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1
Chapter 1 Exercises

1. Consider three non-coplanar vectors~a, ~b and~c, as shown in Figure 1.1, which define
a parallelepiped.

Note that all sides are parallelograms, and that opposing sides are parallel. Note that
as drawn, the vector~a points above the plane defined by vectors~b and~c. The volume
of the parallelepiped is given by the area of any one of its sides, multiplied by the
perpendicular distance to the opposing side. In terms of figure 1.1,

V = A1h1 (1.1)

(a) Consider the parallelogram defined by vectors~b and~c, as shown in Figure 1.2.

Determine the areaA1 in terms of~b and~c.

(b) Referring to figure 1.3, determine the vector~n of unit magnitude (|~n| = 1) that
is perpendicular to the parallelogram defined by~b and~c, and points to the same
side of it as the vector~a.

(c) Using the result from (b), determine the perpendicular distance from side 1 to the
opposing side 4, in terms of the vectors~a and~n.

(d) Using equation (1.1), compute the volume,V of the parallelepiped in terms of
the vectors~a, ~b and~c.

(e) Referring to figure 1.4, compute the volume using the areaof side 2 (A2),
multiplied it by the perpendicular distance (h2) from side 2 to side 5, that is
V = A2h2.

(f) Combine the results of (d) and (e).

2. Consider again three non-coplanar vectors~a, ~b and~c, as shown in Figure 1.5, which
define a parallelepiped. Note that unlike in Figure 1.1, the vector~a points below the
plane defined by vectors~b and~c.

(a) Repeat parts (a) to (f) of Question 1, using the parallelepiped shown in Figure
1.5.

(b) Now, consider three co-planar vectors~a, ~b and~c. Compute~a · (~b× ~c) and
~b · (~c× ~a). What can you conclude from this and part (f) in Question 1 and
part (a) in this question?
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6 Chapter 1 Exercises

3. Consider the vectors~a, ~b and~c. In this problem, you are going to find an alternative
expression for~a× (~b× ~c). It is assumed that~a, ~b and~c are non-zero, and non parallel
(see figure 1.6).

It has been shown that~a× (~b× ~c) = ~a⊥ × (~b× ~c), where~a⊥ is the component of~a
that is perpendicular to~b× ~c, such that~a = ~a⊥ + ~a‖ (where~a‖ is parallel to~b× ~c).

The vectors~b and~c define the plane that is perpendicular to~b× ~c. Therefore,~a⊥ must
lie in that plane.

(a) Consider the vectors~b and~c. Referring to figure 1.7, find~c‖b, the component of~c
that is parallel to~b. Using this, find~c⊥b, the component of~c that is perpendicular
to ~b. Finally, find|~c⊥b| in terms of|~b× ~c| and|~b|.

(b) Since~b and~c⊥b are perpendicular, we may obtain the unit perpendicular vectors

~n1 =
~b

|~b|
, ~n2 =

~c⊥b
|~c⊥b|

.

These vectors can also be used to define the plane containing~b and~c.

Use your solution to part (a) to find~n2 in terms of~b,~c, |~b| and|~b× ~c|.
(c) The projection of the vector~a onto the plane defined by~b and~c is given by

~aproj = (~a · ~n1)~n1 + (~a · ~n2)~n2. (1.2)

Clearly,~aproj is perpendicular to~b× ~c, since it lies in the plane defined by~b
and~c.
Show that the vector~a− ~aproj is perpendicular to the plane, and hence is parallel
to ~b× ~c. Hint: Check(~a− ~aproj) · ~n1 and(~a− ~aproj) · ~n2.

Conclude from this that the component of~a parallel to ~b× ~c is given by
~a‖ = ~a− ~aproj , while the component of~a perpendicular to~b× ~c is given by
~a⊥ = ~aproj .

(d) Since~a⊥ is perpendicular to~b× ~c, the cross-product~a⊥ × (~b× ~c) is obtained
by rotating~a⊥ by 90o about~b× ~c, and then scaling by|~b× ~c|. That is,

~a⊥ × (~b× ~c) = ~a⊥rot|~b× ~c|, (1.3)

where~a⊥rot is the vector~a⊥ rotated by 90o in the direction indicated in Figure
1.8.
Consider the vectors~n1 and~n2. What are~n1rot and~n2rot, the vectors obtained
by rotating~n1 and~n2 by 90o respectively, as indicated in figure 1.9?
Using this and (1.2), find~a⊥rot.

(e) Substitute the results from part (b) into~a⊥rot obtained in part (d), and finally
obtain the expression for~a× (~b× ~c) = ~a⊥ × (~b× ~c), using (1.3).

4. We have seen that for a right-handed reference frameF , the cross-product of two
vectors~a = ~FTa and~b = ~FTb, is

~a× ~b = ~FTa×b,
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where

a =





ax
ay
az



 , b =





bx
by
bz



 , a×
∆
=





0 −az ay
az 0 −ax
−ay ax 0



 .

Determine the expression for~a× ~b if the frameF is left-handed (see figure 1.10). You
may start from the expression

~a× ~b =
[

ax ay az
]





~x× ~x ~x× ~y ~x× ~z
~y × ~x ~y × ~y ~y × ~z
~z× ~x ~z× ~y ~z× ~z









bx
by
bz



 .

5. A five-link robotic manipulator is being designed, with a hand at the end (see Figure
1.11). Each of the links have the same length, given byr. Each of the joints allows a
rotation about a single axis. The vector~rij denotes the position of jointj relative to
joint i. The vector~rH denotes the position of the hand relative to the base of the robot
(joint 1). Refer to Figure 1.11.

We attach a reference frame to the room, denoted byFr. This frame is defined with the
~xr and~yr axes in the plane of the floor, and the~zr axis pointing vertically upwards.
Refer to Figure 1.12.

It will also be useful to attach a reference frame to each link, denoted by~Fi, for
i = 1, ..., 5. The reference frame attached to each link is defined such that the~zi axis
points along the length of the link from jointi to joint i+ 1. Refer to Figure 1.13. The
joint rotations are:
- Joint 1 allows a rotationθ1 about the~yr axis. See figure 1.14.
- Joint 2 allows a rotationθ2 about the~x1 axis. See figure 1.15.
- Joint 3 allows a rotationθ3 about the~z2 axis.
- Joint 4 allows a rotationθ4 about the~y3 axis.
- Joint 5 allows a rotationθ5 about the~z4 axis.

(a) Determine the vectors~r12,~r23,~r34,~r45,~r5H , in their respective link frames,F1,
F2, F3, F4, F5.

(b) What is the orientation of the hand relative to the room coordinates? (Find the
rotational transformation fromFr to F5).

(c) Determine the position of the hand relative to the robot base,~rH , in room
coordinatesFr. Note: leave your answer in terms of products of principal rotation
matrices.

The results from parts (b) and (c) will allow the robot user todetermine the required
joint anglesθ1, θ2, θ3, θ4, θ5 required to pick up an object with a given location and
orientation.

6. Earth orbiting spacecraft problems often require the conversion between different
reference frames. Three frames that are often used are the Earth-Centered-Inertial
(ECI) frame (denotedFG), the Earth-Centered-Earth-Fixed (ECEF) frame (denoted
FF ) and the local Topocentric frame (denotedFT ). The ECI frame is an inertially
fixed frame (does not rotate with the earth), with thez-axis is aligned with the earth’s
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spin axis, and therefore thex- andy-axes lie in the equatorial plane. The origin of the
ECI frame is at the center of the earth. The ECEF frame also hasits origin at the center
of the earth, and thez-axis aligned with the earth’s spin axis. Thex-axis points to the
location on the equator with zero longitude. Since the ECEF frame is fixed to the earth,
thex- andy-axes rotate with the earth. The Topocentric frame depends on the location
on the surface of the earth, given by longitudeλ and latitudeδ. The origin is at the
surface of the earth, at the location of it’s definition. Itsx-axis points south along the
local horizon, and it’sy-axis points toward the east along the local horizon. This frame
is important, because it is within this frame that observations of a satellite are made
from the Earth (with a telescope or radar for example).

The ECEF frame is obtained by a rotationθGMT = ωearth(t− t0) (called the
Greenwich Mean Time) about the ECIz-axis. Note thatωearth is the earth’s rate of
rotation. See Figure 1.17.

The Topocentric frame is obtained by a rotationλ about the ECEFz-axis, followed by
a rotation90o − δ about the transformedy-axis. See Figure 1.18.

(a) Determine the rotation matrix defining the transformation from ECEF to ECI
coordinates, and from Topocentric to ECI coordinates, thatis, determineCGF

andCGT . Hint: You may use the fact thatCz(a)Cz(b) = Cz(a+ b).
(b) A ground satellite monitoring station with coordinatesλ, δ measures the position

of a satellite in local topocentric coordinates as~ρ = ~FT
T ρ (see Figure 1.19).

Assuming that the Earth is a sphere with radiusRearth, show that the inertial
position~r = ~FT

Gr in ECI coordinates is given by:

r =





x sin δ cos(λ+ θGMT )− y sin(λ + θGMT ) + (Rearth + z) cos δ cos(λ + θGMT )
x sin δ sin(λ+ θGMT ) + y cos(λ+ θGMT ) + (Rearth + z) cos δ sin(λ+ θGMT )

(Rearth + z) sin δ − x cos δ





whereρ =





x
y
z



.

Hint: You may use the fact thatRearth, λ+ θGMT andδ form spherical coor-
dinates for the ground station in ECI coordinates.

(c) The ground station measures the velocity of the satellite relative to the topocentric
coordinates as~vT = ~FT

T ρ̇. Denoting the station position relative to the center of
the earth by~Rs, show that the satellite’s inertial velocity~v = ~FT

G ṙ satisfies

~v = ~vT + ~ωFG × ~Rs + ~ωFG × ~ρ,

where~ωFG is the Earth’s inertial angular velocity vector, given by

~ωFG = ~FT
G





0
0

ωearth



 .

7. A spacecraft is orbiting the Earth in a circular equatorial orbit. The spacecraft orbit is
shown in Figure 1.19, looking down on the orbit from above thenorth pole (looking
down~zG).
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The spacecraft position relative to the center of the Earth is given by the vector~r, which
makes an angleθ with ~xG. Note that for a circular orbit,̇θ = n = constant > 0, and
r = |~r| = constant.

(a) What are the coordinates of the spacecraft position~r in the ECI frame?

(b) The inertial velocity of the spacecraft, denoted~v, is the velocity as seen in
the ECI frame, that is~v = ~̇r = ~FT

G ṙG. Compute the inertial velocity~v in ECI
coordinates, and find the angle between~r and~v.

(c) The spacecraft orbital angular momentum vector is givenby

~h = ~r× ~v.

Compute~h in ECI coordinates. Verify that~h is perpendicular to~r and~v.

(d) The magnitude of the orbital angular momentum ish = |~h|. Computeh in terms
of r andn.

(e) The orbital energy is given by

E =
~v · ~v
2

− µ

r
,

which is the sum of the kinetic and gravitational potential energy. Note thatµ
is the Earth’s gravitational constant. Given that for a circular orbitn =

√

µ/r3,
determine the orbital energy.

8. You take your little nephew/niece to the fair. He/she wants to ride on the merry-go-
round. You decide to watch from the sideline.

The position of your nephew/niece relative to you may be described by the vector~rn.
The position of your nephew/niece relative to the center of the merry-go-round is given
by the vector~Rn. The position of the center of the merry-go-round relative to you is
given bye~rm. The merry-go-round rotates with angular velocityω = θ̇.

Attach a reference frame to yourself, labeledFy, with the~xy and~yy axes parallel to the
ground as shown in Figure 1.20 (the~zy axis points vertically upwards). Attach a second
reference frame to the merry-go-round, labeledFm, with the~xm axis pointing from
the center of the merry-go-round to your nephew/niece, and the~ym axis perpendicular
to~xm, in the plane of the merry-go-round, as shown in Figure 1.20.The~zm axis points
vertically upwards.

The distance from the center of the merry-go-round to your nephew/niece isRn =
|~Rn|. The distance from you to the center of the merry-go-round isrm = |~rm|.

(a) Based on Figure 1.20, what are the coordinates in~Fm of your nephew/niece
relative to the center of the merry-go-round, that is, what is Rn,m such that
~Rn = ~FT

mRn,m?

(b) What is the rotational transformation from your coordinate systemFy to the
merry-go-round coordinate systemFm? (FindCmy).

(c) Using your answers to parts (a) and (b), determine the coordinates inFy of your
nephew/niece relative to you, that is, findrn,y such that~rn = ~FT

y rn,y.
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You may take~rm = ~FT
y





xm,y
ym,y
zm,y



.

(d) Using your answer to part (c), determine the velocity of your nephew/niece as
seen by you.

(e) Using your answer to part (a), determine the velocity of your nephew/niece as
seen by another person on the merry-go-round.

9. This problem puts some numbers to question 7.

A spacecraft is in a circular equatorial orbit about the earth with altitude600 km. You
will need the following information:
Earth’s gravitational parameter:µ = 3.986× 105 km3/s2.
Earth’s radius:Re = 6378 km.
(Note that altitude means height above the earth’s surface).

(a) Referring to part 7(a), what is the spacecraft position in ECI coordinates when
θ = 30o?

(b) Using 7(b), what is the spacecraft velocity as seen in theECI frame? Note that
θ̇ = n =

√

µ/r3. Also, compute the orbital speed,v = |~v|.
(c) Referring to 7(c), compute the spacecraft orbital angular momentum vector in

ECI coordinates.

