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Chapter 1 Exercises

1. Consider three non-coplanar vectard andé, as shown in Figure 1.1, which define
a parallelepiped.
Note that all sides are parallelograms, and that oppostessire parallel. Note that
as drawn, the vecta points above the plane defined by vectbrandc. The volume
of the parallelepiped is given by the area of any one of itessidnultiplied by the
perpendicular distance to the opposing side. In terms ofdigLL,

V= Al (1.1)

(a) Consider the parallelogram defined by vectoendé, as shown in Figure 1.2.

Determine the ared; in terms ofb andc.

(b) Referring to figure 1.3, determine the vectbof unit magnitude |@| = 1) that
is perpendicular to the parallelogram definedﬁaandé, and points to the same
side of it as the vectdd.

(c) Using the result from (b), determine the perpendicuistatice from side 1 to the
opposing side 4, in terms of the vectarandii.

(d) Using equation (1.1), compute the volunie of the parallelepiped in terms of
the vectorss, b andc.

(e) Referring to figure 1.4, compute the volume using the arfeaide 2 (A,),
multiplied it by the perpendicular distancgé.] from side 2 to side 5, that is
V = Ashs.

(f) Combine the results of (d) and (e).

2. Consider again three non-coplanar vecg)rb andé, as shown in Figure 1.5, which
define a parallelepiped. Note that unlike in Figure 1.1, thetara points below the

plane defined by vectots andc.

(a) Repeat parts (a) to (f) of Question 1, using the pargliptd shown in Figure
1.5.

(b) Now, consider three co-planar vectdisb and ¢. Computea - (B x €) and
b - (¢ x &). What can you conclude from this and part (f) in Question 1 and
part (a) in this question?
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Chapter 1 Exercises

3. Consider the vector& b andé. In this problem you are going to find an alternative
expression fo& x (b x €). Itis assumed that, b and¢ are non-zero, and non parallel
(see figure 1.6).

It has been shown thatx (b x &) = &, x (b x &), wheread, is the component of
that is perpendicular tb x ¢, such that = a, + &) (wherea is parallel tob x c).

The vectord andé define the plane thatis perpendiculaﬁtcx c. Thereforea; must
lie in that plane.

(a) Considerthe vectotsandg. Referring to figure 1.7, findj;,, the component of
thaﬂt is parallel td. Using this, fini}b, the component af that is perpendicular
to b. Finally, find|€, ;| in terms of|b x & and|b|.

(b) Sinceb andé, ;, are perpendicular, we may obtain the unit perpendiculaiovec

T
L
al
'_
o

e

These vectors can also be used to define the plane contfim’ngé
Use your solution to part (a) to find, in terms ofb, ¢ |b| and|b x €.

(c) The projection of the vectat onto the plane defined ﬂyandc is given by

aproj = (8- 1)y + (8- p)Ms. (1.2)

Clearly, a,,,; is perpendicular td x ¢, since it lies in the plane defined lfy
andc.
Show that the vectat — &,,.,; is perpendicular to the plane, and hence is parallel
tob x & Hint: Check(d — &,,.;) - i1 and (& — &) - fia.
Conclude from this that the component afparallel tob x € is given by
& = & — a5, While the component of perpendicular th x € is given by
a| = aproj-

(d) Sincea; is perpendicular td x & the cross-product; x (15 x €) is obtained
by rotatinga, by 90° aboutb x &, and then scaling bjb x &|. That s,

8, x (bXC) =&, ,0bx¢, (1.3)
wherea ..., is the vecto rotated by 90 in the direction indicated in Figure

1.8.
Consider the vectorg; andni,. What areni;,; andis,.., the vectors obtained
by rotatingni; andini; by 90° respectively, as indicated in figure 1.9?
Using this and (1.2), find} ,..;.

(e) Substitute the results from part (b) irdo ,.,; obtained in part (d), and finally
obtain the expression f@ x (b x &) = &, x (b x &), using (1.3).

4. We have seen that tor a right-handed reference fr&mehe cross-product of two
vectorsa = Faandb = F'b, is

axb=Fla*b,
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where
Ay by A 0 —a, ay
a=|ay, |, b=]b, |, a¥= a, 0 —a;
a, b, —ay Oy 0

Determine the expression farx b if the frameF is left-handed (see figure 1.10). You
may start from the expression

XXX XXy XX1zZ by
dxb=[a, ay a; || yxX yxy ¥yxZ by
ZXX ZXYy ZX1Z b,

. A five-link robotic manipulator is being designed, with anld at the end (see Figure
1.11). Each of the links have the same length, givem.ligach of the joints allows a
rotation about a single axis. The vecigy denotes the position of joint relative to
jointi. The vectoiry denotes the position of the hand relative to the base of thetro
(joint 1). Refer to Figure 1.11.

We attach a reference frame to the room, denoted,byl'his frame is defined with the
X, andy, axes in the plane of the floor, and thg axis pointing vertically upwards.
Refer to Figure 1.12.

It will also be useful to attach a reference frame to each, lodnoted byf‘i, for

i =1,...,5. The reference frame attached to each link is defined suthhéa; axis
points along the length of the link from jointo joints + 1. Refer to Figure 1.13. The
joint rotations are:

- Joint 1 allows a rotatiofl; about they,. axis. See figure 1.14.

- Joint 2 allows a rotatiofl; about thex; axis. See figure 1.15.

- Joint 3 allows a rotatiofl; about thez, axis.

- Joint 4 allows a rotatiofi; about they; axis.

- Joint 5 allows a rotatiofl; about thez, axis.

(a) Determine the vectos, ras, T34, 45, T's 4, iN their respective link frames;y,
Fo, F3, Fu, Fs.

(b) What is the orientation of the hand relative to the roorardnates? (Find the
rotational transformation fronf,. to ).

(c) Determine the position of the hand relative to the robase)r'y, in room
coordinatesF,.. Note: leave your answer in terms of products of principdtion
matrices.

The results from parts (b) and (c) will allow the robot used&ermine the required
joint anglesfy, 60, 03, 04, 05 required to pick up an object with a given location and
orientation.

. Earth orbiting spacecraft problems often require thevemsion between different
reference frames. Three frames that are often used are tile-Eantered-Inertial
(ECI) frame (denotedr), the Earth-Centered-Earth-Fixed (ECEF) frame (denoted
Fr) and the local Topocentric frame (denot&g). The ECI frame is an inertially
fixed frame (does not rotate with the earth), with ghaxis is aligned with the earth’s
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spin axis, and therefore the andy-axes lie in the equatorial plane. The origin of the
ECI frame is at the center of the earth. The ECEF frame alsd$asgin at the center
of the earth, and the-axis aligned with the earth’s spin axis. Thaxis points to the
location on the equator with zero longitude. Since the EGRmE& is fixed to the earth,
thex- andy-axes rotate with the earth. The Topocentric frame dependseolocation
on the surface of the earth, given by longitudl@nd latitudes. The origin is at the
surface of the earth, at the location of it's definition.)taxis points south along the
local horizon, and it'y-axis points toward the east along the local horizon. This

is important, because it is within this frame that obseoratiof a satellite are made
from the Earth (with a telescope or radar for example).

The ECEF frame is obtained by a rotati®nr = weartn(t — to) (called the
Greenwich Mean Time) about the E&hxis. Note thatv..,¢, IS the earth’s rate of
rotation. See Figure 1.17.

The Topocentric frame is obtained by a rotatioabout the ECER-axis, followed by
a rotation90° — ¢ about the transformegaxis. See Figure 1.18.

(a) Determine the rotation matrix defining the transformatirom ECEF to ECI
coordinates, and from Topocentric to ECI coordinates, ihiadetermineCq g
andCg¢r. Hint: You may use the fact th&t, (a)C.(b) = C.(a + b).

