abstract— We develop a general class of stochastic optimal
control problems for which the problem of designing optimal
linear feedback gains is convex. The class of problems includes
arbitrary time varying linear systems and costs that are
mixtures of exponentiated quadratics. This allows us to model
problems with quadratic state costs and linear constraints on
states and state transitions. Further, convexity in the feedback
gains lets us impose arbitrary convex constraints or penalties
on the feedback matrix: Thus we can model problems like
distributed control (by imposing a sparsity structure on the
feedback matrix) and variable-stiffness control (by applying
time-varying penalties to feedback gain matrices). We show
that the convex optimization problem can be solved efficiently
by using the structure of the matrices involved. Finally, we
present an application of these ideas to a practical problem
arising in distributed control of power systems.

I. INTRODUCTION
Linear feedback control synthesis is a classical topic in

control theory and has been extensively studied in literature.
From the perspective of stochastic optimal control theory, the
classical result is the existence of an optimal linear feedback
controller for systems with Linear dynamics, Quadratic costs
and Gaussian noise (LQG systems) that can be computed via
dynamic programming [K+60]. However, if one imposes ad-
ditional constraints on the feedback matrix (such as a sparse
structure arising from the need to implement control in a
distributed fashion), or constraints on states/state transitions,
the dynamic programming approach is no longer applicable.
In fact, it has been shown that the optimal feedback may
not even be linear [Wit68] and the general problem of
designing linear feedback gains subject to constraints [BT97]
is NP-hard. In recent years, authors have considered special
cases of the optimal feedback synthesis problem that can
be solved using convex optimization. In [RL02], the authors
introduce the notion of quadratic invariance (QI) which char-
acterizes the set of decentralization constraints under which
the feedback synthesis problem can be solved using convex
programming techniques. In further work [RL06], the authors
prove that QI is a necessary and sufficient condition for
convexity of feedback synthesis under certain assumptions,
regardless of the closed loop system norm (performance met-
ric) minimized. Although interesting, the resulting problems
are infinite-dimensional except when the system performance
is measured using the H2 norm [RL06]. Further, explicit
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state-space realizations of the resulting controllers were not
available in these works. In [SP10], the authors consider a
partial order based structure on the feedback matrices and
show that the in this case, one can come up with explicit
state-space realizations of the resulting controllers. All these
approaches are formulated in the frequency domain and solve
the infinite horizon problem of constructing a stabilizing
feedback controller that minimizes the H2/H∞ norm of the
closed loop system. In very recent work [LL13], the authors
show that for decentralization constraints arising from certain
nested information structures, the feedback synthesis prob-
lem can be solved using dynamic programming techniques
directly in state-space form.

Our work here takes a different approach: We ask the
question: Is it possible to consider a slightly different for-
mulation of the LQG problem that would allow us to show
convexity of the feedback synthesis problem for arbitrary
convex constraints imposed on the feedback matrix? We
develop such a class of problems by taking the standard
Linear Exponential Quadratic Gaussian (LEQG) problem
[SDJ74] and perturbing it with control-dependent noise.
When the perturbation is of a specific form, we show that
the problem of synthesizing optimal linear feedback matrices
is convex and can be solved to global optimality via convex
optimization, with arbitrary convex constraints (or penalties)
on the feedback matrices. We consider the finite-horizon
formulation, and thus we don’t have an explicit notion of
stability. Intuition and numerical evidence informs us that
our framework tends to produce stabilizing controllers, since
the objective function becomes large for unstable systems.
However, since our formulation is in finite horizon, we
cannot guarantee this. The finite-horizon formulation has the
advantage of letting us model time-varying linear systems
(which often arise in practice as the linearization of a
nonlinear system around a nominal trajectory). Finally, our
approach allows us to compose several LEQG-type costs and
model arbitrary linear constraints on state space trajectories
of the system (via exponential penalties). To the best of
our knowledge, these developments are novel and previous
approaches do not address the problems we solve here.

The rest of the paper is organized as follows: In section II,
we describe the mathematical formulation of this new class
of control problems, and how they relate to the classical
LEQG formulation. In section III, we present the main tech-
nical results proving the convexity of the feedback synthesis
problem in this formulation. In section IV, we describe how
several problems in control can be modeled within our frame-
work. In section V, we discuss computational issues and
show that by exploiting the structure of this problem we scale



our approach to large systems. We present applications of
these ideas to the practical problem of distributed frequency
control of a power system in section VI. Finally, in section
VII, we discuss directions for future work.