(d) Referring to 7(e), compute the spacecraft orbital energy.

10. The orientation of a reference frameF2 is obtained from the reference frameF1 by
a 2-3-1 Euler rotation sequence, with anglesθy, θz andθx. Specifically, frameF2 is
obtained from frameF1 by:
- A rotationθy about they-axisof frameF1,
- A rotationθz about thez-axisof the intermediate frameFi,
- A rotationθx about thex-axisof the transformed frameFt.

(a) Obtain the rotation matrixC21.

(b) Using the result in (a), obtain expressions for computing θx, θy andθz from the
rotation matrix.

(c) Where is the singularity of the 2-3-1 rotation sequence?What does this physically
mean?

(d) Given that frameF2 rotates with angular velocity~ω21 = ~FT
2 ω21 relative to frame

F1, obtain the kinematical relationship betweenω21 and





θ̇x
θ̇y
θ̇z



.

(e) Using the result in (d), what happens to the kinematical relationship if the angles
θx, θy andθz and rateṡθx, θ̇y andθ̇z are very small? Hints: for a small angleθ,
you can setsin θ ≈ θ andcos θ ≈ 1. For very small quantitiesa andb, you can
neglect productsab.
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11. The orientation of a reference frameF2 is obtained from the reference frameF1 by
a 3-2-3 Euler rotation sequence, with anglesθ1, θ2 andθ3. Specifically, frameF2 is
obtained from frameF1 by:
- A rotationθ1 about thez-axisof frameF1,
- A rotationθ2 about they-axisof the intermediate frameFi,
- A rotationθ3 about thez-axisof the transformed frameFt.

(a) Obtain the rotation matrixC21.
(b) Given that frameF2 rotates with angular velocity~ω21 = ~FT

2 ω21 relative to frame

F1, obtain the kinematical relationship betweenω21 and





θ̇1
θ̇2
θ̇3



.

(c) Invert the result in part (b) to obtain





θ̇1
θ̇2
θ̇3



 as a function ofω21. Hint: For a

general block lower triangular matrix,
[

A 0
B C

]−1

=

[

A−1 0
−C−1BA−1 C−1

]

.

(d) Where is the singularity of the 3-2-3 rotation sequence?What does this physically
mean?

12. Hooke’s joint is shown in Figure 1.21. It can be used in machinery to transmit rotational
power when the axis of rotation needs to change slightly. As shown in Figure 1.21,
Hooke’s joint consists of three components. An input shaft,an output shaft and a cross
in the middle. The cross is connected to each shaft such one axis of the cross rotates
with the input shaft and the other axis of the cross rotates with the output shaft.

It can be seen from Figure 1.21 that the output shaft has an angle α with respect to
the input shaft, with|α| < 90o. We define two fixed (non-rotating) reference frames
Fi andFo, such that

• thex-axis ofFi is parallel to the axis of rotation of the input shaft,
• thex-axis ofFo is parallel to the axis of rotation of the output shaft and
• they-axes ofFi andFo coincide.

The rotational angle of the input shaft is labeledθi and the rotational angle of the
output shaft is labeledθo.

We also attach a reference frameFc to the cross, as shown in Figures 1.21 and 1.22.

(a) Write down the rotation matrixCoi corresponding to the transformation fromFi
toFo.

(b) We further attach reference framesF2 andF3 to the input and output shafts
respectively, as shown in Figures 1.23 and 1.24. Write down the rotation matrices
C2i andC3o. You may assume that~Fi = ~F2 when θi = 0 and that ~Fo = ~F3

whenθo = 0.
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(c) What is the rotational transformation fromF3 to Fc? Write down the
corresponding rotation matrixCc3.

(d) By considering the rotational transformationsFc → F3 → Fo andFc → F2 →
Fi → Fo, obtain two expressions for thez-axis ofFc in Fo coordinates. Hint:
You may use the fact that~zc = ~z2.

(e) Using the expressions obtained in part (d), show that theinput and output
rotational angles are related by

sin θo =
sin θi

(

1− sin2 α cos2 θi
)

1

2

,

cos θo =
cosα cos θi

(

1− sin2 α cos2 θi
)

1

2

.

13. Show that for any unit column matrixa ∈ R3 with aTa = 1,

a×a×a× = −a×.

14. Making use of the scalar-triple product and vector-triple product identities, show that
(

~a× ~b
)

·
(

~c× ~d
)

= (~a · ~c)
(

~b · ~d
)

−
(

~a · ~d
)(

~b · ~c
)

.

15. Consider the axis-angle parameters,a andφ.

(a) Starting with the expression for the rotation matrix given in (1.26) in the book,
obtain an approximate expression for the rotation matrix when the angle of
rotationφ is very small. The quantityφ = aφ will be useful (this is sometimes
called therotation vector).

(b) Show that the axis-angle parameters(a3, φ3) equivalent to successive rotations
(a1, φ1) followed by(a2, φ2) are given by

a3 =
1

sin(φ3/2)

[

sin
φ1
2

cos
φ2
2
a1 + sin

φ2
2

cos
φ1
2
a2 + sin

φ1
2

sin
φ2
2
a×1 a2

]

,

cos
φ3
2

= cos
φ1
2

cos
φ2
2

− sin
φ1
2

sin
φ2
2
aT1 a2.

(c) Show that their kinematical equations are given by

ȧ =
1

2

(

a× − 1

tan(φ/2)
a×a×

)

ω,

φ̇ = aTω.

(d) Show that the inverse kinematics are given by

ω =
(

sinφ1− (1− cosφ)a×
)

ȧ+ aφ̇.

What does this reduce to when the rotation is about a fixed axis?
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(e) Is there a singularity associated with these parameters?

(f) Starting with the inverse kinematics obtained in part (d), obtain an approximate
expression forω when the angle of rotationφ is very small. The quantityφ = aφ
will again be useful.

16. Consider the rotation vectorφ = aφ, introduced in Question 15.

(a) Show that the rotation matrix associated withφ is given by

C = 1+
(1− cosφ)

φ2
φ×φ× − sinφ

φ
φ×,

whereφ = ‖φ‖.

(b) Show that the kinematical equations for the rotation vector are

φ̇ =

(

1+
φ×

2
+

1

φ2

[

1− φ/2

tan(φ/2)

]

φ
×
φ

×

)

ω.

(c) Show that the inverse kinematics are given by

ω =

(

1− (1− cosφ)

φ2
φ× +

(φ− sinφ)

φ3
φ×φ×

)

φ̇.

(d) Where is the singularity associated with these parameters? Careful, it is not at
φ = 0.

17. Consider the following parameterization of the rotation matrix

p = a tan
φ

2
.

These are called the Euler-Rodrigues parameters.

(a) Show that the rotation matrix associated withp is given by

C =
(1− pTp)1+ 2ppT − 2p×

1 + pTp
.

(b) Starting with the expression for the rotation matrix obtained in part (a), obtain an
approximate expression for the rotation matrix whenp is very small.

(c) Show that the Euler-Rodriguez parameters may be obtained from a rotation
matrix by

p =
1

1 + C11 + C22 + C33





C23 − C32

C31 − C13

C12 − C21



 .

(d) Show that the rotationp3 equivalent to successive rotationsp1 followed byp2 is
given by

p3 =
p1 + p2 + p×

1 p2

1− pT1 p2
.
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(e) Show that the kinematical equations for the Euler-Rodrigues parameters are

ṗ =
1

2
(1+ ppT + p×)ω.

(f) Show that the inverse kinematics are given by

ω =
2(1− p×)ṗ

1 + pTp
.

(g) Starting with inverse kinematics obtained in part (f), obtain an approximate
expression forω whenp andṗ are very small.

(h) Where is the singularity associated with these parameters?

18. Consider the following parameterization of the rotation matrix

σ = a tan
φ

4
.

These are called the modified Euler-Rodrigues parameters.

(a) Show that the rotation matrix associated withσ is given by

C = 1+
8σ×σ× − 4(1− σTσ)σ×

(1 + σTσ)2
.

(b) Starting with the expression for the rotation matrix obtained in part (a), obtain an
approximate expression for the rotation matrix whenσ is very small.

(c) Setting s = C11 + C22 + C33, show that the modified Euler-Rodrigues
parameters may be obtained from a rotation matrix by

σ =
1

1 + s+ 2
√
1 + s





C23 − C32

C31 − C13

C12 − C21



 ,

when‖σ‖ < 1,

σ =
1

1 + s− 2
√
1 + s





C23 − C32

C31 − C13

C12 − C21



 ,

when‖σ‖ > 1, andσ = a (the principal axis of rotation) when‖σ‖ = 1.
(d) Show that the rotationσ3 equivalent to successive rotationsσ1 followed byσ2

is given by

σ3 =
(1 − σT2 σ2)σ1 + (1 − σT1 σ1)σ2 + 2σ×

1 σ2

1 + (σT1 σ1)2(σT2 σ2)2 − 2σT1 σ2
.

(e) Show that the kinematical equations for the modified Euler-Rodrigues parameters
are

σ̇ =
1

4

(

(1 − σTσ)1+ 2σσT + 2σ×
)

ω.
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(f) Show that the inverse kinematics are given by

ω =
4

(1 + σTσ)2
(

(1− σTσ)1+ 2σσT − 2σ×
)

σ̇.

(g) Starting with inverse kinematics obtained in part (f), obtain an approximate
expression forω whenσ andσ̇ are very small.

(h) Where is the singularity associated with these parameters? What are the
advantages of the modified Euler-Rodrigues parameters compared to the Euler-
Rodrigues parameters (introduced in Question 17)?

19. In this question, we consider a reference frameF1 defined by three non-coplanar unit
vectors,~11, ~12 and~13, which are not necessarily orthogonal. Note that we reserve
the notation~x, ~y and~z for the basis vectors of orthogonal right-handed frames of
reference, which is why we do not use them here. Just as in Section 1.2 of the book,
since the basis vectors,~11, ~12 and ~13 are non-coplanar, we may represent every
physical vector~r as

~r = ~FT
1 r1,

where

~F1 =





~11

~12

~13



 ,

is the vectrix containing the basis vectors defining frameF1, and

r1 =





r1,1
r2,1
r3,1



 ,

is the column matrix containing the coordinates of~r in frameF1. Note that for two
physical vectors~a = ~FT

1 a1 and~b = ~FT
1 b1, it is easy to verify that

~a+ ~b = ~FT
1 (a1 + b1),

and that for any scalarc,

c~a = ~FT
1 (ca1).

(a) Show that for any two physical vectors~a = ~FT
1 a1 and~b = ~FT

1 b1, the scalar
product obeys

~a · ~b = aT1 W1b1,

where

W1 =





~11 · ~11
~11 · ~12

~11 · ~13

~12 · ~11
~12 · ~12

~12 · ~13

~13 · ~11
~13 · ~12

~13 · ~13



 .

Furthermore, verify that the matrixW1 is symmetric and positive definite.



16 Chapter 1 Exercises

(b) Show that for a physical vector~r = ~FT
1 r1, the coordinatesr1 may be found

according to
r1 = W−1

1 r
proj
1 ,

whereW1 is defined in part (a), and

r
proj
1 = ~F1 ·~r =





~11 ·~r
~12 ·~r
~13 ·~r



 ,

which is recognized to be the column matrix containing the orthogonal
projections of~r onto the basis vectors defining frameF1.

(c) Show that the cross-product between two physical vectors obeys

~a× ~b = ~FT
1 (d1W

−1
1 a×1 b1),

whereW1 is defined in part (a), and

d1 = ~11 · (~12 × ~13) = ~12 · (~13 × ~11) = ~13 · (~11 × ~12).

20. Continuing from Question 19, consider now a second reference frameF2, with unit-
length basis vectors~21, ~22 and~23, which are also not necessarily orthogonal.

(a) Consider an arbitrary physical vector~a, with representations in framesF1 and
F2, given by

~a = ~FT
1 a1 = ~FT

2 a2.

Show that the two sets of coordinates satisfy

a2 = T21a1,

where
T21 = W−1

2 T̄21,

with W2 being defined as in Question 19 (a), and

T̄21 =





~21 · ~11
~21 · ~12

~21 · ~13

~22 · ~11
~22 · ~12

~22 · ~13

~23 · ~11
~23 · ~12

~23 · ~13



 .

Note that we label the transformation matrix byT, since it is not in general a
rotation matrix, which we denote byC.

(b) Show that
T21 =

[

11,2 12,2 13,2

]

,

where
~11 = ~FT

2 11,2, ~12 = ~FT
2 12,2, ~13 = ~FT

2 13,2,

are the coordinate representations inF2 of the basis vectors definingF1. How
does this compare to the expression for the rotation matrix given in equation
(1.18) in the book.
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(c) Noting thatT̄21 = T̄T
12, show that

T21 = W−1
2 TT

12W1.

(d) Leta2 = T21a1. Show that

a×2 =

(

d1
d2

)

TT
12a

×
1 T12.

whered1 andd2 are defined as in Question 19 (c). How does this compare to
equation (1.21) in the book?

21. Define the derivative of a physical vector~r = ~FT
1 r1 as seen in a not-necessarily

orthogonal frameF1 by
·1

~r
∆
= ~FT

1 ṙ1.

Show that the rules for differentiation obtained in Section1.4 of the book hold in this
case also. Note that we assume that the basis vectors ofF1 are fixed relative to each
other.