(b) A ground satellite monitoring station with coordinate$ measures the position
of a satellite in local topocentric coordinates gis= f‘%p (see Figure 1.19).
Assuming that the Earth is a sphere with radRis..»,, show that the inertial
positionr = ﬁgr in ECI coordinates is given by:

xsindcos(A + Ogarr) — ysin(A + Oanrr) + (Rearth + 2) cosd cos(A + Oaur)
r= | zsindsin(A+ 0gur) + ycos(A+ 0gnr) + (Rearth + 2) cosd sin(A + O ur)
(Rearth + 2)sind — x cosd

X
wherep = | y
z

Hint: You may use the fact tha.q,¢n, A + 0car andé form spherical coor-
dinates for the ground station in ECI coordinates.

(c) The ground station measures the velocity of the sate#igative to the topocentric
coordinates a§r = ]?%p. Denoting the station position relative to the center of
the earth b)ﬁs, show that the satellite’s inertial velocity= ]?gt satisfies

V=vVr+drpg X Rs + Brg X B,

wherew ¢ is the Earth’s inertial angular velocity vector, given by

0
Gra = Fé 0
Wearth

7. A spacecraft is orbiting the Earth in a circular equatmthit. The spacecraft orbit is
shown in Figure 1.19, looking down on the orbit from aboverbeth pole (looking
downZg).
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The spacecraft position relative to the center of the Eargivien by the vectaf, which
makes an anglé with X;. Note that for a circular orbi} = n = constant > 0, and
r = |F| = constant.

(&) What are the coordinates of the spacecraft positiorthe ECI frame?

(b) The inertial velocity of the spacecraft denotédis the velocity as seen in
the ECI frame, that i/ =1 = ]—"GrG Compute the inertial velocity in ECI
coordinates, and find the angle betw&emndv.

(c) The spacecraft orbital angular momentum vector is gbsen

h=rxV.
Computd; in ECI coordinates. Verify that is perpendicular t& andv.
(d) The magnitude of the orbital angular momenturh is |ﬁ|. Computeh in terms
of r andn.
(e) The orbital energy is given by
V-
2
which is the sum of the kinetic and gravitational potentia¢egy. Note thaj

is the Earth’s gravitational constant. Given that for aw&c orbitn = / /73,
determine the orbital energy.

E:

3

<l
RS

8. You take your little nephew/niece to the fair. He/she wantride on the merry-go-
round. You decide to watch from the sideline.

The position of your nephew/niece relative to you may be idesd by the vectof,,.
The position of your nephew/niece relative to the centenefherry-go-round is given
by the vectoR,,. The position of the center of the merry-go-round relatvgau is
given byer,,. The merry-go-round rotates with angular velocity= 6.

Attach a reference frame to yourself, labelEgd with thex,, andy, axes parallel to the
ground as shown in Figure 1.20 (#gaxis points vertically upwards). Attach a second
reference frame to the merry-go-round, labelgd, with the x,,, axis pointing from
the center of the merry-go-round to your nephew/niece, hegtt, axis perpendicular
tox,,, in the plane of the merry-go-round, as shown in Figure IT®@z,, axis points
vertically upwards.

The distance from the center of the merry-go-round to yowhee/niece isR,, =
IR, |. The distance from you to the center of the merry-go-roung,is= |T,,|.

(a) Based on Figure 1.20, what are the coordinateE,jnof your nephew/niece
relative to the center of the merry-go-round, that is, wisaRi, ,, such that
R, = FIR, m?

(b) What is the rotational transformation from your cooat systemF, to the
merry-go-round coordinate systefy,? (FindC,,,).

(c) Using your answers to parts (a) and (b), determine thedamates inF, of your
nephew/niece relative to you, that is, fing, such that’,, = .fyTrmy.
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10.

T,y
You may taker,, = ]?yT Ym.y
Zm,y
(d) Using your answer to part (c), determine the velocity ofiynephew/niece as
seen by you.
(e) Using your answer to part (a), determine the velocity @firynephew/niece as
seen by another person on the merry-go-round.

. This problem puts some numbers to question 7.

A spacecraft is in a circular equatorial orbit about theleaiith altitude600 km. You
will need the following information:

Earth’s gravitational parameter:= 3.986 x 10° km3/s2.

Earth’s radiusRR, = 6378 km.

(Note that altitude means height above the earth’s surface)

(a) Referring to part 7(a), what is the spacecraft positio&Cl coordinates when
0 = 30°7?

(b) Using 7(b), what is the spacecraft velocity as seen irB@eframe? Note that
0 =n = +/u/r3. Also, compute the orbital speed= |v|.

(c) Referring to 7(c), compute the spacecraft orbital aagmlomentum vector in
ECI coordinates.

(d) Referring to 7(e), compute the spacecraft orbital energ

The orientation of a reference framkg is obtained from the reference frantg by
a 2-3-1 Euler rotation sequence, with anglgsé. andé,,. Specifically, frameF; is
obtained from framéer; by:

- A rotationd,, about they-axisof frame7i,

- A rotationd, about thez-axisof the intermediate framé;,

- A rotationd,, about thex-axisof the transformed framé;.

(a) Obtain the rotation matrio; .

(b) Using the result in (a), obtain expressions for comm#in 6, andd, from the
rotation matrix.

(c) Where is the singularity of the 2-3-1 rotation sequent&at does this physically

mean?
(d) Giventhatframéer; rotates with angular velocitys; = ]?QTcgm relative to frame
0z
F1, obtain the kinematical relationship betweeg, and éy
0.

(e) Using the resultin (d), what happens to the kinematilakionship if the angles
0., 6, andd, and rated,, 0, andd, are very small? Hints: for a small angle
you can sekinf = 6 andcos 6 =~ 1. For very small quantities andb, you can
neglect productab.



Chapter 1 Exercises 11

11. The orientation of a reference framig is obtained from the reference franmtg by
a 3-2-3 Euler rotation sequence, with anglesf, andfs. Specifically, frameF; is
obtained from framéF; by:

- A rotation#; about thez-axisof frameFy,
- A rotationf, about they-axisof the intermediate fram&;,
- A rotationf; about thez-axisof the transformed framé;.

(a) Obtain the rotation matrio; .
(b) Giventhatframéer; rotates with angular velocitys; = ]?QTcgm relative to frame

th
F1, obtain the kinematical relationship betweeg, and 6
03
61
(c) Invert the result in part (b) to obtain 6, | as a function ofwy;. Hint: For a
03

general block lower triangular matrix,

A 0]t At 0
B C | —Cc7'BA7Y C!
(d) Where is the singularity of the 3-2-3 rotation sequerw®at does this physically
mean?

12. Hooke’sjointis shown in Figure 1.21. It can be used inliraery to transmit rotational
power when the axis of rotation needs to change slightly. #swve in Figure 1.21,
Hooke'’s joint consists of three components. An input skaftputput shaft and a cross
in the middle. The cross is connected to each shaft such aa@fthe cross rotates
with the input shaft and the other axis of the cross rotat#ls thie output shaft.

It can be seen from Figure 1.21 that the output shaft has ale angith respect to
the input shaft, with«a| < 90°. We define two fixed (non-rotating) reference frames
F; and.F,, such that

o thez-axis of F; is parallel to the axis of rotation of the input shaft,
o thez-axis of F, is parallel to the axis of rotation of the output shaft and
e they-axes ofF; and.F, coincide.

The rotational angle of the input shaft is labelgdand the rotational angle of the
output shaft is labeled,.

We also attach a reference frathgto the cross, as shown in Figures 1.21 and 1.22.

(a) Write down the rotation matri&,,; corresponding to the transformation fraf
to F,.

(b) We further attach reference fram&s and F3 to the input and output shafts
respectively, as shown in Figures 1.23 and 1.24. Write dbvmdtation matrices
C,; and Cs,. You may assume thak; = F» whend; = 0 and thatF, = F;
whenéd, = 0.
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(c) What is the rotational transformation frodks to F.? Write down the
corresponding rotation matri..s.

(d) By considering the rotational transformatiofis — F3 — F, and F, — F> —
F; — F,, obtain two expressions for theaxis of . in F, coordinates. Hint:
You may use the fact that. = z5.

(e) Using the expressions obtained in part (d), show thatitpet and output
rotational angles are related by

. sin 91
sinf, = -,
(1 — sin? a cos? Oi) 2
cos a cosb;
cosf, =

N|=

(1 — sin® v cos? 91-)
13. Show that for any unit column matrixc R3 with a’a = 1,

a*a*a* = —a*.