II. PROBLEM FORMULATION

A. Notation

We use x ∈ Rn to denote states, u ∈ Rnu for controls
and ω ∈ Rn for disturbances. We work with discrete-time
systems and denote integer-valued time with t (1 ≤ t ≤ T )
with T denoting the horizon of the finite-horizon control
problem. The time-indices on quantities are indicated as
subscripts (xt,ut, etc.). We use boldface to denote a quantity
stacked over time: For example, x to denote trajectories of
a fixed horizon T : x = [x1, . . . , xT ].

For a matrix M , let S (M) = M + MT . We denote
by CovP (Y ) the covariance matrix of the random variable
Y ∈ Rl with distribution P . We denote by Ex∼P [f(x)] the
expectation of the function f under the distribution P . We
denote by Sk the space of symmetric matrices of size k.
We use A ≥ B to denote component-wise inequality and
A � B to denote inequality with respect to the cone of
positive semidefinite matrices (where A,B ∈ Sk).

B. Problem

We deal with discrete-time linear systems of the form

x0 ∼ N (0,Σ−1) xt+1 = At xt +Bt ut +ωt

where noiset = N (0,Σt), t = 0, . . . , T − 1., xt ∈ Rn, At ∈
Rn×n, Bt ∈ Rn×m,ut ∈ Rm and N (µ,Σ) denotes a
Gaussian distribution of mean µ and covariance Σ. We will
assume that Σt is full rank for all −1 ≤ t ≤ T−1 (−1 refers
to the initial state distribution). We denote Si = (Σi)

−1.
We seek to design feedback matrices ut = Kt xt that drive

the system state xt towards minimizing an objective function.
Let K = {Kt} and denote by PK(x) the joint Gaussian
density over the trajectories x = [x0, . . . , xT ] sampled from
this dynamical system. We denote by P0(x) the distribution
of trajectories under the uncontrolled system (with K = 0).

The stochastic control problem we consider is defined as
follows:

Minimize
K

log

(
E

PK⊗RK

[J(x)]

)
(1)

where J(x) = exp

(
T−1∑
t=0

[ xt
xt+1

1

]T
Qt

[ xt
xt+1

1

])

= exp

(
xTQx

2
+ qT x

)
RK(x) = exp

(
T−1∑
t=0

1

2
(BtKt xt)

T
(Σt)

−1
(BtKt xt)

)

PK⊗RK(x) =
PK(x)RK(x)

EPK
[RK(x)]

Qt ∈ S2n+1 � 0 and Q ∈ SnT ,q ∈ RnT are matrices
that rearrange the Qt into a block-diagonal and stacked

vector form, that make it easy to represent J(x) in terms
of a quadratic form in x. Note that the matrix Q has a block
tridiagonal form, since the cost is a sum of terms that involve
only successive states xt, xt+1.

C. Interpretation of the Model

The traditional LEQG problem [SDJ74] can be phrased as

min
K

E
PK

[
exp

(
T−1∑
t=0

1

2
xt

TQ xt +
1

2
ut

TR ut +xT
TQf xT

)]
.

In our formulation, we make three important changes to
this:
(a) We do not have explicit control costs, although they

can be modeled through costs on state transitions. The
constant term 1 in

[ xt
xt+1

1

]
means that J can also include

linear terms in xt.
(b) We evaluate the expectation with respect to the per-

turbed distribution PK⊗RK rather than PK directly.
(c) We are required to have an initial state distribution that

is a Gaussian with mean 0.
We take the expectation of the cost J under a perturbed

distribution PK⊗RK. Since RK grows quadratically with
the gains K, this framework resembles control multiplicative
noise [Tod05]. In [Tod05], the authors propose a variant of
standard LQG models where the covariance of the process
noise ωt is a quadratic function of the controls u. In the
model we use here, we instead directly perturb the joint
inverse covariance of the trajectory x: Specifically, we sub-
tract a positive definite block diagonal matrix (with diagonal
blocks given by (BtKt)

T
Σt
−1BtKt), thereby reducing the

inverse covariance and increasing the covariance. Thus, the
perturbation we consider here has a similar effect as control
multiplicative noise, although they are not mathematically
equivalent.