22. Consider the framesF1 andF2 from question 19. Define right-handed orthogonal
framesF1o andF2o such thatF1 is fixed inF1o, andF2 is fixed inF2o. Define the
angular velocity~ω21 of frameF2 relative to frameF1 by

~ω21 = ~ω2o,1o.

Note that this is well defined, since any choice of orthogonalright-handed frames
F1o andF2o would lead to the same angular velocity vector. Indeed, letF1o′ and
F2o′ be another pair of right-handed orthogonal reference frames such thatF1 is
fixed in F1o′ , andF2 is fixed inF2o′ . Then,~ω1o′,1o = ~ω2o′,2o = ~0, which leads to
~ω2o,1o = ~ω2o′,1o′ .

(a) Consider~r = ~FT
1 r1 = ~FT

1or1o. Show that

·1

~r=
·1o

~r .

(b) Making use of the Transport Theorem for right-handed orthogonal reference
frames (equation (1.52) in the book), and part (a), show thatthe Transport
Theorem also holds for non-orthogonal reference frames. That is, show

·1

~r=
·2

~r +~ω21 ×~r.

(c) Let ~ω21 = ~FT
2 ω21. Show that the rotational kinematics are given by

Ṫ21 = −d2W−1
2 ω×

21T21,

whereT21 was introduced in Question 20 (a), andd2, W2 were defined in
Question 19. How does this compare to Poisson’s equation (equation (1.55) in
the book)?
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1. This question makes use of the Earth-Centered-Inertial (ECI) FG, Earth-Centered-
Earth-Fixed (ECEF)FF and TopocentricFT reference frames. The figures defining
the frames are reproduced in Figures 2.1 and 2.2. Figure 2.3 shows the location of
a ground station, which is tracking a satellite. For Earth-Orbiting satellites, the ECI
frame can be considered to be inertial.

The position of the satellite relative to the center of the earth is given by the vector
~r. The position of the satellite relative to the ground station is given by the vector~ρ.
The position of the ground station relative to the center of the earth is given by the
vector ~Rs. The Topocentric frame has it’s origin at the ground stationlocation. The
angular velocity of the Earth (angular velocity of frameFF relative toFG) is given by
the vector~ωFG, and is constant as seen in the ECI and ECEF frames.

The mass of the satellite ism, and the sum of all external forces acting on the satellite
is given by the vector~F.

(a) Show that the vector equation of motion of the satellite as seen by an observer at
the ground station (as seen inFT ) is given by

m
◦◦

~ρ= −2m~ωFG×
◦

~ρ −m~ωFG × (~ωFG × ~Rs)−m~ωFG × (~ωFG × ~ρ) + ~F,

where(◦) denotes time differentiation as seen in frameFT .

(b) Given the coordinates of the~ρ in F , the coordinates of~ωFG, ~Rs anFF , and the
coordinates of~F in FG, that is, given

~ρ = ~FT
T ρ, ~ωFG = ~FT

F ωFG,
~Rs = ~FT

FRs, ~F = ~FT
GF,

show that in topocentric coordinates, the equation of motion obtained in part (a)
is given by

mρ̈ = −2mCTFω
×
FGC

T
TF ρ̇−mCTFω

×
FGω

×
FGRs −mCTFω

×
FGω

×
FGC

T
TFρ+CTGF,

whereCTF is the transformation fromFF to FT coordinates andCTG is the
transformation fromFG toFT coordinates.

Spacecraft Dynamics and Control - An Introduction,Anton H.J. de Ruiter, Christopher J. Damaren and James R. Forbes,
c© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

Companion Website: http://www.wiley.com/go/deruiter/spacecraft



28 Chapter 2 Exercises

2. Consider the moment of inertia matrix

J =





Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz



 .

Show that for any three-dimensional body

Jxx − Jyy + Jzz > 0

3. In this question you will derive the expression for the angular momentum of a dual-spin
spacecraft.

(a) Consider a wheel with moment of inertia matrix about the center of mass as
evaluated in a principal body frameFp given by

Ip =





It 0 0
0 It 0
0 0 Is



 ,

whereIs is the moment of inertia about the spin axis, andIt is the transverse
moment of inertia. Clearly in this case, the spin axis is the principalz-axis, which
is given by

~zp = ~FT
p ez,

where

ez =





0
0
1



 .

Consider any other frameFb. Show that the inertia matrix about the wheel center
of mass as evaluated in frameFb is given by

Iw = It1+ (Is − It)aa
T ,

wherea are the coordinates of the axis of symmetry in frameFb. Hint: first show
thatIp = It1+ (Is − It)eze

T
z .

(b) Consider a rigid wheel as shown in figure 2.4, which has inertial angular velocity
~ωw. The vector~rw locates the wheel’s center of mass from the pointc, and the
vector~ρ locates the mass elementdm from the wheel’s center of massw. By
definition, the wheel’s angular momentum about its center ofmass is given by

~hw =

∫

B

~ρ× ~̇ρdm,

where~̇ρ denotes the inertial time-derivative of~ρ. Starting with the definition for
the wheel’s angular momentum about pointc,

~hwc =

∫

B

(~rw + ~ρ)×
(

~̇rw + ~̇ρ
)

dm,
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show that the wheel’s angular momentum about the pointc is given by

~hwc = mw~rw × ~̇rw + ~hw,

wheremw is the total mass of the wheel.

(c) Consider the dual-spin spacecraft as shown in figure 2.5.We divide the spacecraft
into two parts: the wheel (labeledW ), and the rest of the spacecraft, called the
platform (labeledP ). The pointc denotes the center of mass of the spacecraft
(the combined platform and wheel). The vector~rw = ~FT

b rw locates the center of
mass of the wheel from the center of mass of the spacecraft. Let Fb be a body-
fixed reference frame attached to the platform. The platformhas inertial angular
velocity ~ω = ~FT

b ω. The wheel has angular velocity~ωs = ωs ~FT
b a relative to the

platform, where~a = ~FT
b a is the wheel spin axis, andωs is the wheel spin-rate

relative to the platform. The wheel moment of inertia about the spin axis is labeled
Is, and the wheel transverse moment of inertia is labeledIt.

Show that the wheel angular momentum vector about the wheel center of mass is
given by

~hw = ~FT
b [Iwω + hsa] ,

wherehs = Isωs is the wheel relative angular momentum, and

Iw = It1+ (Is − It)aa
T .

(d) Given that the wheel has massmw, use the result in part (b) to show that the
wheel angular momentum about the spacecraft center of massc is given by

~hwc = ~FT
b [Jwcω + hsa] ,

whereJwc = Iw −mwr
×
wr

×
w is the wheel moment of inertia matrix about the

spacecraft center of massc evaluated inFb.
(e) Finally, show that the total angular momentum of the spacecraft (platform plus

wheel) about the spacecraft center of mass is given by

~hc = ~FT
b [Iω + hsa] ,

whereI = Jpc + Jwc is the moment of inertia matrix of the spacecraft about the
center of massc, andJpc is the platform moment of inertia about the spacecraft
center of massc.

4. Consider again the dual-spin satellite from Question 3, shown in Figure 2.5. Let
~vc = ~FT

b vc be the inertial velocity of pointc, which as we recall is the center of mass
of the spacecraft (combined platform and wheel).

(a) Show that the kinetic energy of the wheel is given by

Tw =
1

2
mwv

2
c + vTc ω

×(mwrw) +
1

2
ωTJwcω + Isωsa

Tω +
1

2
Isω

2
s ,

wherevc = ‖vc‖, and all other quantities are defined in Question 3.
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(b) Show that the platform kinetic energy is given by

Tp =
1

2
mpv

2
c + vTc ω

×cp +
1

2
ωTJpcω,

wherecp =
∫

p
ρdm is the platform first moment of mass about pointc, andmp

is the total platform mass.

(c) Combining the results from parts (a) and (b), show that the total spacecraft kinetic
energy is given by

T = Tt + Tr,

where
Tt =

1

2
mv2c ,

is the spacecraft translational kinetic energy, andm = mp +mw is the total
spacecraft mass, and

Tr =
1

2
ωT Iω + Isωsa

Tω +
1

2
Isω

2
s ,

is the spacecraft rotational kinetic energy. Hint:mprw is the first moment of mass
of the wheel about the pointc.
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For some of the following questions, you will need the Earth’s gravitational constant

µ⊕ = 3.986× 105 km3/s2,

the Sun’s gravitational constant

µ⊙ = 1.3271244× 1011 km3/s2,

and

1 AU = 1.4959787× 108 km.

1. A spacecraft is observed with inertial position and velocity vectors relative to the center
of the Earth, given in ECI coordinates by

~r = ~FT
G =





1670.6319
1670.6319
6491.2735



 km, ~v = ~FT
G =





−5.3429
−5.3429
3.3788



 km/s.

The Earth’s gravitational constant is given byµ⊕ = 3.986× 105 km3/s2.

(a) Compute the orbital angular momentum vector~h in ECI coordinates.

(b) Compute the orbital energy,E . What type of orbit is it?

(c) Compute the eccentricity vector~e in ECI coordinates.

(d) Compute the eccentricity,e and the semi-latus rectump.

(e) Compute the true anomaly,θ, noting thatθ is measured positive from~e as a
right-hand rotation about~h.

(f) Compute the radius at periapsisrmin.

(g) Compute the spacecraft position vector at periapsis in ECI coordinates.

(h) Compute the orbital speed at periapsis.

(i) Compute the angle,i, between the orbital plane and the Earth’s equatorial plane,
noting that~h is a vector normal to the orbit, and~zG is a vector normal to the
equator.

Spacecraft Dynamics and Control - An Introduction,Anton H.J. de Ruiter, Christopher J. Damaren and James R. Forbes,
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2. A geosynchronousorbit has semi-major axis and eccentricity:

a = 42241.08007 km,
e = 0.

(a) Compute the orbital period in hours. What can you conclude about a satellite in
a geosynchronous orbit?

(b) A geostationaryorbit is a geosynchronous orbit with zero inclinationi = 0.
What is the plane of the orbit? What can you conclude about a satellite in a
geosynchronous orbit in relation to an observer on the ground?

3. Halley’s comet last passed perihelion on February 9, 1986. It has a semimajor axis
of 17.9564 AU and eccentricitye = 0.967298 (one AU is the semimajor axis of the
earth’s orbit around the sun). Predict the date of its next return.

4. A satellite is in a geocentric Keplerian (two-body) orbitwith a period of 270 minutes
and eccentricitye = 0.5. It has passed perigee and is now at a point in which the orbital
radius is the same as the semi-latus rectum. How much time (inminutes) has elapsed
since perigee passage?

5. An earth-orbiting spacecraft has classical orbital elements

a = 8000 km,
e = 0.1,
i = 45o,
ω = 0o,
Ω = 90o.

The spacecraft currently has true anomalyθ = 30o.

(a) Determine the spacecraft position and velocity vectorsin perifocal coordinates.

(b) Determine the transformation from perifocal to ECI coordinatesCGp.

(c) Determine the spacecraft position and velocity vectorsin ECI coordinates.

6. At timet = 0, the position and velocity vectors for an earth-orbiting satellite are given
in ECI coordinates as:

~r = ~FT
G





−3718.8
1602.9
6517.7



 km,

~v = ~FT
G





−4.8991
−5.4428
−0.6659



 km/s.

(a) Find the classical orbital elements

(b) Thirty minutes later, what are~r and~v? (Express your answers in ECI coordinates)

7. An earth-orbiting satellite has orbital radius and speedat perigee

rp = 7000 km, vp = 8 km/s.
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(a) Determine the orbital period,T in minutes.
(b) Determine the orbital speed twenty minutes after perigee passage.

8. At timet = 0, the position and velocity vectors for an earth-orbiting satellite are given
in ECI coordinates as:

~r = ~FT
G





1.703× 105

0.0426× 105

0.638× 105



 km,

~v = ~FT
G





0.0972
1.271
1.465



 km/s.

(a) Find the classical orbital elements
(b) Twenty minutes later, what are~r and ~v? (Express your answers in ECI

coordinates)

9. By starting with the polar solution for an orbit, and the equation for the orbital angular
momentum, show that the time-of-flight equation for a parabolic orbit is given by

6

√

µ

p3
(t− t0) = 3 tan

θ

2
+ tan3

θ

2
,

wheret− t0 denotes the time since periapsis passage.

10. In this question you are going to derive the time-of-flight equation for a hyperbolic
orbit.

First, we need to discuss hyperbolic functions. The hyperbolic sine, cosine and tangent
are defined as

sinhx
∆
=
ex − e−x

2
and coshx

∆
=
ex + e−x

2
, tanhx

∆
=

sinhx

coshx
,

respectively. From these definitions, the following property can readily be shown.

cosh2 x− sinh2 x = 1.

The derivatives are readily obtained as

d

dx
sinhx = coshx,

d

dx
coshx = sinhx,

d

dx
tanhx =

1

cosh2 x
.

Similar to the trigonometric functions, the following “double-angle” formulae can also
readily be found

coshx = 2 cosh2
x

2
− 1, sinhx = 2 sinh

x

2
cosh

x

2
.

Consider the hyperbola satisfying

x2

a2
− y2

b2
= 1, with a < 0, b < 0.
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As shown in figure 3.1, the hyperbola has two branches. The left-hand branch of the
hyperbola can be represented parametrically by

x = a coshP, y = −b sinhP

We now consider a hyperbolic orbit with eccentricitye > 1, a < 0 andb = a
√
e2 − 1.