14. Making use of the scalar-triple product and vectorérjroduct identities, show that
(axﬁ) : (ax&) — (3-8 (E-&) - (5-&) (B.a).
15. Consider the axis-angle parametarande.

(a) Starting with the expression for the rotation matrixegivn (1.26) in the book,
obtain an approximate expression for the rotation matrixenvithe angle of
rotation¢ is very small. The quantity = a¢ will be useful (this is sometimes
called therotation vecto}.

(b) Show that the axis-angle parametgss, ¢3) equivalent to successive rotations
(a1, ¢1) followed by (az, ¢2) are given by

= sinﬂcos@al —i—sin@cosﬂag—l—sinﬂsin@axag ,
sin(¢s/2) 2 2 2 2 2 2 1
COS — = €08 2l cos 2 _ sin 2l sin ﬁalTaQ.
2 2 2 2 2

(c) Show that their kinematical equations are given by
S 1 X 1 X o X
T3 (a tan(6/2) " ° ) “
¢5 =alw.

(d) Show that the inverse kinematics are given by

w = (singl — (1 — cosp)a™) a+ ag.

What does this reduce to when the rotation is about a fixe® axis
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(e) Isthere a singularity associated with these paranteters

(f) Starting with the inverse kinematics obtained in pajt tbtain an approximate
expression fow when the angle of rotatiofiis very small. The quantitgy = a¢
will again be useful.

16. Consider the rotation vectgr = a¢, introduced in Question 15.
(&) Show that the rotation matrix associated witis given by

(1 — cos ¢)

ing
¢2 _&Qb,

C: X X
1+ o JN p

whereg = ||@|].
(b) Show that the kinematical equations for the rotatiortmeare

(c) Show that the inverse kinematics are given by

1 — cos — sin .
(d) Where is the singularity associated with these paraiset€areful, it is not at
¢ =0.
17. Consider the following parameterization of the rotaticatrix

= atan —.
P D2

These are called the Euler-Rodrigues parameters.

(a) Show that the rotation matrix associated wyitts given by

(1-p"p)1+ 2pp” — 2p*

C:
1+pTp

(b) Starting with the expression for the rotation matrixabed in part (a), obtain an
approximate expression for the rotation matrix wipeis very small.
(c) Show that the Euler-Rodriguez parameters may be olutdirmen a rotation

matrix by
- 1 g23 - g32
1+ 0y + O+ Cs3 C?; -~ C;?

p

(d) Show that the rotatiops equivalent to successive rotatiomsfollowed byps is
given by
_Pitp2t P; P2

Ps3
1- PlTp2
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(e) Show that the kinematical equations for the Euler-Rpdss parameters are
.1
p=5(1+pp" +p*)w.

(f) Show that the inverse kinematics are given by

2(1 -p*)p
1+pTp

(g) Starting with inverse kinematics obtained in part (flptain an approximate
expression fotw whenp andp are very small.
(h) Where is the singularity associated with these paraisiete

18. Consider the following parameterization of the rotaticatrix
= atan —.
o atan 4
These are called the modified Euler-Rodrigues parameters.

(&) Show that the rotation matrix associated wtis given by

88X —4(1 —oTo)o™

C=1
+ (1+070)?

(b) Starting with the expression for the rotation matrixabed in part (a), obtain an
approximate expression for the rotation matrix wiaeis very small.

(c) Setting s = Cy; + Coo + C33, show that the modified Euler-Rodrigues
parameters may be obtained from a rotation matrix by

1 [ Cos — Cso
o=—0 | Cy—Cis |,
l+s+2V/1+s C?;_C;i’

when|lo| < 1,

[ Co3 — O3

1
c=— | Cyn-Cn |,
1+S_2\/1+S O?;—C;?

when||o| > 1, ando = a (the principal axis of rotation) whejr|| = 1.
(d) Show that the rotatiofr; equivalent to successive rotatioms followed by o
is given by

(1-o0los)o1+ (1 —0fo1)os +20] 0,

1+ (6T01)2(0d03)2 — 2010,

g3 =

(e) Show thatthe kinematical equations for the modified ERledrigues parameters
are
(1-0"0)1+200" +20) w.

B~

d’:
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(f) Show that the inverse kinematics are given by

4

T T .

w =

(g) Starting with inverse kinematics obtained in part (fhtain an approximate
expression fow wheno andg are very small.

(h) Where is the singularity associated with these paraist®Vhat are the
advantages of the modified Euler-Rodrigues parameters a@mupo the Euler-
Rodrigues parameters (introduced in Question 17)?

. In this question, we consider a reference frafpalefined by three non-coplanar unit
vectors,1;, 15 and fg, which are not necessarily orthogonal. Note that we reserve
the notationx, ¥ andZ for the basis vectors of orthogonal right-handed frames of
reference, which is why we do not use them here. Just as imo8ekP of the book,
since the basis vectord,, 1, and I3 are non-coplanar, we may represent every

physical vectoF as

— _’T
r = 1 ry,
where
1
]:1 - 12 )
13

is the vectrix containing the basis vectors defining frafeand

1,1
r=1| 71 |,
3,1

is the column matrix containing the coordinatesrah frame ;. Note that for two
physical vector& = Fi'a; andb = F{'by, it is easy to verify that

5—|—l§:f{f(a1 —|—b1),

and that for any scalar;
ca = Fl (cay).

(a) Show that for any two physical vectois= 7 a; andb = 77 by, the scalar

product obeys
a- B = alTW1b1,

where

—
w

1° 2
2 2
13-1; 13-1, 13-

—
—

[

—
L=y

L=y
L=y
L=y
l'—‘l’;‘l

W, =

)
o W Nt
w

Furthermore, verify that the matriW, is symmetric and positive definite.
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(b) Show that for a physical vectat= flTrl, the coordinateg; may be found

according to _
ry = Wl—erIWOJ’

whereW} is defined in part (a), and

—

0 = B f =

=
N
=LRL R

3.

which is recognized to be the column matrix containing théhagonal
projections ofr onto the basis vectors defining frare.
(c) Show that the cross-product between two physical vedbeys

axb=Fl(dW7i'lalby),

whereW} is defined in part (a), and

— — — — — — —

dl:11'(12Xlg):ig'(13X11):I3'(11X]_Q).
20. Continuing from Question 19, consider now a second eefsr frameF,, with unit-

length basis vector3;, 2, and23, which are also not necessarily orthogonal.

(a) Consider an arbitrary physical vectiyrwith representations in frames; and

Fa, given by . .
5:]—"1Ta1 :]-'2Ta2.

Show that the two sets of coordinates satisfy

ap = Tyay,
where B
Ty = Wy ' Ty,
with W5, being defined as in Question 19 (a), and
2.1, 21-1, 2,14
Tor=| 2217 22-15 25-13
2517 251, 25-13

Note that we label the transformation matrix iy since it is not in general a
rotation matrix, which we denote k.
(b) Show that
Tor =112 1ao 132 ],
where
I =F lia, Io=F) 1o, 13=F] 135,
are the coordinate representationsfin of the basis vectors defining;. How
does this compare to the expression for the rotation matviengin equation
(1.18) in the book.
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21.

22.

(c) Noting thatT; = T7,, show that
Ty = W, ' T, W,

(d) Letay = Toia;. Show that
d
a; = (d—1> T1T2a1XT12.
2

whered; andd, are defined as in Question 19 (c). How does this compare to
equation (1.21) in the book?

Define the derivative of a physical vecttr= .f{f r; as seen in a not-necessarily
orthogonal frameF; by

1 .
¥ 27Tk
Show that the rules for differentiation obtained in Sectlof of the book hold in this

case also. Note that we assume that the basis vectoFs afe fixed relative to each
other.