The form of RK, which can be expressed as
(BtKt xt)

T
(Σt)

−1
(BtKt xt) = ut

TBt
T (Σt)

−1
Bt ut, is

reminiscent of that used in path integral control [MN03]
[Kap05] [TBS10], with the inverse of the noise showing up in
the control cost. In path integral control, this inverse relation-
ship is exploited to transform the Hamilton-Jacobi-Bellman
equation from a nonlinear to a linear PDE, allowing efficient
solution through Monte-Carlo (sampling based) techniques.
Here, we will use it to derive convexity of the objective in
the feedback matrix K.

III. MAIN TECHNICAL RESULTS

Theorem 1: Define

c(K) =

{
EPK⊗RK

[J(x)] if EPK⊗RK
[J(x)] is finite

∞ otherwise
,

i.e., c(K) is an extended-real valued function [BV04] . Then
c(K) is convex in K.

Proof: We need to show two things: the set of K for
which c(K) is finite is convex, and restricted to this domain,
c(K) is a convex function.



Let us first assume that c(K) is finite. Now PK has a
Gaussian density over the space of trajectories x. Denoting
Ãt = At+BtKt and St = Σt

−1, the joint inverse covariance
is given by

S−1 + Ã0
T
S0 Ã0 −Ã0

T
S0 0 . . .

−S0 Ã0 S0 + Ã1
T
S1 Ã1 −Ã1

T
S1 . . .

0 −S1 Ã1 . . .
...

...
...

 .
When this is multiplied with RK and renormalized, the

resulting Gaussian distribution has (BtKt)
T

(Σt)
−1

(BtKt)
subtracted from the t-th diagonal block of the inverse covari-
ance:(

Cov
PK⊗RK

(x)

)−1

= L(K) =(
Cov
P0

(x)

)−1

+
S
(
A0

TS0B0K0

)
−K0

TB0
TS0 0 . . .

−S0B0K0 S
(
A1

TS1B1K1

)
−K1

TB1
TS1 . . .

0 −S1B1K1 . . .
...

...
...

 .
Thus, the inverse covariance of PK⊗RK is a linear

function of K. We denote this linear map as L(K). The
objective can then be rewritten as

log

(
E

x∼N(0,L(K)−1)

[
exp

(
1

2
xTQx+qT x

)])
where Q ∈ SnT ,q = RnT are obtained by assembling the
stage-wise costs into a big block tri-diagonal matrix (or a
long vector). It is trivial to see that Q � 0. By theorem 2,
the above function is convex in L(K) and thereby in K.

From theorem 1, it is easy to see that the objective is finite
if and only if L(K) − Q � 0, which is a convex domain.
Hence, c(K) is convex.

A. Discussion

The essential ingredient in our convexity proof is the
fact that the joint inverse covariance is a linear function of
the feedback matrices K. This allows us to directly prove
convexity in K, as opposed to alternative approaches that
perform a nonlinear transformation on K, which generally
precludes one from enforcing constraints on K, except ones
with special structure like Quadratic Invariance [RL06]. Our
approach allows us to impose arbitrary convex constraints
and penalties on K, something that was not possible under
previous approaches. The caveat is that we need to solve a
perturbed version of the standard LEQG problem. However,
as we have argued, this perturbation changes the problem
in a meaningful way (through control-multiplicative noise).
Further, in section VI, we will present numerical examples
showing that even though we’re solving a perturbed problem,
the feedback matrices computed by our approach work well

even on the original unperturbed linear system. We note
one restriction here: The formulation studied in the papers
[RL06][SP10] considers the general case of dynamic output
feedback. In this paper, we restrict ourselves to static state
feedback ut = Kt xt.

IV. APPLICATIONS

The fact that the control objective is convex in K is very
powerful, since this allows us to leverage the full power of
convex optimization based modeling. We can impose arbi-
trary convex costs and constraints on the feedback matrix K.
This has several applications in control, which we describe
in this section.