Since a hyperbolic orbit corresponds to the left-hand branch of a hyperbola, we can
represent thex andy components of the orbital position in perifocal coordinates by

xp = −ae+ a coshH, yp = −b sinhH,

where we callH the “hyperbolic eccentric anomaly”.

(a) Show that the orbital radius satisfies

r = a(1− e coshH).

(b) Show that

cos θ =
a [coshH − e]

r
,

and

sin θ =
−a

√
e2 − 1 sinhH

r
.

(c) By applying trigonometric and hyperbolic double angle formulae to the results in
part (b), show that

cos2
θ

2
=

−a(e− 1) cosh2 H2
r

,

and

sin
θ

2
cos

θ

2
=

−a
√
e2 − 1 sinh H

2 cosh H
2

r
.

(d) Using the results from part (c), show that the true anomaly and the hyperbolic
eccentric anomaly are related by

tan
θ

2
=

√

e+ 1

e− 1
tanh

H

2
.

(e) By differentiating the result in part (d), and making useof the first result in part
(c), show that

dθ

dH
= −a

√
e2 − 1

r
.

(f) Let t0 be the time of periapsis passage. Evaluate the integral
∫ t

t0

hdτ =

∫ θ

0

r2dθ

to obtain the hyperbolic form of Kepler’s equation

e sinhH −H =

√

µ

−a3 (t− t0) .
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11. The inertial position and velocity of a spacecraft over the Earth are observed in the ECI
frame to be

~r = ~FT
G





9000
9000
0



 km, ~v = ~FT
G





0
0
7



 km/s.

Calculate:

(a) The angular momentum vector~h.

(b) The inclinationi,

(c) the right ascension of the ascending node,Ω.

12. Consider the circle of radiusa as shown in figure 3.2. The wedge bounded by a radius
with angleE from thex-axis and thex-axis itself may be divided into two parts: a
triangular part with areaAt and the remaining part with areaAo. Therefore, the area
of the wedge is given by

Aw = At +Ao.

(a) Show that the areaAo is given by

Ao =
1

2
a2 [E − sinE cosE] .

(b) Referring to figure 3.3, it can be seen that the area of an orbit swept out by the
radius vector from periapsis at timet0 to the current timet, can be divided into
two parts: a triangular part with areaA2 and the remaining part with areaA1.
Show that

A2 =
ab

2
[sinE cosE − e sinE] ,

whereb is the semi-minor axis, ande is the eccentricity.

(c) Given thatA1 = (b/a)A0, whereA0 was found in part (a), show that the area
swept out by the radius vector is given by

A(t) =
ab

2
[E − e sinE] .

(d) Using the result from part (c), make use of Kepler’s second law to derive Kepler’s
equation.

13. A spacecraft is in a geocentric Keplerian orbit. It has passed perigee, and is currently at
a position where the orbital radius is equal to the semi-latus rectum. The current orbital
radius and speed are

r = 7000 km, v = 7.5555 km/s.

How much time has elapsed since perigee passage?
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Chapter 4 Exercises

For some of the following questions, you will need the Earth’s gravitational constant

µ⊕ = 3.986× 105 km3/s2,

the Sun’s gravitational constant

µ⊙ = 1.3271244× 1011 km3/s2,

Earth’s heliocentric orbital radius

R⊕ = 1.49598023× 108 km,

and Mars’ heliocentric orbital radius

RMars = 2.27939186× 108 km.

1. Radar observations have provided the following successive position vectors of an
object orbiting the earth:

~r1 = ~FT
G





7000
0
0



 km,

~r2 = ~FT
G





5846.8
5846.8

0



 km,

~r3 = ~FT
G





0
14700
0



 km.

(a) Determine whether the orbit is elliptic, parabolic or hyperbolic.

(b) Determine the radius at perigee.

(c) Determine the orbital speed at perigee.
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2. Radar observations have provided the following successive position vectors of an
object orbiting the earth:

~r1 = ~FT
G





3467.3
3467.3
4903.5



 km,

~r2 = ~FT
G





0
0

7425.0



 km,

The time between observations ist2 − t1 = 740.6 seconds. You may assume that the
object is in an elliptical orbit. For simplicity, you may take η = ηH as the sector-
triangle area ratio.

(a) Determine the orbital period.
(b) Determine the eccentricity of the orbit.

3. It is desired to perform an interplanetary transfer from Earth to Mars. It is determined
that a Hohmann transfer requires too much time. Assume that the Earth and Mars both
possess coplanar circular orbits. At timet = 0, the Earth has true anomalyθE(0) = 0,
and Mars has true anomalyθM (0) = 30o. The spacecraft is desired to arrive at Mars
when Mars has a true anomalyθM = 45o. See Figure 4.1.

(a) Determine the time of flight of the transfer in days.
(b) Determine the required heliocentric velocity vector for the spacecraft upon

departing the Earth’s sphere of influence. Use the coordinate system shown in
Figure 4.1. You may takeη = ηH for the sector to triangle area ratio of the
transfer orbit.

4. Radar observations have provided the following successive position vectors of an
object orbiting the earth:

~r1 = ~FT
G





−1568.3998
4895.6516
4570.7746



 km,

~r2 = ~FT
G





−3090.7866
3963.6107
4988.2121



 km,

~r3 = ~FT
G





−5431.0755
1739.9314
5070.6676



 km.

Determine the semi-major axis, eccentricity and radius of perigee of the orbit.

5. Suppose that you are an astronaut onboard the International Space Station. You receive
a radio message from Canadian Space Surveillance (CSS) thata previously undetected
asteroid is on a collision course with the Earth, and will likely impact somewhere near
Ottawa. You are asked to fire a missile (which is kept onboard for such emergencies)



Chapter 4 Exercises 41

at the asteroid, which will break it into pieces small enoughto burn up upon entry into
the atmosphere. CSS informs you that the last point on the trajectory of the asteroid
that such an intercept is possible has ECI coordinates

~r2 = ~FT
G





−2102.02476
528.32428
6941.38176



 km,

which is where the asteroid will be in precisely 12 minutes time. It will take you 2
minutes to prepare the missile, at which time your location in ECI coordinates will be

~r1 = ~FT
G





1668.39097
3624.99549
5163.39798



 km.

What inertial velocity vector should the missile have upon being fired, in order to inter-
cept the asteroid at~r2? Express your result in ECI coordinates.

Note: Upon firing, the missile has an impulsive (instantaneous) thrust to give it the
required velocity, after which it is in free orbital flight until intercept with the target.

6. Radar observations have provided the following successive position vectors of an
object orbiting the earth:

~r1 = ~FT
G





1955.2948
4646.0121
5227.4178



 km,

~r2 = ~FT
G





107.8848
3469.9455
6531.6767



 km,

~r3 = ~FT
G





−2316.9737
1373.0632
7168.8558



 km.

(a) Determine the position vector at perigee~rp in ECI coordinates.

(b) Determine the velocity vector at perigee~vp in ECI coordinates.

(c) Determine the time since perigee passaget2 − t0 for ~r2.

7. Verify the velocity vector at perigee obtained in 6(b), bysolving Lambert’s problem
given~rp obtained in 6(a),~r2 and the time of flightt2 − t0 obtained in 6(c).
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Figure 4.1 Earth to Mars transfer
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Chapter 5 Exercises

For some of these questions, you will need the earth’s gravitational constant

µ⊕ = 3.986× 105 km3/s2.

1. It is desired to change an initially elliptical orbit of semimajor axisa1 and eccentricity
e1 to a larger elliptical orbit with semimajor axisa2 > a1, with the same radius of
perigeerp, but different argument of perigee (ω2 = ω1 +∆ω). Note that both orbits
lie in the same plane. See Figure 5.1.

(a) Describe a double tangential maneuver that can accomplish this.

(b) Obtain an expression for the total∆v for the maneuver.

(c) Obtain an expression for the total time taken to execute the maneuver.

2. Two spacecraft are in the same geocentric elliptical orbit with semi-major axisa =
10, 000 km and eccentricitye = 0.2, as shown in Figure 5.2. At the current time, they
have true anomalies

θ1 = 45o andθ1 = 90o,

respectively. Determine the∆v spacecraft 1 must apply at periapsis if it is to catch
spacecraft 2 with a single tangential maneuver.

3. A spacecraft is initially in a geocentric circular orbit of radiusrc = 7, 000 km. It is
desired to place the spacecraft in an elliptical orbit in thesame plane, of semi-major
axisa = 20, 000 km and eccentricitye = 0.665.

Suggest a double-impulse maneuver to accomplish the transfer. Compute the total∆v
and the time of flightTOF .

4. A spacecraft is launched into a circular orbit of radiusr1 = 8, 000 km with inclination,
i = 45o. Compute the total∆v required to transfer the spacecraft into a geostationary
orbit (which has radiusr2 = 42, 221 km), assuming the inclination change is
performed at apoapsis of the transfer orbit.

5. A satellite leaves a circular parking orbit at inclination i and executes a Hohmann
transfer to a larger circular orbit in the equatorial plane.Part of the required inclination
change∆i1 is performed during the first maneuver, and the remaining∆i2 = i−∆i1
is done during the second maneuver.
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(a) If the speeds in the circular orbits arevc1 andvc2 respectively, and the perigee
and apogee speeds in the Hohmann transfer orbit arevp andva respectively, show
that the total∆v for both maneuvers is given by

∆v =
[

v2c1 + v2p − 2vc1vp cos∆i1
]

1

2 +
[

v2c2 + v2a − 2vc2va cos (i−∆i1)
]

1

2 .

(b) Obtain an expression for
d∆v

d∆i1
.

(c) Using the result from part (b), show that performing the entire inclination change
at apogee of the Hohmann transfer orbit (that is∆i1 = 0) is not optimal.

∆ω

rp

rp

Orbit 1

Orbit 2

Figure 5.1 Desired orbit change

θ1

θ2

Spacecraft 1

Spacecraft 2

Periapsis

Figure 5.2 Question 2 Scenario
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For the following exercises, you will need the Earth’s gravitational constant

µearth = 3.986× 105 km3/s2,

the Sun’s gravitational constant

µsun = 1.3271244× 1011 km3/s2,

Mars’ gravitational constant

µmars = 4.305× 104 km3/s2,

Venus’ gravitational constant

µvenus = 3.257× 1014 m3/s2,

Jupiter’s gravitational constant,

µJup = 1.268× 108 km3/s2,

Earth’s orbital radius about the sun

Rearth = 149.598023× 106 km,

Mars’ orbital radius about the sun

Rmars = 227.939186× 106 km,

Venus’ orbital radius about the sun

Rvenus = 108.208601× 106 km,

Jupiter’s orbital radius about the sun,

RJup = 777.8× 106 km,

and Saturn’s orbital radius about the sun,

RSat = 1486× 106 km.
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1. As part of a preliminary study for an exploration trip to Mars, it has been decided that
a Hohmann transfer will be used to travel from the Earth to Mars. You may assume
that the orbits of the Earth and Mars are circular and lie in the same plane.

The spacecraft is initially in a circular parking orbit around the Earth of radius
rpark = 100, 000 km. It is desired to place the spacecraft in a circular orbit around
Mars of radiusrcapture = 50, 000 km.

(a) Compute the semi-major axis of the Hohmann transfer orbit.

(b) Compute the time-of-flight for the Hohmann transfer.

(c) Assuming that the Earth, Mars the Sun lie on the same line at t = 0, with Earth
and Mars on opposite sides of the Sun, compute the timet in days of the required
departure from Earth.

(d) Compute the required hyperbolic excess speedv∞,dep upon exiting the Earth’s
sphere of influence, and the hyperbolic excess speedv∞,arr upon entering Mars’
sphere of influence.

(e) Determine the location and magnitude of the∆vdep required for Earth departure.

(f) Determine the required arrival hyperbola asymptote offset−b, and compute the
magnitude of the∆varr required for Mars capture.

(g) Compute the total∆v for the trip.

2. As part of a preliminary study for an exploration trip to Venus, it has been decided that
a Hohmann transfer will be used to travel from the Earth to Venus. You may assume
that the orbits of the Earth and Venus are circular and lie in the same plane.

The spacecraft is initially in a circular parking orbit around the Earth of radius
rpark = 100, 000 km. It is desired to place the spacecraft in a circular orbit around
Venus of radiusrcapture = 50, 000 km.

(a) Compute the semi-major axis of the Hohmann transfer orbit.

(b) Compute the time-of-flight for the Hohmann transfer.

(c) Assuming that the Earth, Venus and the Sun lie along the same line att = 0 (on
the same side of the sun), compute the timet in days of the required departure
from Earth.

(d) Compute the required hyperbolic excess speedv∞,dep upon exiting the Earth’s
sphere of influence, and the hyperbolic excess speedv∞,arr upon entering Venus’
sphere of influence.

(e) Determine the location and magnitude of the∆vdep required for Earth departure.

(f) Determine the required arrival hyperbola asymptote offset−b, and compute the
magnitude of the∆varr required for Venus capture.

(g) Compute the total∆v for the trip.

3. Four incredibly lonely and homesick astronauts who got suckered into making a one-
way trip to Mars, have found a resource (on Mars) that can be refined to create rocket
fuel. However, this resource is limited, so they need to minimize the fuel required to
get back to Earth. This necessitates a Hohmann transfer.
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(a) The astronauts desperately want to return to Earth as soon as possible, so they do
not want to miss the next launch window. Given that the current true anomalies
of Mars and the Earth areθMars = 45o and θEarth = 90o, how long do the
astronauts have to make preparations?