Consider the frame$; and F; from question 19. Define right-handed orthogonal
framesF;, and F», such that#; is fixed in F1,, and F; is fixed in F»,. Define the
angular velocity,; of frameF; relative to frameF; by

W21 = W2o,10-

Note that this is well defined, since any choice of orthogaigtit-handed frames
Fi1, and F5, would lead to the same angular velocity vector. Indeed Agt and
Faor be another pair of right-handed orthogonal reference feameh that?; is
fixed in Fi,,, and F is fixed in Foor. Then, @iy 10 = G207 .20 = 0, which leads to
‘320,10 = ‘-‘320’,10’-

(a) Considef = F'r; = FLry,. Show that

LIS

TR

(b) Making use of the Transport Theorem for right-handedhagbnal reference
frames (equation (1.52) in the book), and part (a), show thatTransport
Theorem also holds for non-orthogonal reference frameat iEhshow

12
r=r +wsy XTr.

(c) Letwo; = fQTLchl. Show that the rotational kinematics are given by
To1 = —do W5 'w Ta1,

where T5; was introduced in Question 20 (a), add, W, were defined in
Question 19. How does this compare to Poisson’s equatiamfeEmn (1.55) in
the book)?



18

Chapter 1 Exercises

Side 2 _ -7 pT_ Side 4
- &£~ ~Side 6

Figurel.1l Parallelepiped defined by b andé

Figure 1.2 Parallelogram defined tﬁ andc

=l
Q)
0l

—

b

Figure1.3 Unit normal vector td ande
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Figurel.6 Question 3 scenario
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X

Figure1.10 Left-handed reference frame

Joint 4
Link 3 | Link 4 J/oint )

Joint 3\

Base

Figure1.11 5-link robotic manipulator
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Z, /

/
/
/ /
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Base attached to room

Figure1.12 Room Frame Definition
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Figure1.14 Joint 1 rotation

Link 2

Figure1.15 Joint 2 rotation
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Yr
Y
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Figure1.16 ECI and ECEF frame definitions

Zp A
Zr
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X7
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XF

Figure1.17 Topocentric frame definition

Satellite

Figure1.18 Ground station and satellite geometry
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Figure1.19 Circular Equatorial Orbit

Nephew /Niece

Merry-go-round You

Figure1.20 Merry-go-round scenario

Zi
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Y A

Figure1.21 Hooke’s joint
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Figure1.22 Hooke’s joint cross
Zo E -
Y2

> Fo

X2
==

Figure1.23 Hooke’s joint input shaft

Figure1.24 Hooke’s joint output shaft
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Chapter 2 Exercises

1. This question makes use of the Earth-Centered-Ine&@l)(F¢, Earth-Centered-
Earth-Fixed (ECEF)Fr and TopocentricFr reference frames. The figures defining
the frames are reproduced in Figures 2.1 and 2.2. Figurehb®ssthe location of
a ground station, which is tracking a satellite. For Earthitihg satellites, the ECI
frame can be considered to be inertial.

The position of the satellite relative to the center of there# given by the vector
r. The position of the satellite relative to the ground stai®given by the vectop.
The position of the ground station relative to the centerhef @arth is given by the
vectorR,. The Topocentric frame has it's origin at the ground stataration. The
angular velocity of the Earth (angular velocity of frathe relative toF¢) is given by
the vectord r, and is constant as seen in the ECI and ECEF frames.

The mass of the satellite i, and the sum of all external forces acting on the satellite
is given by the vectoF'.

(a) Show that the vector equation of motion of the satelliteeen by an observer at
the ground station (as seenj) is given by

[e]e] [e] -

m ﬁ: —2m(;5pg>< ﬁ —mcD’FG X (‘:’FG X ﬁ,s) —mdﬁpg X (‘:’FG X ﬁ) +F,

where(°) denotes time differentiation as seen in frafige.

(b) Given the cooLdinates of theein F, the coordinates @b ¢, f{S anFr, and the
coordinates oF in F¢, that is, given

ﬁ:f%p, QFG:f};wFG, ﬁSZf};RS, f‘:ng,

show that in topocentric coordinates, the equation of nmadibtained in part (a)
is given by

. X T X X X X T
mp = —2mCrrwpCrrp — MCrrwpowpoRs — MCrrwpowpoCrrpp + CraF,

whereCrr is the transformation fronfr to Fr coordinates an@r¢ is the
transformation fron¥ s to Fr coordinates.
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2. Consider the moment of inertia matrix

wa Jwy sz
J= Jwy Jyy Jyz
sz Jyz Jzz

Show that for any three-dimensional body

Jro — Jyy +J.2 >0
3. Inthis question you will derive the expression for thedagmomentum of a dual-spin
spacecraft.

(a) Consider a wheel with moment of inertia matrix about teater of mass as
evaluated in a principal body frani€, given by

I 0 0
L,=|0 I, 0],
0 0 I

wherel, is the moment of inertia about the spin axis, apds the transverse
moment of inertia. Clearly in this case, the spin axis is thieqgipal z-axis, which

is given by
Zp = }_'Zez,
where
0
e.=10
1

Consider any other fram#g,. Show that the inertia matrix about the wheel center
of mass as evaluated in fran#g is given by

I, = I,1+ (I, — I,)aa”,

wherea are the coordinates of the axis of symmetry in frafeHint: first show
thatIp =1L1+ (IS — It)eze;r.

(b) Consider arigid wheel as shown in figure 2.4, which hadimleangular velocity
&w. The vectorr,, locates the wheel's center of mass from the pejrand the
vector g locates the mass elemeiit: from the wheel's center of mass. By
definition, the wheel’'s angular momentum about its centenas$s is given by

—

hw:/ﬁxﬁdma
B

Wheref) denotes the inertial time-derivative gf Starting with the definition for
the wheel's angular momentum about paint

e = [ @+ ) x (fu+ 5) dm,
B
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show that the wheel's angular momentum about the pamgiven by
ch = mwfw X I._:w + ﬁwv

wherem,, is the total mass of the wheel.

(c) Consider the dual-spin spacecraft as shown in figure/Z&esivide the spacecraft
into two parts: the wheel (labeldd’), and the rest of the spacecraft, called the
platform (labeledP). The pointc denotes the center of mass of the spacecraft
(the combined platform and wheel). The veaigr= ]?bTrw locates the center of
mass of the wheel from the center of mass of the spacecrafiFj be a body-
fixed reference frame attached to the platform. The platfoasinertial angular
velocityw = ]?bTw. The wheel has angular velocigy; = ws]?bTa relative to the
platform, wherea = ]?bTa is the wheel spin axis, and, is the wheel spin-rate
relative to the platform. The wheel moment of inertia abbatgpin axis is labeled
I,, and the wheel transverse moment of inertia is lab&led
Show that the wheel angular momentum vector about the wieaétcof mass is
given by

hy, = 7 [Lyw + heal

whereh, = I,w; is the wheel relative angular momentum, and
I, = I,1+ (I, — I,)aa”.

(d) Given that the wheel has mass,,, use the result in part (b) to show that the
wheel angular momentum about the spacecraft center of @riaggven by

Bye = ﬁ;f [Jwew + hsa],

whereJ,,. = I, — m,rr) is the wheel moment of inertia matrix about the
spacecraft center of masevaluated inF,.

Finally, show that the total angular momentum of the speadt (platform plus
wheel) about the spacecraft center of mass is given by

(e

~

h, = Fl [lw + ha

wherel = J,,. + J.. is the moment of inertia matrix of the spacecraft about the
center of mass, andJ,. is the platform moment of inertia about the spacecraft
center of mass.

4, Consiger again the dual-spin satellite from Questionh@dws in Figure 2.5. Let
V. = }‘Evc be the inertial velocity of point, which as we recall is the center of mass
of the spacecraft (combined platform and wheel).

(a) Show that the kinetic energy of the wheel is given by

1 1 1
T, = Emwvg + chwX (MywTy) + inchw + Lwsalw + §Isw§,

wherev. = ||v.||, and all other quantities are defined in Question 3.
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(b)

(©

Show that the platform kinetic energy is given by

1 1
T, = §mpv3 +viw*e, + inJpcw,
wherec, = fp pdm is the platform first moment of mass about painandm,,
is the total platform mass.