A. Distributed Control

We can model distributed control by imposing specific
sparsity patterns on the feedback matrix Kt. For example,
in the simple example of fully distributed control ut,i =
kt,i xt,i, we simply require Kt to be a diagonal matrix
diag({ki,t}). We can also model delays in this framework:
If we augment the state to include not just the current
state but also the state at the last k time steps: x̃ =
[xt; xt−1; . . . ; xt−k+1], we constrain Kt to have zeros in all
state dimensions except those corresponding to the xt−k+1,
so that the control is a function of xt−k+1 rather than xt.

B. Variable Impedance Control

The framework also allows us to impose convex costs
on the gains Kt (for example the Frobenius norm ‖Kt‖F ).
An example of where this is valuable is variable impedance
control , which requires penalizing control gains in a time-
varying manner. Concrete applications can be found in
robotics [BTSS10]. In particular, it is important that robots
perform tasks safely. High gain control creates instabilities
for systems with many interacting bodies while it also
amplifies sensor noise. On the other hand, low gain control
sacrifices tasks performance. Our method could be applied
to control scenarios for intelligent gain scheduling that meets
the performance and safety requirements.

C. Model Errors

If the At, Bt,Σt matrices are not known with certainty,
we can define a set of allowable models {At, Bt,Σt} ∈ M.

We can then define an objective of the kind

max
{At,Bt,Σt}∈M

log

(
E

x∼PK⊗RK({At,Bt,Σt})
[J(x)]

)
which remains convex in K, since it is the supremum of

a set of convex functions. IfM is a finite set, the maximum
can be computed simply by enumeration. Otherwise, a finite
approximation of M obtained by sampling a set of models
can already provide a sufficient degree of robustness.



D. Linear constraints on the trajectory

Our framework also allows us to model constraints on
the trajectory: {qi

Tx ≤ ci : i = 1, . . . , nc} by imposing
them as exponential penalties. Assuming we have a common
quadratic cost Q, we can define an objective

max
1≤i≤nc

log

(
E

x∼PK⊗RK

[
exp

(
xTQx+qi

T x−ci
)])

which is again convex, being the supremum of a set of
convex functions.

Imposing these constraints directly on trajectories rather
than individual states allows us to model constraints coupling
states: For example, we can have a ramping constraint like
xt+1 ≤ xt +δ.

V. ALGORITHMS AND COMPUTATION

In this section, we discuss algorithms to compute the
objective (1) and its gradient efficiently. We first rewrite the
problem (1) in a more explicit form making the objective a
clear function of K:

Minimize
K

−
log
(

det(L(K)−Q)
det(L(K))

)
2

+ qT (L(K)−Q)
−1

q

(2)

L(K) =

(
Cov
P0

(x)

)−1

+
S
(
A0

TS0B0K0

)
−K0

TB0
TS0 0 . . .

−S0B0K0 S
(
A1

TS1B1K1

)
−K1

TB1
TS1 . . .

0 −S1B1K1 . . .
...

...
...

 .
In order to ensure that the objective is well defined,

we need to impose the constraint L(K) − Q � 0.
However, the objective function already includes the term
− log(det (L(K)−Q))

2 , which plays the role of a log-barrier
that prevents the solution from violating the constraint. If
(CovP0

(x))
−1 � Q, K = 0 is a guaranteed feasible

starting point. If not, we can initialize using an infeasible-
start interior point method [BV04].

Further, even though the size of L(K) is nT × nT ,
the number of nonzero entries only grows linearly with
T . Computing the gradient requires inversion of L(K) and
L(K) −Q. By exploiting the block-tridiagonal structure of
these matrices, it is possible to compute the block tridiagonal
parts of the inverse without computing the rest. The algo-
rithm first performs a Cholesky factorization (which itself is
guaranteed to retain the block-tridiagonal structure), and uses
the factors to compute the relevant blocks of the inverse. A
similar algorithm can also be used to compute the Newton
step to a KKT system in an interior point method. This
block structure we see here is a special case of a chordal
sparsity pattern and efficient algorithms have been proposed
for these [ADV10]. We can leverage this work to develop

an interior point method for this problem with each iteration
of the interior point (solution of the KKT system) can be
performed in time and memory that grows linearly with T .

In the numerical examples we present here, we used
an off-the-shelf LBFGS implementation [Sch05], with the
gradient computed efficiently as outlined above. We plan to
experiment with a full interior point method in future work.