(b) Assuming that they can make the next launch window, how long will it be until
the astronauts are reunited with their families?

(c) The astronauts will initially launch into a circular parking orbit around Mars
of radiusrpark = 30, 000 km, where they will perform a final check-out of all
their systems before embarking on the return journey to the Earth. What is the
magnitude of the∆v they must apply to get on the required escape hyperbola,
and at what location relative to the velocity vector of Mars must it be applied?

4. It is desired to perform an interplanetary transfer from Mars to Jupiter. Assume
that Mars and Jupiter possess circular coplanar orbits and make other appropriate
simplifying assumptions.

(a) Calculate the required heliocentric velocities near Mars and near Jupiter.

(b) What is the required hyperbolic excess speed,v∞,dep, upon leaving Mars’ sphere
of influence?

(c) If the approach distance at Jupiter is−b = 1, 050, 000 km, calculate the
perijovian distance.

(d) Calculate the∆v to be applied at periapsis of the arrival hyperbola to capture the
spacecraft into a circular orbit about Jupiter.

(e) If Mars and Jupiter are currently aligned on the oppositesides of the Sun, how
much time until the next launch window?

5. A spacecraft on a Hohmann transfer from the Earth to Saturn, flies unexpectedly
through the sphere of influence of Jupiter. The spacecraft approaches Jupiter on an
entry asymptote offset of−b = 900, 000 km. Assume circular coplanar orbits for
Earth, Jupiter and Saturn.

(a) What is the perijovian distance?

(b) What is the angle between the entrance and exit velocity vectors relative to
Jupiter?

(c) What will the spacecraft’s heliocentric energy gain be if the spacecraft passes
behind Jupiter?
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Chapter 7 Exercises

For the following questions, you will need the Earth’s gravitational constant

µ⊕ = 3.986× 105 km3/s2,

J2 for the Earth
J2 = 0.001082,

and the equatorial radius of the Earth

Re = 6378.1363 km.

1. The perturbing gravitational potential for the Earth maysometimes be approximated
by

φp = −µ
r

[

J2

(

Re
r

)2

P2(sin δ) + J3

(

Re
r

)3

P3(sin δ)

]

whereRe is the equatorial radius,J2 andJ3 are zonal harmonic coefficients,P2(x) =
3
2x

2 − 1
2 andP3(x) =

5
2x

3 − 3
2x are Legendre polynomials.

(a) Find the perturbing force per unit mass due to the above perturbing potential in
the spherical coordinate system (see Figure 7.1). The~∇ operator in spherical
coordinates is given by

~∇(·) = ∂

∂r
(·)~xs +

1

r cos δ

∂

∂λ
(·)~ys +

1

r

∂

∂δ
(·)~zs

Note that in Section 7.3.1 in the book, we obtained an expression for the
acceleration due to theJ2 term directly in ECI coordinates. Strictly speaking, the
Earth’s gravitational potential is fixed in a frame attachedto the Earth, namely
the ECEF frame. The reason the acceleration due toJ2 could be evaluated
directly in the ECI frame is because it depends only on latitude (δ), and not
on longitude (λ). Under the assumption that the ECI and ECEFz-axes are
equal (~zG = ~zF ), the latitudeδ is the same in both ECI and ECEF frames,
and the gravitational potential due toJ2 becomes identical in both frames. In
reality, there is a slight difference between~zG and ~zF . However, by making
the approximation that~zG = ~zF , the analytical expressions for the effects ofJ2
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on the orbital elements in Section 7.3.4 in the book could be obtained. Strictly
speaking, in the final equation for the acceleration due toJ2 (equation (7.40)),
~zG should be replaced by~zF .

(b) Noting that the spherical coordinate frame is obtained from the ECEF frame by
a rotationλ about the~zF axis, followed by a rotation−δ about the~ys axis, find
the perturbing force per unit mass due to theJ2 term in ECEF coordinates, and
verify that this is the same as that presented in equation (7.40) in the book.

(c) By transforming the perturbing force per unit mass due totheJ3 term to ECEF
coordinates, show that the force per unit mass in terms of physical vectors is

~fp,J3
=
µJ3R

3
e

2r5

[

5(~r · ~zF )
r2

(

7
(~r · ~zF )2

r2
− 3

)

~r+ 3

(

1− 5
(~r · ~zF )2

r2

)

~zF

]

2. Consider the perturbing potential for a non-spherical primary due to zonal terms only

φp(~r) = −µ
r

∞
∑

n=2

Jn

(

Re
r

)n

Pn(sin δ).

Show that the associated perturbing force/unit mass is given by

~fp =
µ

r3

∞
∑

n=2

Jn

(

Re
r

)n

[((n+ 1)Pn(sin δ) + sin δP ′
n(sin δ))~r− rP ′

n(sin δ)~zF ] ,

whereP ′
n(x) = dPn(x)/dx and~zF is thez-axis of the ECEF frame.

3. A satellite is initially in a close-to-circular Earth orbit (very small eccentricity), as
shown in Figure 7.2. However, a small disturbing force due tosolar radiation pressure
acts continuously on the spacecraft in an inertially fixed direction, as shown. Assume
the solar radiation pressure force per unit mass is in the plane of the orbit, and has
magnitudef .

(a) Express the tangential force componentfθ and the radial force componentfr in
terms off and the true anomaly,θ.

(b) Show that for the initially close-to-circular orbit, the evolutionary equations for
the semi-major axisa and the eccentricitye are (approximate by settinge = 0)

da

dt
=

2a2√
µa
f cos θ

de

dt
=

√

a

µ
f
[

1 + cos2 θ
]

(c) For a circular orbit, the angular rate is approximately constant, withθ̇ =
√

µ
a3

.
Show that the evolutionary equations fora ande with respect to true anomaly,θ
are

da

dθ
=

2f

n2
cos θ

de

dθ
=

f

an2

[

1 + cos2 θ
]

wheren =
√

µ
a3

is the orbital mean motion.
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(d) As shown in Figure 7.3, only the lit portion of the orbit isaffected by the solar
pressure force. The portion of the orbit shadowed by the Earth has a range of true
anomaliesθv ≤ θ ≤ 180o − θv as shown in the figure. Using the result in part
(c), show that the changes ina ande over one orbit are given by

∆a = 0

∆e =
f

an2

[

3
(

θv +
π

2

)

+
sin(2θv)

2

]

4. (a) Show that for a sun-synchronous frozen orbit with semi-major axis,a, the
eccentricitye is given by

e =

[

1−
(

3J2R
2
e

2〈Ω̇〉ss

√

µ

5a7

)

1

2

]

1

2

,

where
〈Ω̇〉ss = 360o/year.

(b) Compute the eccentricities and radii of perigee for a geocentric sun-synchronous
frozen orbits with semi-major axesa = 10, 000 km, a = 15, 000 km anda =
20, 000 km. Conclude that there is a range of semi-major axes for which a
geocentric sun-synchronous frozen orbit is possible.

(c) Sketch a plot of semi-major axis vs. radius of perigee fora geocentric sun-
synchronous frozen orbit.

(d) Find the minimum value ofa for which a geocentric sun-synchronous frozen
orbit is possible.

(e) Using an iterative procedure, determine the maximum value of a for which a
geocentric frozen orbit is possible, given that the orbit should stay at least 200
km above the earth.

5. For this question, make use of the impulsive form of Gauss’variational equations.

(a) Consider a circular orbit. Suppose that it is desired to simultaneously change the
inclinationi, and the right ascension of the ascending nodeΩ, by a small amount
δi andδΩ respectively.

i. What should be the magnitude of the impulsive velocity change?
ii. Where in the orbit should it be applied (at what value ofθ)? (You may take

ω = 0)

(b) Consider an elliptical orbit (0 < e < 1). Suppose that it is desired to change the
right ascension of the ascending nodeΩ by a small amountδΩ, while keeping all
other elements unaffected.

Describe a double-impulse maneuver that accomplishes this. That is, specifyδ~v1

andδ~v2, and their locations of application in the orbit(θ). Hint: Consider theδΩ
change first.

(c) Given a spacecraft in a sun-synchronous orbit of semi-major axisa = 7000 km,
and eccentricitye = 0.05.
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i. Compute the secular rate of change of the argument of perigee〈ω̇〉 due toJ2
effects.

ii. It is desired to keep the secular part ofω within a rangeωmin ≤ ω ≤ ωmax,
whereωmax − ωmin = 2o. How often does the orbit need to be corrected?

iii. Assuming thatδω = 2o, what is the requiredδ~v, and where should it be
applied in the orbit such that the other elements are not affected?

6. Atmospheric drag has a significant impact upon the lifetime of a space mission. The
force per unit mass due to atmospheric drag is given by

~fp = −C~v,

whereC = 1
2
cdA
m
ρv, and cd is the drag coefficient,A the cross-sectional area of

the spacecraft,m the spacecraft mass,ρ the atmospheric density, andv = |~v| the
magnitude of the spacecraft velocity vector.

(a) Starting from the energy equation for an orbit, show thatthe effect of atmospheric
drag on the semi-major axis is given by

ȧ = −2Ca2v2

µ
.

(b) Given that the atmospheric drag does not affect the eccentricity for circular orbits,
what does the result in part (a) mean for a spacecraft in a circular orbit?

(c) The atmospheric density decreases exponentially with radial distance from the
earth surface (altitude). As such, highly elliptical orbits can be considered under
the influence of atmospheric drag only near perigee. That is,the effect of atmo-
spheric drag on highly elliptical orbits may be approximated by a tangential∆v
near perigee of every orbit.

Based upon this, what is the long-term effect of atmosphericdrag on highly ellip-
tical orbits?

(d) Starting from the definition of the semi-latus rectum, show that the effect of
atmospheric drag on the semi-major semi-latus rectum is given by

ṗ = −2Cp.

(e) Show that the effect of atmospheric drag on the eccentricity is given by

ė =
Cp

e

(

2

a
− 2

r

)

.

Hint: You will need the vis-viva equation.

(f) Using the result from part (e), what happens to the eccentricity at apogee? What
happens at perigee? Hint: Substitute the expression for theradii at apogee and
perigee into the result from part (e).

(g) Can you provide a physical explanation for the phenomenaobserved in part (f)?
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7. The perturbation force (per unit mass) acting on a spacecraft in a geocentric close-to-
circular orbit is given by

~fp = 0.005 sin θ~yo N/kg,

where~xo, ~yo and~zo are the unit vectors of the orbital cylindrical coordinate frame,
andθ is the true anomaly. If the orbit has a period of 10 hours, calculate the secular
changes in the semi-major axis and the eccentricity after one orbit.

~zF

~yF
δ

λ

~xF

~xs

~zs

~ys

Figure 7.1 Spherical coordinate frame

θ

fr

f
fθorbit

Solar Pressure

θ

Figure 7.2 Solar radiation pressure



54 Chapter 7 Exercises

orbit

Solar Pressure

θvθv

Earth

Figure 7.3 Shadowing by Earth
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For some of the following questions, you will need the Earth’s gravitational constant

µ = 3.986× 105 km3/s2.

1. Prove the expressions in (9.29) in the book.

2. Prove the expression in (9.32) in the book.

3. Consider a geocentric leader-follower spacecraft formation, with the leader in a
circular orbit of radiusrl = 7000 km. Determine the initial conditions for the follower
spacecraft (in the Hill frame), if it is to be in a Projected Circular Orbit about the
leader of radiusR = 100 m, with initial phase angleφ0 = 45o. Numerically simulate
the relative orbit using Hill’s equations to validate the initial conditions.

4. Repeat the development in Section 9.3.2 to obtain the initial conditions for a translated
Projected Elliptical Orbit, where everything is the same asin Section 9.3.2, except that
the Projected Elliptical Orbit is to be centered at a pointx̄ = xd, z̄ = 0, wherexd is
non-zero.

5. Specialize the results from Question 4 to the case of a translated Projected Circular
Orbit of radiusR.

6. Repeat Question 3 for a translated Projected Circular Orbit of the same dimension, but
with center atxd = 200 m.

7. Consider a geocentric leader-follower spacecraft formation, with the leader in a circular
orbit of radiusrl = 7200 km. At the current time, the follower has position and velocity
relative to the leader given by (in Hill frame coordinates)

x = 234.2020 m, y = 70.7107 m, z = 66.9846 m,

ẋ = −0.1281 m/s, ẏ = 0.0731 m/s, ż = 0.0177 m/s.

Determinēx, z̄, P , φ,Q andα (using the notation from Sections 9.2.4 and 9.2.5 in the
book). Is the relative motion bounded?

8. In Sections 9.2.4 and 9.2.5 in the book, the following transformations were provided
from x, y, z, ẋ, ẏ, ż to x̄, z̄, P, φ,Q, α:

x̄ = x− 2ż

ωo
,
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z̄ = 4z +
2ẋ

ωo
,

P =

(

(

3z +
2ẋ

ωo

)2

+

(

ż

ω0

)2
)

1

2

,

sinφ =
−
(

3z + 2ẋ
ωo

)

P
,

cosφ =
ż

ωoP
,

Q =

(

y2 +

(

ẏ

ω0

)2
)

1

2

,

sinα =
y

Q
,

cosα =
ẏ

ωoQ
.