Combining the results from parts (a) and (b), show thatetal spacecraft kinetic
energy is given by

T=T;+T,,

where 1
T, = —mvg,

2

is the spacecraft translational kinetic energy, and= m, + m,, is the total
spacecraft mass, and

1 1
T, = §wTIw + IstaTw + §Isw§,

is the spacecraft rotational kinetic energy. Hint;r,, is the first moment of mass
of the wheel about the poimt
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Yr
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Figure2.1 ECI and ECEF frame definitions
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Figure2.2 Topocentric frame definition

Satellite

Figure2.3 Ground station and satellite geometry
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_ dm
rw
Figure2.4 Wheel
a
Ty
P

Figure2.5

Dual-spin satellite
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Chapter 3 Exercises

For some of the following questions, you will need the Eartiravitational constant
pe = 3.986 x 10° km?/s?,
the Sun'’s gravitational constant

fo = 1.3271244 x 101! kmd/s?,

and
1 AU = 1.4959787 x 10% km.

1. A spacecraftis observed with inertial position and vityogectors relative to the center
of the Earth, given in ECI coordinates by

B 1670.6319 B —5.3429
F=FL = 1670.6319 | km, v=FL = | —5.3429 | km/s
6491.2735 3.3788

The Earth’s gravitational constant is given jay = 3.986 x 105 km3/s%.

(a) Compute the orbital angular momentum vedtan ECI coordinates.

(b) Compute the orbital energy, What type of orbit is it?

(c) Compute the eccentricity vectélin ECI coordinates.

(d) Compute the eccentricity,and the semi-latus rectum

(e) Compute the true anonjaIQ/,, noting thatf is measured positive frord as a
right-hand rotation aboui.

(f) Compute the radius at periapsign -

(g) Compute the spacecraft position vector at periapsis<ihdéordinates.

(h) Compute the orbital speed at periapsis.

(i) Compute the angle, between the orbital plane and the Earth’s equatorial plane
noting thath is a vector normal to the orbit, ard; is a vector normal to the
equator.
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2. A geosynchronousrbit has semi-major axis and eccentricity:

a 42241.08007 km,
e = 0.

(a) Compute the orbital period in hours. What can you corehtbut a satellite in
a geosynchronous orbit?

(b) A geostationaryorbit is a geosynchronous orbit with zero inclinatios- 0.
What is the plane of the orbit? What can you conclude aboutellisa in a
geosynchronous orbit in relation to an observer on the gidun

3. Halley’s comet last passed perihelion on February 9, 188tas a semimajor axis
of 17.9564 AU and eccentricity = 0.967298 (one AU is the semimajor axis of the
earth’s orbit around the sun). Predict the date of its nextne

4. A satellite is in a geocentric Keplerian (two-body) onith a period of 270 minutes
and eccentricitg = 0.5. It has passed perigee and is now at a point in which the érbita
radius is the same as the semi-latus rectum. How much timaifintes) has elapsed
since perigee passage?

5. An earth-orbiting spacecraft has classical orbital €lets

a = 8000 km,
e = 0.1,

i = 45,

w = 0°,

Q = 90°.

The spacecraft currently has true anontaly 30°.

(a) Determine the spacecraft position and velocity vedtoperifocal coordinates.
(b) Determine the transformation from perifocal to ECI atinatesCg,,.
(c) Determine the spacecraft position and velocity vedtoEsCI coordinates.

6. Attimet = 0, the position and velocity vectors for an earth-orbitingeHiie are given
in ECI coordinates as:
—3718.8

F=FL| 16029 | km,
6517.7

. —4.8991
Vv =FL | —5.4428 | km/s
—0.6659

(a) Find the classical orbital elements
(b) Thirty minutes later, what aiandv? (Express your answers in ECI coordinates)

7. An earth-orbiting satellite has orbital radius and spstgaerigee

rp = 7000 km, v, = 8 km/s
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(a) Determine the orbital period; in minutes.
(b) Determine the orbital speed twenty minutes after perggssage.

8. Attimet = 0, the position and velocity vectors for an earth-orbitintgBie are given
in ECI coordinates as:

1.703 x 10°
F=FL | 00426 x 10° | km,
0.638 x 10°

0.0972
V=F&| 1271 | km/s
1.465
(a) Find the classical orbital elements

(b) Twenty minutes later, what aré and v? (Express your answers in ECI
coordinates)

9. By starting with the polar solution for an orbit, and theiation for the orbital angular
momentum, show that the time-of-flight equation for a paliatwbit is given by

/ 0 0
6 Z%(t—to) = 3tan§ + tan® 2

wheret — t, denotes the time since periapsis passage.

10. In this question you are going to derive the time-of-flighQuation for a hyperbolic
orbit.

First, we need to discuss hyperbolic functions. The hyparbme, cosine and tangent
are defined as

. Aer—e ® Aet e A sinhz
sinhx = — and coshz = — tanhx =

respectively. From these definitions, the following prapean readily be shown.
cosh? z — sinh? z = 1.
The derivatives are readily obtained as

d d 1
. sinh x = coshz, e coshz = sinh z, e tanhz = m.

Similar to the trigonometric functions, the following “doble-angle” formulae can also
readily be found

coshz = 2 cosh? g —1, sinhzx = 2sinhgcoshg.

Consider the hyperbola satisfying

2 2
5”_2_%—2=1, with a < 0, b < 0.
a
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As shown in figure 3.1, the hyperbola has two branches. Thdéefd branch of the
hyperbola can be represented parametrically by

x =acosh P, y= —bsinh P

We now consider a hyperbolic orbit with eccentricity> 1, a < 0 andb = av/e? — 1.
Since a hyperbolic orbit corresponds to the left-hand braofca hyperbola, we can
represent the andy components of the orbital position in perifocal coordiisdig

zp = —ae+acosh H, y, = —bsinh H,
where we callH the “hyperbolic eccentric anomaly”.
(a) Show that the orbital radius satisfies
r =a(l —ecosh H).
(b) Show that

cosf = a[cosh H — e]’
r
and
. —ave? —1sinh H
sinf = .

r

(c) By applying trigonometric and hyperbolic double anglenfiulae to the results in
part (b), show that

20 —ale—1) cosh? I
cos” = = ,
2 r
and
.0 0 —ave2 —1sinh £ cosh £
sin 5 cos 5 = 2 2
T

(d) Using the results from part (c), show that the true angraad the hyperbolic
eccentric anomaly are related by

0 e+1 H
tan§— e_ltanhg.

(e) By differentiating the result in part (d), and making as¢he first result in part
(c), show that

dd _ a e2—1
dH r '
() Letty be the time of periapsis passage. Evaluate the integral

t 0
/ hdr = / r2do
t() 0
to obtain the hyperbolic form of Kepler’s equation

: 1t
esinhH — H = _—aS(t_tO)'
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11. Theinertial position and velocity of a spacecraft oherEarth are observed in the ECI

frame to be
- 9000 - 0
F=F& | 9000 | km, v=FL| 0 | km/s
0 7
Calculate:

(&) The angular momentum vector
(b) The inclination,
(c) the right ascension of the ascending ndde,

12. Consider the circle of radiusas shown in figure 3.2. The wedge bounded by a radius
with angle E from the z-axis and thecr-axis itself may be divided into two parts: a
triangular part with areal; and the remaining part with ared,. Therefore, the area
of the wedge is given by

Ay = A+ A,

(@) Show that the ared, is given by

1
A, = §a2 [E —sin Ecos E].

(b) Referring to figure 3.3, it can be seen that the area of hit ewept out by the
radius vector from periapsis at tinig to the current time, can be divided into
two parts: a triangular part with are® and the remaining part with ared.
Show that

b
As = % [sin E cos E — esin E],

whereb is the semi-minor axis, andis the eccentricity.
(c) Given thatA; = (b/a)Ao, where A, was found in part (a), show that the area
swept out by the radius vector is given by
ab )
At) = 5 [E —esin E].
(d) Using the result from part (c), make use of Kepler’s seldaw to derive Kepler’s
equation.