VI. NUMERICAL EXAMPLES

We present an application of this framework to design-
ing feedback controllers for frequency control in power
grids. The grid can be viewed as a collection of oscillators
(rotating generators) coupled electromechanically through
the network. The frequency of oscillation at each node in
the network needs to be close to the system frequency
(50/60 Hz) for the system to be stable. Deviations from the
system frequency are related to imbalances in generation and
demand. Sudden changes in generation (due to a fault or
outage) need to be compensated for rapidly so as to prevent
excursions of frequency from nominal frequency. At these
time scales (a few milliseconds to seconds), it is not possible
to do a centralized redispatch of generation. We thus need
distributed control for this problem.

A. Distributed Control of Power Systems

In this section, we consider the problem of frequency
stabilization in a power system. We use the IEEE 14 bus
benchmark [Pow] as a test grid. The states consist of the
rotor angular positions and frequency deviations (from the
system frequency of 50/60 Hz) at each node in the network:

x =

(
θ

θ̇

)
. For small time-intervals following a fault, the

dynamics of the rotating generators can be described using
the swing equation [BH81]. The linearized system dynamics
is given by

ẋ =

(
0 I
L 0

)
x +

(
0
M

)
u +noise

where L is a weighted Laplacian system bus matrix, and
M is a matrix with ones on the diagonal entries correspond-
ing to controlled generators. We discretize this system with a
time-step dt = 10ms. We have a quadratic objective penaliz-
ing controls and one penalizing frequency deviations θ̇. The
controls consist of regulating the output of generators so as
to stabilize system frequency in the presence of fluctuations
(due to fluctuations in power generation and demand, faults
etc.). We formulate this as a distributed control problem
by imposing sparsity structure on the feedback matrix . We
consider 4 different kinds of sparsity structures:
• Fully centralized control (LEQG): The feedback gains

here are unconstrained, and hence can be computed
using the standard LEQG formulation.

• Neighborhood feedback control (Nb): The feedback
matrix here consists of two blocks: The feedback on
the rotor angles θ has the same sparsity structure as the
network graph on K, so that the controls at a given
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Fig. 1. Performance of various Feedback Policies: The y-axis represents the
frequency tracking error on a log-scale. The x-axis is time (in milliseconds).
The Nb,2-Nb policies achieve performance that is very close to the LEQG
solution.

generator node only rely on the state dimensions cor-
responding to the node and its neighbors. Additionally,
we allow proportional feedback on the local frequency
deviations θ̇.

• 2-Neighborhood feedback control (2-Nb): The same as
above, except that we now allow feedback to depend
not just on immediate neighbors, but on neighbors two
nodes away.

• Fully distributed (PD): Here, the feedback matrix con-
sists of 2 diagonal blocks, so that the control at each
generator only depends on the local rotor angle θi and
frequency deviations θ̇i.

• No Control: We compare to the autonomous system
K = 0 as a baseline.

We compare the performance of each policy in the fol-
lowing manner: We treat the LEQG solution as the optimal
and the autonomous system as a baseline. For each policy,
we then compute the following performance metric:

SubOpt(Policy) =
Cost(Policy)− Cost(LEQG)

Cost(Autonmous)− Cost(LEQG)
.

This is the percentage loss in performance (degree of subop-
timality) relative to the baseline autonomous (uncontrolled)
system. The performance is computed by averaging costs
over 1000 time domain simulations of the system with each
policy plugged in. Note that the simulations are carried out
using the original system dynamics (not the perturbed version
of the problem we solve here). The table contains the values
for the 3 distributed policies (with the gains obtained by our
convex programming algorithm) and compares it to the naive
alternative of taking the LEQG feedback gains and zeroing-
out the entries that don’t conform to the policy sparsity
pattern (LEQG truncated).

Table I shows the performance of various policies for
this problem (in terms of the SubOpt metric). We also plot
the frequency tracking error for the various policies on a
log-scale in figure 1. The results show that our convex
programming solution does significantly better than simply

TABLE I
PERFORMANCE OF FEEDBACK POLICIES

Algorithm SubOpt Truncated SubOpt % nonzeros(K)
PD 1.15 % 100 % 7 %
Nb .08 % 52 % 16.43 %