Using only the expressions given above, prove the inverse transformations given below,
from x̄, z̄, P, φ,Q, α to x, y, z, ẋ, ẏ, ż:

x = x̄+ 2P cosφ,

z = z̄ + P sinφ,

ẋ = −ωo
2

(3z̄ + 4P sinφ) ,

ż = ωoP cosφ,

y = Q sinα,

ẏ = ωoQ cosα.

9. In Chapter 3 in the book, it was shown that the classical orbital elements provide much
greater physical insight into an orbit than do the inertial position and velocity vectors.
Likewise, for a leader-follower formation, the quantitiesx̄, z̄, P, φ,Q, α provide much
greater physical insight into the relative motion of a leader-follower formation than do
x, y, z, ẋ, ẏ, ż. The physical meanings of̄x, z̄, P, φ,Q, α, were investigated in Sections
9.2.3 to 9.2.5 in the book.

However,x̄, z̄, P, φ,Q, α were defined on the basis of natural formation motion, that
is, without any disturbances or spacecraft control forces.It was shown that under these
conditions,z̄, P,Q are constant, anḋ̄x = −3ω0z̄/2 and φ̇ = α̇ = ωo. However, in
practise, just as for a geocentric orbit, there will be disturbances or intentional control
forces which will causēz, P,Q to vary with time, and the rates of˙̄x, φ̇, α̇ to also vary.
Therefore, similar to the Gauss variational equations for the orbital elements, it will be
useful to obtain dynamic equations forx̄, z̄, P, φ,Q, α, when the follower spacecraft is
under the influence of external forces.
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As shown in Question 8, by simply taking as definitions the transformations from
x, y, z, ẋ, ẏ, ż to x̄, z̄, P, φ,Q, α (without any consideration of physical meaning,
or whether or not there are disturbance forces), the inversetransformation from
x̄, z̄, P, φ,Q, α to x, y, z, ẋ, ẏ, ż is also well-defined, and takes the same form
regardless of whether or not there are disturbance forces.

Now, considering the forced equations of relative motion (equations (9.11) and (9.12)
in the book)

ẍ = −2ωoż + fx,

z̈ = 2ωoẋ+ 3ω2
oz + fz,

ÿ = −ω2
oy + fy,

show that the dynamics for̄x, z̄, P, φ,Q, α are given by

˙̄x = −3ωo
2
z̄ − 2

ωo
fz,

˙̄z =
2

ωo
fx,

Ṗ = −2 sinφ

ωo
fx +

cosφ

ωo
fz,

φ̇ = ωo −
2 cosφ

ωoP
fx −

sinφ

ωoP
fz,

Q̇ =
cosα

ωo
fy,

α̇ = ωo −
sinα

ωoQ
fy.
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1. Determine the extension of Equations (10.4) and (10.5) whenm3 is no longer confined
to the plane of the orbit ofm1 andm2.

2. Using numerical root-finding software, validate the locations ofL1, L2, andL3 for the
Earth-Moon system.

3. Consider Equations (10.13) and (10.14) and adopt the nondimensionalizations

δx̂ = δx/r12

δŷ = δy/r12

( ˙ ) =
d( )

dτ
, τ = ωt

(We have redefined the symbol( ˙ )). Show that the equations for the triangle
equilibrium pointsL4 andL5 become

δ¨̂x − 2δ ˙̂y − 3

4
δx̂− 3

√
3

2

(

ρ− 1

2

)

δŷ = 0

δ¨̂y + 2δ ˙̂x− 3
√
3

2

(

ρ− 1

2

)

δx̂− 9

4
δŷ = 0

for L4 and

δ¨̂x − 2δ ˙̂y − 3

4
δx̂+

3
√
3

2

(

ρ− 1

2

)

δŷ = 0

δ¨̂y + 2δ ˙̂x+
3
√
3

2

(

ρ− 1

2

)

δx̂− 9

4
δŷ = 0

for L5, whereρ = m2/(m1 +m2). Determine the range of mass ratiosρ leading to
stability of the triangle points. In particular, verify that they are stable for the Earth-
Moon system whereρ = 0.01215.
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Chapter 12 Exercises

1. A spacecraft with a principal axes body-fixed frameFb, has corresponding principal
moments of inertiaIx = 100 kg·m2, Iy = 120 kg·m2, Iz = 80 kg·m2. The spacecraft
attitude relative to the Earth centered inertial frameFG is described by a yaw-pitch-roll
(3-2-1) Euler sequence, represented by the rotation matrix

CbG(φ, θ, ψ) =





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ





wheresb = sin b andcb = cos b. Whereφ, θ andψ are the roll, pitch and yaw angles,
respectively. Currently, the attitude is represented byφ = θ = ψ = π

4 rad, and the
spacecraft orbital position (in ECI coordinates) is

~Ro = ~FT
G





0
0
Ro



 km.

Determine the gravity-gradient torque acting on the spacecraft. Express the result
in spacecraft body coordinates. Note thatµ = 3.986× 105 km3/s2 is the Earth’s
gravitational constant.

2. The International Geomagnetic Reference Field (IGRF) isa global model of the Earth’s
magnetic field. The IGRF model gives the Earth magnetic field vector at the spacecraft
position~r in spherical coordinates, where the spherical coordinate frameFs is defined
as shown in Figure 10.1. That is, the IGRF model providesBr, Bθ andBλ such that

~B = ~FT
s Bs = Bθ~xs +Bλ~ys +Br~zs.

The magnetic field componentsBr, Bθ andBλ are functions of the spacecraft orbital
radiusr, the spacecraft geocentric longitudeλ and the spacecraft geocentric co-latitude
θ = 90o − δ (δ is the geocentric latitude), as shown in Figure 10.2. For example, the
first set of terms of the IGRF model are given by the dipole approximation

Br = 2
(

Re

r

)3 [
g01 cos θ +

(

g11 cosλ+ h11 sinλ
)

sin θ
]

,

Bθ =
(

Re

r

)3 [
g01 sin θ −

(

g11 cosλ+ h11 sinλ
)

cos θ
]

,

Bλ =
(

Re

r

)3 [
g11 sinλ− h11 cosλ

]

,
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where Re is the Earth’s equatorial radius, andg01 , g11 and h11 are given IGRF
coefficients.

Let the spacecraft have residual magnetic dipole moment~m = ~FT
b mb, where the com-

ponentsmb in the spacecraft body frame are given. Also given are the spacecraft
inertial attitudeCbG, and the spacecraft orbital position vector in ECI coordinates
~r = ~FT

Gr.

Write down the equations required to compute the residual magnetic disturbance
torque in spacecraft body coordinates, using only the giveninformationmb, CbG and
r (as well as the magnetic field parametersg01 , g11 andh11 and the Earth’s equatorial
radius,Re, and rate of rotationωearth).

Note: As shown in Figure 10.2, the Earth Centered Earth Fixed(ECEF) frameFF
is obtained from the Earth Centered Inertial (ECI) frameFG by a rotation about the
z-axis through an angleαG = ωearth(t− t0), which is known as the right ascension
of the Greenwich meridian, andωearth is the rate of rotation of the earth. It is clear that
the spacecraft geocentric longitude is given byλ = α− αG, whereα is the spacecraft
right ascension.

3. Consider a flat surfaceS illuminated by the sun as shown in Figure 10.3. The surface
has normal vector~n, and the unit vector pointing from the surface to the sun is~s.

(a) Show that the torque about the pointc due to the solar pressure on the side ofS
with outward normal~n is given by

~TS =

{

~ρA × ~FS , ~n ·~s ≥ 0,
~0, ~n ·~s < 0.

where~ρA =

∫

S

~ρdS
A

is the center of area ofS, A =
∫

S
dS is the area ofS,

~FS = −pA(~n ·~s)~s is the total solar pressure force onS andp is the solar pressure
magnitude.

(b) The surface of a spacecraft may be approximated by a number of flat surfaces
S1, S2,....Sn. Each surface has areaAi, outward pointing normal vector given in
body coordinates as~ni = ~FT

b ni, and center of area located from the spacecraft
center of mass also given on body coordinates as~ρA,i = ~FT

b ρA,i for i = 1, ..., n.

If the sun pointing vector is given in inertial coordinates as~s = ~FT
I sI , obtain

the expression required to compute the total solar pressuretorque about the
spacecraft center of mass in body coordinates.
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~zG

~yG
δ

α

~xG

~xs

~zs

~ys

θ
~r

Figure 10.1 Spherical coordinate frame definition

~zG,~zF

~yG
δ

α

~xG

θ
~r

~xF

~yF

λαG

Figure 10.2 ECI and ECEF frames

dS

S

~n

~s

~ρ

C

Sun

Figure 10.3 Flat surface under solar pressure
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Chapter 13 Exercises

1. A spacecraft is launched into a low Earth orbit. The spacecraft principal moments of
inertia areIx = 98 kg·m2, Iy = 102 kg·m2, Iz = 150 kg·m2. For stability, the launch
vehicle deploys the spacecraft such that it is in a major axisspin when released, with
ωz = 0.5 rad/s. Because no deployment is perfect, the spacecraft also has some angular
velocity about the other two principal axes, given byωx = 0.1 rad/s,ωy = 0.02 rad/s.
Making appropriate approximations:

(a) Describe the resulting spacecraft attitude motion if there are no disturbance
torques.

(b) Determine the nutation angle.

(c) Determine the precession rate.

2. A uniform thin disk is thrown into the air, and is observed to wobble such that its axis
of symmetry traces out a cone with half angle 60o, once per second.

(a) Show that the transverse and axial moments of inertia of an uniform
infinitesimally thin disk satisfy

It =
1

2
Ia.

Assume that the disk has uniform mass per unit areaσ.

(b) Determine the relative spin-rate of the disk.

(c) Determine the disk angular velocity vector in inertial coordinates.
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Chapter 14 Exercises

1. Consider a spacecraft with principal inertias satisfying Ix > Iz > Iy. Sometimes it
may be necessary to spin the spacecraft about the intermediate axis (in this case the
principal z-axis). One method to accomplish this could be to apply control torques
Tcx = −kωx, Tcy = −kωy andTcz = −ks (ωz − ν), whereν is the desired spin-rate
about the bodyz-axis. The equations of motion become

Ixω̇x + (Iz − Iy)ωyωz = Tcx,
Iyω̇y + (Ix − Iz)ωxωz = Tcy,
Izω̇z + (Iy − Ix)ωxωy = Tcz.

(a) Find the values ofk and ks that make a spin about the intermediate axis
asymptotically stable.

(b) Is the feedbackTcz = −ks (ωz − ν) necessary to stabilize the intermediate axis
spin?

2. Consider a rigid axisymmetric spinning body with principal moments of inertiaIx =
Iy = It andIa = Iz.

(a) Show that the rotational kinetic energy is given by

T =
h2

2

(

sin2 γ

It
+

cos2 γ

Ia

)

,

whereh is the magnitude of the total angular momentum andγ is the angle
between the axis of symmetry (~zb) and the angular momentum vector~h.
Note: for a rigid body, the rotational kinetic energy is given by T = 1

2Ixω
2
x +

1
2Iyω

2
y +

1
2Izω

2
z .

(b) Under the Energy Sink Hypothesis, internal energy dissipation results in a
reduction in rotational kinetic energy, while the angular momentum is conserved.
That is,Ṫ < 0 andh = constant. Show that under the energy-sink hypothesis
for an axisymmetric quasi-rigid body,

Ṫ =
h2 sin 2γ

2IaIt
(Ia − It) γ̇ < 0,

for γ 6= 0, 90o.
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(c) Noting that we can always choose the~zb-axis such that0 ≤ γ ≤ 90o, explain
how the result obtained in part (b) is consistent with the major axis rule.
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Chapter 15 Exercises

1. Find all equilibrium solutions for a dual-spin satellitewith dynamics given by

Ixω̇x + (Iz − Iy)ωyωz + hsωy = 0,
Iyω̇y + (Ix − Iz)ωxωz − hsωx = 0,
Izω̇z + (Iy − Ix)ωxωy = 0.

2. Consider an axisymmetric dual-spin satellite, with principal inertiasIx = Iy = It and
Iz = Ia. The wheel spin axis coincides with the satellite axis of symmetry, namely the
principalz-axis. The wheel has a positive constant spin angular momentum relative to
the spacecrafths > 0. The spacecraft is nominally non-spinning, that isωz(0) = 0.

(a) Obtain the solution for the resulting torque-free attitude motion.

(b) Provide a physical interpretation of the resulting torque-free attitude motion,
analogous to that obtained in Section 13.2 in the book.

(c) Supposehs = 1 Nms,It = 10 kg·m2 andIa = 12 kg·m2, and the spacecraftz-
axis is observed to trace out a cone in inertial space with half-angle 30o. How
long does it take to trace out a single cone?

3. Consider a nominally non-spinning dual-spin spacecraftwith principal inertiasIx, Iy
andIz . The wheel axis coincides with the~zb axis of a body-fixed principal axes frame.
The wheel relative angular momentum is given byhs > 0.

(a) Show that this situation corresponds to an equilibrium for torque-free motion.

(b) Show that small perturbations to the spacecraft angularvelocity lead to purely
oscillatory behavior inωx andωy with frequency

Ωp =
hs

√

IxIy
.

4. A spacecraft with principal axes body frameFb, has corresponding principal moments
of inertiaIx = 8 kg·m2, Iy = 12 kg·m2, Iz = 10 kg·m2.