13. A spacecraftis in a geocentric Keplerian orbit. It hasspd perigee, and is currently at
a position where the orbital radius is equal to the semislegatum. The current orbital
radius and speed are

r = 7000 km, v = 7.5555 km/s

How much time has elapsed since perigee passage?
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\ Y /
/ \‘”
Figure3.1 Left and right branches of a hyperbola

NI

Figure3.2 Segment of bounding circle
Y
Ay
a T,
Yp
E L6
ae Tx, Ay x
periapsis

Figure3.3 Area swept out by orbital radius
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For some of the following questions, you will need the Eartiravitational constant
pe = 3.986 x 10° km?/s?,

the Sun'’s gravitational constant

fo = 1.3271244 x 101! kmd/s?,
Earth’s heliocentric orbital radius

R = 1.49598023 x 108 km,

and Mars’ heliocentric orbital radius

Rtars = 2.27939186 x 10® km.

1. Radar observations have provided the following suceessosition vectors of an
object orbiting the earth:
7000
ry = fg 0 km,
0

[ 58468
Ty = F& | 5846.8 | km,
0

0
¥y = F& | 14700 | km.
0

(a) Determine whether the orbit is elliptic, parabolic opbybolic.
(b) Determine the radius at perigee.
(c) Determine the orbital speed at perigee.
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2. Radar observations have provided the following suceegsosition vectors of an
object orbiting the earth:

[ 3467.3 ]
¥ =FL | 3467.3 | km,
4903.5 |

0
T = Fo 0 km,
| 7425.0 |
The time between observationstis— ¢; = 740.6 seconds. You may assume that the
object is in an elliptical orbit. For simplicity, you may taly = ngy as the sector-
triangle area ratio.

(a) Determine the orbital period.
(b) Determine the eccentricity of the orbit.

3. ltis desired to perform an interplanetary transfer froantk to Mars. It is determined
that a Hohmann transfer requires too much time. Assumehdtarth and Mars both
possess coplanar circular orbits. At time- 0, the Earth has true anomdly;(0) = 0,
and Mars has true anomaly, (0) = 30°. The spacecraft is desired to arrive at Mars
when Mars has a true anomaly, = 45°. See Figure 4.1.

(a) Determine the time of flight of the transfer in days.

(b) Determine the required heliocentric velocity vector the spacecraft upon
departing the Earth’s sphere of influence. Use the coorglisgétem shown in
Figure 4.1. You may take = ny for the sector to triangle area ratio of the
transfer orbit.

4. Radar observations have provided the following suceegsosition vectors of an
object orbiting the earth:

[ —1568.3998 ]
¥ =FL | 4895.6516 | km,
4570.7746

[ —3090.7866 ]
¥ =FL | 3963.6107 | km,
4988.2121

[ —5431.0755 ]
F3 = F& | 1739.9314 | km.
5070.6676

Determine the semi-major axis, eccentricity and radiuseoigee of the orbit.

5. Suppose that you are an astronaut onboard the Interab8pace Station. You receive
a radio message from Canadian Space Surveillance (CS%) pheiously undetected
asteroid is on a collision course with the Earth, and wiklikimpact somewhere near
Ottawa. You are asked to fire a missile (which is kept onboarddich emergencies)
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at the asteroid, which will break it into pieces small enot@hurn up upon entry into
the atmosphere. CSS informs you that the last point on thectaay of the asteroid
that such an intercept is possible has ECI coordinates

[ —2102.02476
ty=FL | 528.32428 km,
6941.38176

which is where the asteroid will be in precisely 12 minuteseti It will take you 2
minutes to prepare the missile, at which time your locatioBCI coordinates will be

[ 1668.39097
¥ = F& | 3624.99549 | km.
5163.39798

What inertial velocity vector should the missile have upeimp fired, in order to inter-
cept the asteroid a,? Express your result in ECI coordinates.

Note: Upon firing, the missile has an impulsive (instantars@dhrust to give it the
required velocity, after which it is in free orbital flight tiintercept with the target.

6. Radar observations have provided the following suceegsosition vectors of an
object orbiting the earth:

B [ 1955.2948
¥ = FL | 4646.0121 | km,
5227.4178 |

[ 107.8848 ]
¥y = F& | 3469.9455 | km,
6531.6767 |

[ —2316.9737
¥3 = FL | 1373.0632 | km.
7168.8558

(a) Determine the position vector at periggan ECI coordinates.
(b) Determine the velocity vector at perigégin ECI coordinates.
(c) Determine the time since perigee passage ¢, for rs.

7. Verify the velocity vector at perigee obtained in 6(b),dmjving Lambert’s problem
givenr, obtained in 6(a)r, and the time of flight, — ¢, obtained in 6(c).
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Mars

Y

Figure4.1 Earthto Mars transfer
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Chapter 5 Exercises

For some of these questions, you will need the earth’s géertal constant
pe = 3.986 x 10° km3/s?.

1. Itis desired to change an initially elliptical orbit ofre@najor axisa; and eccentricity
e; to a larger elliptical orbit with semimajor axis, > a;, with the same radius of
perigeer,, but different argument of perigee{ = wi + Aw). Note that both orbits
lie in the same plane. See Figure 5.1.

(a) Describe a double tangential maneuver that can accsipiis.
(b) Obtain an expression for the totab for the maneuver.
(c) Obtain an expression for the total time taken to exehdearianeuver.

2. Two spacecraft are in the same geocentric ellipticaltarith semi-major axis: =
10,000 km and eccentricitg = 0.2, as shown in Figure 5.2. At the current time, they
have true anomalies

0, = 45° andf, = 900,

respectively. Determine thAv spacecraft 1 must apply at periapsis if it is to catch
spacecraft 2 with a single tangential maneuver.

3. A spacecraft is initially in a geocentric circular orbit @diusr, = 7,000 km. It is
desired to place the spacecraft in an elliptical orbit inghme plane, of semi-major
axisa = 20,000 km and eccentricity = 0.665.

Suggest a double-impulse maneuver to accomplish the grai@fmpute the totahv
and the time of fligh"OF".

4. A spacecraftis launched into a circular orbit of radius= 8, 000 km with inclination,
1 = 45°. Compute the total\v required to transfer the spacecraft into a geostationary
orbit (which has radiusr; = 42,221 km), assuming the inclination change is
performed at apoapsis of the transfer orbit.

5. A satellite leaves a circular parking orbit at inclinatiband executes a Hohmann
transfer to a larger circular orbit in the equatorial plaPart of the required inclination
changeAi; is performed during the first maneuver, and the remaiding= i — Ai;
is done during the second maneuver.
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(a) If the speeds in the circular orbits arg andwv., respectively, and the perigee

and apogee speeds in the Hohmann transfer orbitzaadv, respectively, show
that the totalAv for both maneuvers is given by

[N

1
Av = [v?l + vg — 2 vpcos Ay 2 + [v§2 + 12 — 20090, cos (i — Aiy)]

(b) Obtain an expression for
dAv

dAiy
(c) Using the result from part (b), show that performing thére inclination change
at apogee of the Hohmann transfer orbit (thahis = 0) is not optimal.

OI‘bit 2 N

\ Orbit 1

Figure5.1 Desired orbit change

Spacecraft 2 \

Figure5.2 Question 2 Scenario
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For the following exercises, you will need the Earth’s gtatitonal constant
Pearth = 3.986 x 10° km?/s?,
the Sun'’s gravitational constant
fsun = 1.3271244 x 10 km?/s?,
Mars’ gravitational constant
Limars = 4.305 x 10" km?/s?,
Venus’ gravitational constant
Lvenus = 3.257 x 1014 m?/s?,
Jupiter’s gravitational constant,
fgup = 1.268 x 108 km?/s?,
Earth’s orbital radius about the sun
Rearth = 149.598023 x 10° km,
Mars’ orbital radius about the sun
Rnars = 227.939186 x 10° km,
Venus’ orbital radius about the sun
Ryenus = 108.208601 x 10° km,
Jupiter’s orbital radius about the sun,
Ryup = T77.8 x 10° km,
and Saturn’s orbital radius about the sun,

Rgq: = 1486 x 10% km.

Spacecraft Dynamics and Control - An IntroductiomAnton H.J. de Ruiter, Christopher J. Damaren and James Re&or
(© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sdrid.
Companion Website: http://www.wiley.com/go/deruitpesecraft




46

Chapter 6 Exercises

1. As part of a preliminary study for an exploration trip to fdait has been decided that

a Hohmann transfer will be used to travel from the Earth tosvidbu may assume
that the orbits of the Earth and Mars are circular and lie exgame plane.