2-Nb .08% 46 % 28.57 %

truncating the LEQG feedback matrices. The gap between
the truncated solution and the optimum seems to decrease
as the constraints on the feedback matrix become less strict
(fewer non-zeros), as expected. Further, for this frequency
control problem, the Neighborhood control scheme that uses
information from neighbors seems to achieve performance
very close to the optimal LEQG performance.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have derived a novel framework under which the
problem of designing linear feedback gains is a convex
optimization problem. We have shown that this framework
can capture many control problems of practical interest and
go beyond the traditional LQG/LEQG framework: It can
deal with constraints on feedback matrices, model errors
and linear constraints on the state. We have shown that
the resulting convex optimization problem has structure that
can be taken advantage of in order to yield efficient convex
programming algorithms. Using the practical application of
distributed frequency control of power systems, we showed
that this framework can successfully solve distributed control
problems efficiently, and the solution achieves performance
close to unconstrained LEQG, with a relatively small number
of nonzeros.

B. Future Work

The new formulation we use requires a specific perturba-
tion of the classical LEQG problem. From our experience
so far, it seems that the perturbation encourages low gain
solutions. However, more theoretical and empirical work is
required to understand the effects of the perturbation.

Besides this understanding, we plan to extend this work
in several specific directions:
• Technical extensions:

– Drop the assumption of invertability of the covari-
ance matrix and extend the proof to the general
case of degenerate Gaussians.

– Understand the constraint imposed by L(K) � Q
and interpret constraints on K in terms of Q,A,B.

– Extend the results to continuous-time.
• Modeling extensions:

– Our framework lets us deal with exponential cost
criteria. One can use this cost in conjunction with
Chernoff-bounds to get bounds on the probability
of deviation from a ellipsoidal/polytopic constraint
sets [ST12]. Thus, chance-constrained control can
also be formulated in this framework.



– We described a naive approach of dealing with
model errors by looking at the worst case over a
finite set of models. It would be useful to extend
this to general parameterized uncertainty models.

– Sparsity promoting design: We could also combine
this convex formulation with recent advances in
sparsity-promoting feedback optimization [FLJ11].
The convex formulation can enable us to de-
velop more efficient algorithms for these problems,
as well as perform theoretical analyses of when
convex programming can guarantee obtaining the
sparsest solutions to these problems [CRPW10].
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IX. APPENDIX

Theorem 2: Let M,N ∈ Sp, N � 0,M � 0. Let n ∈ Rp.
Then

log

(
E

y∼N (0,M−1)

[
exp

(
yTN y+nT y

)])
is convex in M .

Proof: If M − N 6� 0, the expectation is infinite,
and we simply define the objective to be ∞. Restricting
ourselves to the domain M � N , we prove that the function
is convex. Then the overall function is an extended convex
function [BV04] on the space of all symmetric matrices M .

The expression can be evaluated as − log

(√
det (M−N)

detM

)
+

nT (M−N)−1n
2 . The second term is convex, since its epigraph

is convex, as shown by the following semidefinite represen-
tation of the epigraph:

{(M, t) : nT (M −N)
−1
n ≤ t} = {

[( t nT

n M −N

)]
� 0}.

Dropping the scaling factor of 1/2, the first term can be
rewritten as

f(M) = − log (det (M −N))− (− log (detM)).

From [ADV10], we know that the Hessian-vector product
for this function can be written as

∇2f(M)[V ] = (M −N)
−1
V (M −N)

−1 −M−1VM−1.

To prove that the Hessian is positive semidefinite, it suffices
to show that

〈
∇2f(M)[V ], V

〉
is non-negative. Since N � 0,

M � (M − N) =⇒ (M −N)
−1 � M [HJ90]. Letting

X = (M −N)
−1
, Y = M−1, we have〈

∇2f(M)[V ], V
〉

= tr (XVXV )− tr (Y V Y V ) .

V XV � 0, X − Y � 0 =⇒ tr ((X − Y )V XV ) ≥ 0

=⇒ tr (XVXV ) ≥ tr (Y V XV ) = tr (XV Y V ) .

V Y V � 0, X − Y � 0 =⇒ tr ((X − Y )V Y V ) ≥ 0

=⇒ tr (XV Y V ) ≥ tr (Y V Y V ) .

Thus, we’ve proved that tr (XVXV ) ≥ tr (Y V Y V ), so〈
∇2f(M)[V ], V

〉
≥ 0 for all V ∈ Sp×p. Hence, the first

term of the objective is convex as well.