It is desired to spin the spacecraft about the principal z-axis with angular velocity
ωz = 0.1 rad/s. Assuming that the spacecraft has a momentum wheel with spin-
axis aligned with the principal z-axis, determine the required relative wheel angular
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momentumhs to make the desired attitude motion passively stable under torque-free
conditions.

5. Chapter 2, Question 3.

6. Chapter 2, Question 4.
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Chapter 16 Exercises

1. Chapter 2, Question 2

2. Consider an arbitrary spacecraft body frameFb (not necessarily a principal axes
frame). That is, the spacecraft inertia matrix evaluated inFb has the form

I =





Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz



 .

Let the spacecraft body-frameFb coincide with the orbiting reference frameFo for a
circular orbit about earth. That is, the spacecraft has angular velocity

~ωbI = ~FT
b ωbI , ωbI =





0
−ωo
0



 ,

whereωo =
√

µ/r3 is the orbital angular velocity,µ is Earth’s gravitational constant
andr is the spacecraft orbital radius.

(a) Show that the gravity-gradient torque vector in spacecraft body coordinates is
given by

Tg = 3ω2
o





−Iyz
Ixz
0



 .

(b) Evaluateω×
bIIωbI .

(c) Making use of parts (a) and (b) in the equations of motion,what are the
requirements on the inertia matrixI for an earth-pointing equilibrium (Fb = Fo)
in the presence of gravity-gradient torque? What does this say aboutFb?

3. Consider the spacecraft shown in Figure 14.1. The spacecraft hub is a solid cubic block
of mass 100 kg and side 1 m. To provide gravity-gradient stability, the spacecraft inertia
is augmented by the addition of four lump masses of equal massm, located from the
spacecraft center of mass by massless rods of lengthl.

(a) Determine the moment of inertia matrix for the spacecraft in terms ofm andl.
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72 Chapter 16 Exercises

(b) Based on the result of part (a), is the spacecraft gravity-gradient stabilized?

(c) In addition to the gravity-gradient torque, there is a constant solar pressure torque
about the pitch axis given byTd,y = 10−5 Nm. Assuming that the spacecraft is
in a circular orbit, andθ(0) = θ̇(0) = 0, find the solution for the pitch angleθ(t)
in terms of the orbital rateωo, the massm and the rod lengthl.

(d) Assume now that the spacecraft is in a circular orbit witha period of 6 hours.
How long must the rods be to ensure that the maximum excursionin pitch is
limited to5o? Assume thatm = 2 kg.

m m

m m

l l

ll

60o

60o

60o

60o

~xb

~zb

appendage 1
appendage 2

appendage 3 appendage 4

Figure 14.1 Satellite with inertia augmentation for Question 3
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1. Consider a spin-stabilized spacecraft nominally spinning about the principalz-axis
with spin-rateν. The desired angular velocities are thereforeωx = 0, ωy = 0 and
ωz = ν. It may be desirable to control the spin-rate. The equationsof motion are (as
usual)

Ixω̇x + (Iz − Iy)ωyωz = Tcx + Tdx,
Iyω̇y + (Ix − Iz)ωxωz = Tcy + Tdy,
Izω̇z + (Iy − Ix)ωxωy = Tcz + Tdz.

whereTc. are control torques, andTd. are disturbance torques. The principal moments
of inertia areIx = 10 kg·m2, Iy = 12 kg·m2, Iz = 8 kg·m2.

(a) Assuming small angular velocitiesωx = ǫx, ωy = ǫy, obtain the linearized
equation for the spin-rateωz.

(b) Given that the output of interest isy = ωz, and the control input isu = Tcz, find
the plant transfer functionGp(s) such that

Y (s) = Gp(s)
[

U(s) + T̂dz(s)
]

.

(c) The reference signal is the desired spin-rater = ν. Therefore, the spin-rate error
is e = ν − ω = r − y. Assuming proportional control

u(t) = Kpe(t),

Draw a block-diagram for the closed-loop system.
(d) Find the closed-loop transfer function relationships from the reference signal

R(s) to the errorE(s) and from the disturbancêTdz(s) to the errorE(s). What
restriction must be placed on the proportional gainKp to ensure asymptotic
stability?

(e) Find the responsee(t) to a step disturbanceTdz(t) = T̄dz. What restriction must
be placed on the proportional gainKp if the steady-state error to a disturbance of
magnitudeT̄dz = 10−5Nm is to be kept below 1 deg/s?

(f) Find the responsee(t) to a step reference signalr(t) = ν̄. What restriction must
be placed on the proportional gainKp if the spin-ratey(t) is to be within 2% of
the desired spin-ratēν within 10 seconds?
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2. Consider the spacecraft attitude control problem for a single axis. The attitude
dynamics are given by

Iθ̈ = u+ Td,

whereI is the related moment of inertia,θ is the related attitude angle,u is the control
torque applied about the axis by an actuator, andTd is a disturbance torque. The
actuator has dynamics

u̇ = − 1

Ta
(u− uc) ,

whereu is the control torque applied by the actuator,Ta is the actuator time constant,
anduc is the control torque commanded by the control law.

(a) Find the actuator transfer function.

(b) The control law is chosen to be a modified PD control law

uc = Kpe(t)−Kdẏ(t),

where the plant output is the attitude angle (y(t) = θ(t)), the reference signal is
the desired attitude angle (r(t) = θd), ande(t) = r(t) − y(t) is the attitude error.

Draw a block diagram representation of the closed-loop system.

(c) Find the transfer function from reference signalR(s) to outputY (s), and the
transfer function from disturbanceTd(s) to outputY (s).

3. Consider the spacecraft attitude control problem for a single axis. Neglecting the
disturbance torque, the attitude dynamics are given by

Iθ̈ = u,

whereu is the control torque. The moment of inertia isI = 1 kg·m2.

The following transient specifications are given for the closed-loop step response:

• Maximum overshoot requirement,Mp = 20%

• Settling time requirement,ts = 60 seconds

Design a modified PD control law such that the transient specifications are satisfied.

4. Consider the modified proportional-derivative attitudecontrol about a single spacecraft
axis as shown in Figure 15.1, whereI = 10 kg ·m2 is the corresponding moment of
inertia,y = θ is the corresponding attitude angle,r = θd is the desired attitude angle,
Kp = 0.1 is the proportional gain andKd = 0.5 is the derivative gain. With regards to
a unit step input:

(a) Determine the settling time.

(b) Determine the percent overshoot.

(c) Determine the rise time.

(d) Is it possible to reduce both the settling time and percent overshoot without
changing the proportional gain? Illustrate your reasoningwith a diagram.
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R(s) +

−

Kp

Y (s)+

−

Kds

1

Is2

Figure 15.1 Modified PD control law for Question 4





16
Chapter 18 Exercises

1. A plant has transfer function

Gp(s) =
Y (s)

U(s)
=

1

s (s3 + s2 + 2s+ 1)
.

The plant is to be controlled using a controllerU(s) = Gc(s)E(s), as shown in Figure
16.1.

(a) A proportional controlGc(s) = Kp is proposed. Determine the range of
proportional gain,Kp over which the closed-loop system is asymptotically stable.

(b) What is the system type with proportional control?
(c) What are the steady-state errors of the closed-loop system to unit step and ramp

inputs whenKp =
1
2? What are they whenKp = 2?

2. A plant has transfer function

Gp(s) =
Y (s)

U(s)
=

s+ 1

s2 (s2 + 2s+ 2)
.

The plant is to be controlled using a controllerU(s) = Gc(s)E(s), as shown in Figure
16.1.

(a) Determine the closed-loop transfer functionY (s)
R(s) , when the control is

proportional, that is whenGc(s) = Kp.
(b) Using a Routh analysis, determine if it is possible to asymptotically stabilize the

system using proportional control only. If it can, determine the range ofKp that
makes it asymptotically stable.

(c) Determine the closed-loop transfer functionY (s)
R(s) when the control is

proportional-derivative, that is whenGc(s) = Kp + sKd.
(d) Using a Routh analysis, determine conditions on the proportional gainKp to

asymptotically stabilize the system if the derivative gainisKd = 1.

3. Consider the small-angle roll-yaw equations for a nominally non-spinning dual-spin
satellite,

Ixφ̈− hsψ̇ = Tx,

Izψ̈ + hsφ̇ = Tz.
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with proportional-derivative control for each axis

Tx = −Ix
(

kpφ+ kdφ̇
)

,

Tz = −Iz
(

kpψ + kdψ̇
)

.

(a) Show that the closed-loop roll and yaw poles satisfy the characteristic equation

s4 + 2kds
3 +

(

2kp + k2d +
h2s
IxIz

)

s2 + 2kpkds+ k2p = 0.

(b) Using a Routh analysis, show that ifkp > 0 andkd > 0, the closed-loop roll and
yaw equations are asymptotically stable.

R(s) E(s)+

−

U(s)
Gc(s) Gp(s)

Y (s)

Figure 16.1 Feedback control system
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1. Consider the feedback control system in Figure 17.1. Assuming proportional control
Gc(s) = K with K ≥ 0, sketch the root locus plots when the plant transfer functions
are:

(a)

Gp(s) =
10

(s+ 1)(s+ 2)(s+ 3)

(b)

Gp(s) =
1

(s+ 1)(s2 + 2s+ 2)

(c)

Gp(s) =
s+ 2

(s+ 1)(s+ 3)(s+ 4)

(d)

Gp(s) =
s+ 1

s2 + 2s+ 2

(e)

Gp(s) =
s+ 3

(s+ 1)(s+ 2)
.

(f)

Gp(s) =
1

(s+ 1)(s+ 2)(s2 + 2s+ 2)

(g)

Gp(s) =
s2 + 4s+ 5

(s+ 1)(s+ 2)(s2 + 2s+ 2)
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Note: If there are asymptotes, compute the angles and center. Do not compute
breakaway and break-in points or imaginary axis crossings.

2. Consider the small-angle roll-yaw equations for a nominally non-spinning dual-spin
satellite,

Ixφ̈− hsψ̇ = Tx,

Izψ̈ + hsφ̇ = Tz.

with proportional-derivative control for each axis

Tx = −Ix
(

kpφ+ kdφ̇
)

,

Tz = −Iz
(

kpψ + kdψ̇
)

.

As found in Question 3, Chapter 18, the closed-loop roll and yaw poles satisfy the
characteristic equation

s4 + 2kds
3 +

(

2kp + k2d +
h2s
IxIz

)

s2 + 2kpkds+ k2p = 0.

(a) Show that the characteristic equation can be rewritten equivalently as

1 +
h2s
IxIz

s2

(s2 + kds+ kp)
2 = 0.

(b) Assume that the gainskp andkd are chosen according tokd = 2ζωn andkp =
ω2
n, where0 < ζ < 1 is the desired damping ratio andωn is the desired undamped

natural frequency. Sketch a root-locus plot for the closed-loop poles as the wheel

angular momentum changes, that is, forh
2

s

IxIz
≥ 0. Compute the asymptote angles

and center, but do not compute any other details.

R(s) E(s)+

−

U(s)
Gc(s) Gp(s)

Y (s)

Figure 17.1 Feedback control system
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Consider the feedback control system in Figure 18.1.

1. The plant has transfer function

Gp(s) =
a

(s+ 1)(s+ 2)(s+ 3)
,

wherea > 0. Suggest a controllerGc(s) if the closed-loop system is to exhibit no
oscillatory behavior (no complex closed-loop poles) regardless of the value ofa.

2. Consider again the plant with transfer function

Gp(s) =
a

(s+ 1)(s+ 2)(s+ 3)
,

wherea > 0. What are the minimum number of zeros that must be contained in the
controllerGc(s) such that the closed-loop system will never go unstable, regardless of
the value ofa? Where must it be placed?

3. The plant has transfer function

Gp(s) =
1

s+ 1
.

The control lawGc(s) is to be designed such that the closed-loop system has dominant
poles ats = −3± j3, and a zero steady-state error to a step inputr(t) = 1.

(a) Can the control objective be met with pure integral control, Gc(s) = K
s

? Hint:
do the desired dominant poles lie on the root locus?

(b) Design a combined lead-integral control

Gc(s) = K

(

s+ 1
T

)

s
(

s+ 1
αT

) ,

with T > 0 and0 < α < 1. such that the closed-loop requirements are met. You
may takeT = 1

3 . Hint: you may augment the plant with the integrator.
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R(s) E(s)+

−

U(s)
Gc(s) Gp(s)

Y (s)

Figure 18.1 Feedback control system
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Bias Momentum Control Design
Exercises - Chapters 17 to 20

The following exercises will involve the design of an attitude control system for a bias
momentum satellite, and ties together the subjects of Chapters 17 to 20.

Background
A bias momentum satellite is an earth-pointing dual-spin satellite, with attitude controlled
relative to an orbiting reference frameFo as shown in Figure 19.1. The momentum wheel
spin axis is aligned with the orbit normal (an inertially fixed direction for a two-body orbit),
making it a pitch wheel. We describe the spacecraft attituderelative to the orbiting frame by a
yaw-pitch-roll (3-2-1) Euler sequence, whereφ, θ andψ denote the roll, pitch and yaw angles
respectively. For small rotations,φ constitutes a rotation about~xo, θ is a rotation about~yo
andψ is a rotation about~zo (as shown in Figure 19.1).