The spacecraft is initially in a circular parking orbit armlithe Earth of radius
rpark = 100,000 km. It is desired to place the spacecraft in a circular orlmuad
Mars of radiuscqpture = 50,000 km.

(@) Compute the semi-major axis of the Hohmann transfet.orbi

(b) Compute the time-of-flight for the Hohmann transfer.

(c) Assuming that the Earth, Mars the Sun lie on the same tine=a0, with Earth
and Mars on opposite sides of the Sun, compute thetimédays of the required
departure from Earth.

(d) Compute the required hyperbolic excess spegd., upon exiting the Earth’s
sphere of influence, and the hyperbolic excess spgeg. upon entering Mars'’
sphere of influence.

(e) Determine the location and magnitude of the;.,, required for Earth departure.

(f) Determine the required arrival hyperbola asymptotsetff-b, and compute the
magnitude of the\v,,.,. required for Mars capture.

(g) Compute the totahv for the trip.

. As part of a preliminary study for an exploration trip tor\s, it has been decided that

a Hohmann transfer will be used to travel from the Earth tougeryou may assume
that the orbits of the Earth and Venus are circular and libénsame plane.

The spacecraft is initially in a circular parking orbit armlithe Earth of radius
rpark = 100,000 km. It is desired to place the spacecraft in a circular orlmuad
Venus of radius .qpture = 50,000 km.

(&) Compute the semi-major axis of the Hohmann transfet.orbi

(b) Compute the time-of-flight for the Hohmann transfer.

(c) Assuming that the Earth, Venus and the Sun lie along timedie att = 0 (on
the same side of the sun), compute the tinie days of the required departure
from Earth.

(d) Compute the required hyperbolic excess spegd., upon exiting the Earth’s
sphere of influence, and the hyperbolic excess spgeg, upon entering Venus'’
sphere of influence.

(e) Determine the location and magnitude of the;.,, required for Earth departure.

(f) Determine the required arrival hyperbola asymptotsetff-b, and compute the
magnitude of the\v,,.,. required for Venus capture.

(g) Compute the totahv for the trip.

3. Four incredibly lonely and homesick astronauts who goksted into making a one-

way trip to Mars, have found a resource (on Mars) that can fieectto create rocket
fuel. However, this resource is limited, so they need to mire the fuel required to
get back to Earth. This necessitates a Hohmann transfer.
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(a) The astronauts desperately want to return to Earth asapossible, so they do
not want to miss the next launch window. Given that the curere anomalies
of Mars and the Earth aréy;,.s = 45° and 0gq-, = 90°, how long do the
astronauts have to make preparations?

(b) Assuming that they can make the next launch window, haw leill it be until
the astronauts are reunited with their families?

(c) The astronauts will initially launch into a circular arg orbit around Mars
of radiusryq, = 30,000 km, where they will perform a final check-out of all
their systems before embarking on the return journey to gm¢hEWhat is the
magnitude of theAwv they must apply to get on the required escape hyperbola,
and at what location relative to the velocity vector of Mansstit be applied?

4. It is desired to perform an interplanetary transfer fromrdto Jupiter. Assume
that Mars and Jupiter possess circular coplanar orbits askkrother appropriate
simplifying assumptions.

(a) Calculate the required heliocentric velocities neardvéand near Jupiter.

(b) Whatis the required hyperbolic excess speedq.,, upon leaving Mars’ sphere
of influence?

(c) If the approach distance at Jupiter isb = 1,050,000 km, calculate the
perijovian distance.

(d) Calculate theé\v to be applied at periapsis of the arrival hyperbola to cagptiue
spacecraft into a circular orbit about Jupiter.

(e) If Mars and Jupiter are currently aligned on the oppasies of the Sun, how
much time until the next launch window?

5. A spacecraft on a Hohmann transfer from the Earth to Saflies unexpectedly
through the sphere of influence of Jupiter. The spacecraitogghes Jupiter on an
entry asymptote offset of-b = 900,000 km. Assume circular coplanar orbits for
Earth, Jupiter and Saturn.

(a) What is the perijovian distance?

(b) What is the angle between the entrance and exit velo@ttors relative to
Jupiter?

(c) What will the spacecraft's heliocentric energy gain béhé spacecraft passes
behind Jupiter?
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Chapter 7 Exercises

For the following questions, you will need the Earth’s gtational constant
pe = 3.986 x 10° km?/s?,

Jo for the Earth
Jo = 0.001082,

and the equatorial radius of the Earth
R. = 6378.1363 km.

1. The perturbing gravitational potential for the Earth nsaynetimes be approximated

by
2 3
J2 (%) PQ(SIH5)+J3 <%) Pg(SlH(S)]

whereR, is the equatorial radiugl, and.J; are zonal harmonic coefficient8; (x) =

3,2 1 _ 5,3 3 i
sx® — 5 andPs(x) = 52° — 5o are Legendre polynomials.

pr:_ﬁ

r

(a) Find the perturbing force per unit mass due to the aboxeifiéng potential in
the spherical coordinate system (see Figure 7.1). Wheperator in spherical
coordinates is given by

- a .. 1 0o,., 1o,
VO =57 0%+ ass an OFs ¥ 1 5510

Note that in Section 7.3.1 in the book, we obtained an exipred®r the
acceleration due to thé, term directly in ECI coordinates. Strictly speaking, the
Earth’s gravitational potential is fixed in a frame attachedthe Earth, namely
the ECEF frame. The reason the acceleration due/iocould be evaluated
directly in the ECI frame is because it depends only on ldét), and not
on longitude ). Under the assumption that the ECI and ECEFaxes are
equal €¢ = Zr), the latitudes is the same in both ECI and ECEF frames,
and the gravitational potential due td, becomes identical in both frames. In
reality, there is a slight difference betweé&a and zZr. However, by making
the approximation thaZ, = Zr, the analytical expressions for the effects/of
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on the orbital elements in Section 7.3.4 in the book coulditained. Strictly
speaking, in the final equation for the acceleration dugidqequation (7.40)),
Z¢ should be replaced by

(b) Noting that the spherical coordinate frame is obtaimechfthe ECEF frame by
a rotation) about thezr axis, followed by a rotation-6 about they, axis, find
the perturbing force per unit mass due to theterm in ECEF coordinates, and
verify that this is the same as that presented in equatid®) the book.

(c) By transforming the perturbing force per unit mass duth&/; term to ECEF
coordinates, show that the force per unit mass in terms aofipalvectors is

3 75(R. 7 2.2 )2 2 2 2
£, = ke {5@ Zr) (7(r Zr) —3)F+3(1—5L 2r) )ZF}

275 r2 r2 r2

2. Consider the perturbing potential for a non-sphericahary due to zonal terms only
L B RN\" .
op(T) = —?;Jn (7) P, (sin ).
Show that the associated perturbing force/unit mass is\diye
f, = 7% ;2 Jn <RT) [((n 4 1)P,(sin §) 4 sin 6 P/, (sin §)) ¥ — 7P/, (sin 6)Z] ,

whereP! (z) = dP,(z)/dx andZ is thez-axis of the ECEF frame.

3. A satellite is initially in a close-to-circular Earth darlfvery small eccentricity), as
shown in Figure 7.2. However, a small disturbing force dusdiar radiation pressure
acts continuously on the spacecraft in an inertially fixegation, as shown. Assume
the solar radiation pressure force per unit mass is in theeptd the orbit, and has
magnitudef.