For many bias momentum satellites, the only attitude sensoris an Earth sensor. An Earth
sensor gives the direction of the center of earth from the spacecraft (−~r) in body coordinates.
The roll and pitch anglesφ andθ can be determined from this measurement. However, as
can be seen from Figure 19.1, if the spacecraft undergoes a pure yaw rotation, the rotation
is about−~r, so it does not change in body coordinates. Therefore, the yaw angle cannot be
measured by an earth sensor.

Bias momentum stabilization for an earth pointing satellite has the following benefits:

• Coupling between the roll and yaw axes due to the bias momentum. This means that
the yaw angle can be stabilized without using a yaw sensor.

• Gyroscopic stability of the roll and yaw angles due to the bias momentum.

• The pitch wheel can be used to control the pitch angle (by changing it’s speed)

• The pitch wheel can be used to control roll and yaw angles (by making small changes
to the spin axis (aka control moment gyro))

The equations of motion are given by

Iω̇ + ḣsa+ ω× [Iω + hsa] = Tc +Td +Tg,

whereTc is the control torque,Td is the external disturbance torque,Tg is the gravity-
gradient torque, and all other symbols have the same meaningas in the book. We take the
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wheel spin-axis to be

a =





0
−1
0



 .

Assuming that the body frame is a principal axes frame, the spacecraft is in a circular orbit,
and that the angles and rates are small, the equations of motion relative to the orbiting frame
become

Ixφ̈− [(Ix + Iz − Iy)ωo − hs] ψ̇ +
[

4(Iy − Iz)ω
2
o + ωohs

]

φ = Tcx + Tdx,

Iy θ̈ + 3(Ix − Iz)ω
2
oθ = Tcy + Tdy,

Izψ̈ + [(Ix + Iz − Iy)ωo − hs] φ̇+
[

(Iy − Ix)ω
2
o + ωohs

]

ψ = Tcz + Tdz,

whereTcy = −ḣs if the momentum wheel is used to control the pitch, andωo =
√

µ/r3 is
the orbital angular rate. These equations may be compared toequations (16.14) to (16.16) in
the book, for a gravity-gradient stabilized spacecraft.

Finally, we make the approximation that|Ixωo|, |Iyωo|, |Izωo| << |hs|, greatly
simplifying the equations of motion to

Ixφ̈+ hsψ̇ + ωohsφ = Tcx + Tdx,

Iy θ̈ + kgθ = Tcy + Tdy,

Izψ̈ − hsφ̇+ ωohsψ = Tcz + Tdz,

wherekg = 3(Ix − Iz)ω
2
o . It can be seen that the pitch equation is decoupled from the roll

and yaw equations.

Spacecraft and Orbital Parameters
The spacecraft principal inertias areIx = 0.4 kg·m2, Iy = 0.5 kg·m2, Iz = 0.6 kg·m2. The
spacecraft is in a circular orbit with altitude600 km, such that the orbital angular rate is
ωo = 0.001083 rad/s. The expected maximum disturbance torques areTdx,max = Tdy,max =
Tdz,max = 5× 10−6 Nm.

Control System Requirements

• The maximum allowable steady-state errors in response to constant disturbances are
φss ≤ 0.1 deg,θss ≤ 0.1 deg andψss ≤ 4 deg.

• The closed-loop poles for the roll/yaw loop are to have damping ratiosζ = 0.7.

The spacecraft is expected to be capable of making pitch maneuvers, with transient
specification for a pitch step response:

• Settling-time,ts ≤ 200 seconds.

• Percent overshoot,Mp ≤ 30 %.

You will need the Earth’s gravitational constant

µ = 3.986× 105 km3/s2,
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and the equatorial radius of the Earth

Re = 6378.1363 km.

Exercises

1. The pitch controller is to be of the modified PD type

Tcy(t) = kpp(θd − θ)− kpd θ̇,

whereθd is the desired pitch angle.

(a) Find the plant transfer function for the pitch angle.
(b) What is the system type for the pitch loop with the above control law? What are

the implications on the steady-state pitch error for a pitchstep command in the
absence of a disturbance torque?

(c) Obtain an expression for the steady-state pitch error due to a pitch disturbance
torqueTdy(s) =

T̄dy

s
.

(d) Find the closed-loop transfer function from desired pitch angleθd to actual pitch
angleθ.

(e) Design the pitch control gains such that the closed-looppitch specifications are
met. Note: keep the proportional gainkpp small.

2. The control law for the roll/yaw loop only makes use of rollmeasurements, and takes
the form

Tcx = −
(

kryp φ+ kryd φ̇
)

,

Tcz = a
(

kryp φ+ kryd φ̇
)

,

wherea > 0, kryp > 0 andkryd > 0 are parameters to be determined.

(a) Show that the closed-loop roll/yaw equations after taking Laplace transforms are
given by
[

s2Ix + skryd + ωohs + kryp shs
−
(

s(hs + akryd ) + akryp
)

s2Iz + ωohs

] [

φ̂(s)

ψ̂(s)

]

=

[

T̂dx(s)

T̂dz(s)

]

.

(b) Show that the solution for the roll and yaw angles satisfies
[

φ̂(s)

ψ̂(s)

]

=
1

∆(s)

[

s2Iz + ωohs −shs
s(hs + akryd ) + akryp s2Ix + skryd + ωohs + kryp

] [

T̂dx(s)

T̂dz(s)

]

,

where

∆(s) = IxIzs
4 + Izk

ry
d s

3 +
[

(Ix + Iz)ωohs + Izk
ry
p + h2s + akryd hs

]

s2

+
[

ωohsk
ry
d + ahsk

ry
p

]

s+ ωohs(ωohs + kryp ).

(c) Assuming that the closed-loop system is asymptoticallystable (∆(s) = 0 has
roots with negative real parts), show that the steady-stateroll and yaw errors for
step disturbancesTdx(s) = T̄dx

s
andTdz(s) = T̄dz

s
are

φss =
T̄dx

ωohs + kryp
, ψss =

akryp T̄dx

ωohs(ωohs + kryp )
+

T̄dz
ωohs

.
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(d) Typically, the control system shall be designed such that a < 1 and kryp >>
ωohs. Therefore, the yaw error may be upper-bounded by

|ψss| ≤
|T̄dx|+ |T̄dz|

ωo|hs|
.

Using this approximation, and the expression forφss from part (c), determine the
required bias momentumhs and the proportional gainkryp such that the roll and
yaw steady-state specifications are satisfied. Note: takehs, k

ry
p > 0.

(e) Having selectedhs andkryp , all that remains is to selectkryd anda such that the
closed-loop poles have the required damping ratio. This is done as follows. From
part (b), the closed-loop poles satisfy the characteristicequation

∆(s) = 0.

We would like the closed-loop poles to bes = −ζωn1 ± jωn1
√

1− ζ2,−ζωn2 ±
jωn2

√

1− ζ2, whereζ is the required damping ratio of the poles, andωn1 and
ωn2 are the undamped natural frequencies of the poles. Therefore, the character-
istic equation should have the form

(s2 + 2ζωn1s+ ω2
n1)(s

2 + 2ζωn2s+ ω2
n2) = 0.

To find the requiredkryd anda, we equate

∆(s) = IxIz(s
2 + 2ζωn1s+ ω2

n1)(s
2 + 2ζωn2s+ ω2

n2).

Equating the coefficients of powers ofs, leads to four equations in four
unknowns, namelykryd , a, ωn1 andωn2 (the damping rationζ is given). We are
only interested in the first two.

i. Show that the solutions forkryd anda are

kryd =

√

E (B − (4ζ2 − 2)F )

EA2 − C(AF −D)
,

a =
(AF −D)

E
kryd ,

where

A =
1

2ζIx
, B =

(Ix + Iz)hsωo
IxIz

+
kryp
Ix

+
h2s
IxIz

,

C =
hs
IxIz

, D =
ωohs
2ζIxIz

, E =
hsk

ry
p

2ζIxIz
,

F =

√

ωohs(ωohs + kryp )

IxIz
.

ii. Find kryd anda.
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3. The pitch control command obtained in question 1 is to be applied by an actuator with
dynamics

Tcy(s) =
1

Ts+ 1
Uc(s),

whereT > 0 is the actuator time constant,Uc(s) is the control torque commanded
by the control law given in Question 1, andTcy(s) is the pitch torque applied to the
spacecraft by the actuator.

(a) Show that the characteristic equation for the closed-loop system is

IyTs
3 + Iys

2 + (kgT + kpd)s+ kg + kpp = 0.

(b) Determine the condition that the actuator time-constant T must satisfy for the
closed-loop system to be asymptotically stable.

(c) Sketch a root locus for the closed-loop poles for1
T
≥ 0. It does not need to

be to scale. Do not determine details like breakaway points and imaginary axis
crossings. Note: Be mindful of the sign ofkg. What can you conclude from the
root locus?

4. The pitch actuator is much slower than you had originally specified as the control
system designer, with a time constantT = 5 seconds. Is it possible to redesign the
PD controller obtained in Question 1 so that the closed-loopsystem (when actuator
dynamics are included) has the dominant poles you obtained in Question 1? If it is
possible, redesign the PD controller.

To simplify the problem, you may setkg = 0. To save some effort in finding the open-
loop transfer function, note that the characteristic equation in part (a) of Question 3
may be rewritten as (withkg = 0)

1 +
kpd
IyT

(s+
kpp
k
p

d

)

s2(s+ 1
T
)
= 0.

From this, we can identify

Go(s) =
kpd
IyT

(s+
kpp
k
p

d

)

s2(s+ 1
T
)
,

as the open-loop transfer function,
k
p

d

IyT
as the open-loop gain, ands = −kpp

k
p

d

as the PD
zero.

Hint for solving the problem: Check the maximum possible angle 6

(

s+
kpp
k
p

d

)

that the
PD zero can provide, and compare it to what is required.
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~xo

~yo
~zo

~h

~r

Earth
orbit

φ

θ
ψ

Figure 19.1 Orbiting Reference Frame
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Chapter 21 Exercises

1. Sketch the frequency responses (Bode plots) for the systems with transfer functions:

(a)

G(s) =
10

(s+ 0.1)(s+ 1)(s+ 10)

(b)

G(s) =
s+ 1

(s+ 0.1)(s+ 10)

(c)

G(s) =
(s+ 1)(s+ 10)

(s+ 0.1)(s+ 100)
.

2. If a filterH(s) is to be designed such that low frequency inputs are passed, but high
frequency inputs are blocked, what is the requirement on thenumber of zeros and poles
of H(s)?
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1. Sketch the polar plots for the systems with transfer functions:

(a)

G(s) =
5

(s+ 1)(s+ 2)(s+ 0.5)

(b)

G(s) =
s+ 2

(s+ 1)(s+ 3)

(c)

G(s) =
s+ 2

s(s+ 1)(s+ 3)

2. Consider the feedback system with open-loop transfer function

Go(s) =
K

(s+ 3)(s+ 2)(s− 0.5)
.

Using the Nyquist criterion, determine whether or not the closed-loop system is stable
or unstable in each of the following cases.

(a) K = 1 (see Figure 21.1)

(b) K = 10 (see Figure 21.2)

(c) K = 100 (see Figure 21.3)

(d) Sketch a root-locus for the above system. Can you explainthe results in parts (a),
(b) and (c) using the root locus?

3. Consider the spacecraft attitude control with output filtering as shown in Figure 21.4.
Sketch the Nyquist plot in each of the following two cases. Using the Nyquist criterion,
verify that the closed-loop system is stable, and find the gain margins.
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(a) PD control
Gc(s) = Kp +Kds.

Low pass filter

H(s) =
1

Ts+ 1

System parameters:

I = 1, T = 1, Kp = 0.01, Kd = 0.1.

(b) PID control

Gc(s) = Kp +Kds+
Ki

s
.

Double low pass filter

H(s) =
1

(Ts+ 1)2

System parameters:

I = 1, T = 1, Kp = 0.01, Kd = 0.1, Ki = 10−4.

4. Sketch the Bode plot corresponding to part (a) of Question3. Estimate the phase
margins and the allowable time-delay in the feedback loop.

5. Figure 21.5 shows the Bode plot corresponding to part (b) of Question 3. Estimate all
stability margins.
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Figure 21.1 Nyquist plot for Question 2(a),K = 1
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Figure 21.4 Spacecraft feedback attitude control with output filtering
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Bode Diagram
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Figure 21.5 Bode plot for Question 3(b)
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1. A spacecraft is orbiting the Earth, as shown in Figure 22.1. As shown in the figure,
at this particular location in the orbit, the earth-pointing and sun-pointing vectors are
given in the ECI frame as

~ne = ~FT
G





−1
0
0



 , ~ns = ~FT
G





0
1
0



 .

Also, as shown in Figure 22.1, the spacecraft attitude is obtained by a rotation of 45o

about~zG.

(a) DetermineCbG.

(b) Determine the coordinates of the earth and sun vectors~ne and~ns respectively, in
the spacecraft body frame,Fb.

(c) Determine the coordinates of the unit vectors defining the intermediate frameFt
(see Section 25.2.4 in the book), in the spacecraft body frame, and in the ECI
frame (as in the TRIAD method).

(d) Obtain the rotation matricesCbt andCGt as in Section 25.2.4 in the book.

(e) Using your solution to part (c) above, computeCbG using the TRIAD method.
Compare this with the result in part (a).

(f) Using the measured vectors obtained in part (b), computeCbG using the
Davenportq-method and QUEST. Verify that you obtain the same result as in
part (d). Note that it should be exactly the same, since no measurement noise has
been added.
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~xG ~ne
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Figure 22.1 Attitude determination question