(a) Express the tangential force compongnand the radial force componefitin
terms of f and the true anomaly,

(b) Show that for the initially close-to-circular orbit,dtevolutionary equations for
the semi-major axia and the eccentricity are (approximate by setting= 0)

d 24>
da_ za fcos@

dt  \/pa
de _ gf[l—l—coszb‘}
dat  \\p

(c) For a circular orbit, the angular rate is approximataipstant, withd = /L.
Show that the evolutionary equations foande with respect to true anomaly,

are
da I
@~ n2 st
de f
@ = — [1+C0829]

wheren = , /% is the orbital mean motion.
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(d) As shown in Figure 7.3, only the lit portion of the orbitaffected by the solar
pressure force. The portion of the orbit shadowed by thehEraas a range of true
anomalied, < 6 < 180° — 6, as shown in the figure. Using the result in part
(c), show that the changesdrande over one orbit are given by

Aa=0
_f ™ sin(26,,)
Ac=im {3("”5)*7

4. (a) Show that for a sun-synchronous frozen orbit with semajor axis,a, the
eccentricitye is given by

=[i- (2 E)]

()55 = 3607 /year

=

where

(b) Compute the eccentricities and radii of perigee for ecgatric sun-synchronous
frozen orbits with semi-major axes= 10,000 km, a = 15,000 km anda =
20,000 km. Conclude that there is a range of semi-major axes for hwhic
geocentric sun-synchronous frozen orbit is possible.

(c) Sketch a plot of semi-major axis vs. radius of perigeedageocentric sun-
synchronous frozen orbit.

(d) Find the minimum value of, for which a geocentric sun-synchronous frozen
orbit is possible.

(e) Using an iterative procedure, determine the maximumevalf ¢ for which a
geocentric frozen orbit is possible, given that the orbdidt stay at least 200
km above the earth.

5. For this question, make use of the impulsive form of Gauasational equations.

(a) Consider a circular orbit. Suppose that it is desiredntmbaneously change the
inclinations, and the right ascension of the ascending riediey a small amount
01 andds) respectively.

i. What should be the magnitude of the impulsive velocityraief
ii. Where in the orbit should it be applied (at what valug®ii? (You may take
w =0)

(b) Consider an elliptical orbit)(< e < 1). Suppose that it is desired to change the
right ascension of the ascending nddby a small amounds?, while keeping all
other elements unaffected.

Describe a double-impulse maneuver that accomplishes'thé is, specifyyv,
andovs, and their locations of application in the orf#). Hint: Consider the(2
change first.

(c) Given a spacecraft in a sun-synchronous orbit of semdinaxisa = 7000 km,
and eccentricity = 0.05.
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i. Compute the secular rate of change of the argument of @efig due toJ,
effects.
ii. Itis desired to keep the secular partofvithin a rangev,,;, < w < wWmaz,
wherew, . — wmin = 2°. How often does the orbit need to be corrected?
iii. Assuming thatéw = 2°, what is the requiredv, and where should it be
applied in the orbit such that the other elements are not&ffie

6. Atmospheric drag has a significant impact upon the lifetoha space mission. The

force per unit mass due to atmospheric drag is given by
f,=—Cv,
where C' = 1<4 5, and ¢, is the drag coefficientA the cross-sectional area of
2 m

the spacecraftyn the spacecraft masg, the atmospheric density, and= |V| the
magnitude of the spacecraft velocity vector.

(a) Starting from the energy equation for an orbit, show thaeffect of atmospheric
drag on the semi-major axis is given by

2Ca*v?
R

a=

(b) Giventhatthe atmospheric drag does not affect the é&gcigpnfor circular orbits,
what does the result in part (a) mean for a spacecraft in alairorbit?

(c) The atmospheric density decreases exponentially \aiiat distance from the
earth surface (altitude). As such, highly elliptical osbéan be considered under
the influence of atmospheric drag only near perigee. Th#téseffect of atmo-
spheric drag on highly elliptical orbits may be approxintbby a tangential\v
near perigee of every orbit.

Based upon this, what is the long-term effect of atmosplueg on highly ellip-
tical orbits?

(d) Starting from the definition of the semi-latus rectumowhthat the effect of
atmospheric drag on the semi-major semi-latus rectum engdy

p=—2Cp.

(e) Show that the effect of atmospheric drag on the eccétytigcgiven by

. Cp <2 2)
e=—|-—-].
e a r
Hint: You will need the vis-viva equation.

(f) Using the result from part (e), what happens to the ec@gtytat apogee? What
happens at perigee? Hint: Substitute the expression foraitieat apogee and
perigee into the result from part (e).

(g) Can you provide a physical explanation for the phenonafysarved in part (f)?
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. The perturbation force (per unit mass) acting on a spaftdora geocentric close-to-
circular orbit is given by

f, = 0.005 sin 65, N/kg,
wherex,, ¥, andZ, are the unit vectors of the orbital cylindrical coordinatanfie,
and@ is the true anomaly. If the orbit has a period of 10 hours,ate the secular
changes in the semi-major axis and the eccentricity afteroohit.

Figure7.1 Spherical coordinate frame

orbit fo !

Solar Pressure

Figure7.2 Solar radiation pressure
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Solar Pressure

Figure7.3 Shadowing by Earth
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Chapter 9 Exercises

For some of the following questions, you will need the Eartiravitational constant
p = 3.986 x 10° km?/s?.

1. Prove the expressionsin (9.29) in the book.

2. Prove the expression in (9.32) in the book.

3. Consider a geocentric leader-follower spacecraft ftiona with the leader in a
circular orbit of radiug; = 7000 km. Determine the initial conditions for the follower
spacecraft (in the Hill frame), if it is to be in a Projectedc@ilar Orbit about the
leader of radiugz = 100 m, with initial phase angléy, = 45°. Numerically simulate
the relative orbit using Hill's equations to validate thédiad conditions.

4. Repeat the developmentin Section 9.3.2 to obtain thialiobnditions for a translated
Projected Elliptical Orbit, where everything is the sam@asection 9.3.2, except that
the Projected Elliptical Orbit is to be centered at a paint x4, Z = 0, wherex, is
non-zero.

5. Specialize the results from Question 4 to the case of alatd Projected Circular
Orbit of radiusR.

6. Repeat Question 3 for a translated Projected Circulait ©fthe same dimension, but
with center atcy = 200 m.

7. Consider a geocentric leader-follower spacecraft ftionawith the leader in a circular
orbit of radiusr; = 7200 km. At the currenttime, the follower has position and vetpci
relative to the leader given by (in Hill frame coordinates)

z =234.2020m, y = 70.7107m, z = 66.9846 m,

= -0.1281m/s y=0.0731m/s, 2=0.0177m/s

Determinez, z, P, ¢, Q anda (using the notation from Sections 9.2.4 and 9.2.5 in the
book). Is the relative motion bounded?

8. In Sections 9.2.4 and 9.2.5 in the book, the following sfarmations were provided
fromz,y, 2z, 2,9,2t0%, 2, P, ¢, Q, a:

T=x-— —,
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2
2=4z+—$,
Wo
2\ (212}
p:<<3z+_> +(—>)
Wo wo
—(3z—|—%)
sing = iz ,
Z
cos ¢ oD’
1
SN2\ 2
Q—<y2+<i)> :
wo
sina—g7
Q
_
cosoz_on.

Using only the expressions given above, prove the inveasstormations given below,
fromz,z, P,¢,Q,atox,y, 2, 4,9, 2

x =2+ 2Pcos o,

z =Z+ Psin¢,

= —% (3% + 4Psin ¢),
Z = w, P cos ¢,

y = @sinq,

U = wo@ cos a.

9. In Chapter 3 in the book, it was shown that the classicatalrblements provide much
greater physical insight into an orbit than do the inert@difion and velocity vectors.
Likewise, for a leader-follower formation, the quantitasz, P, ¢, @, « provide much
greater physical insight into the relative motion of a laafddower formation than do
x,y, 2, T, 7, 2. The physical meanings af z, P, ¢, Q, «, were investigated in Sections
9.2.3t0 9.2.5in the book.

However,z, z, P, ¢, Q, o were defined on the basis of natural formation motion, that
is, without any disturbances or spacecraft control forttegas shown that under these
conditions, z, P, Q are constant, and = —3wyz/2 and $ = & = w,. However, in
practise, just as for a geocentric orbit, there will be dis&ices or intentional control
forces which will cause, P, Q to vary with time, and the rates af b, ¢ to also vary.
Therefore, similar to the Gauss variational equationstferdrbital elements, it will be
useful to obtain dynamic equations forz, P, ¢, Q, o, when the follower spacecraft is
under the influence of external forces.



Chapter 9 Exercises 57

As shown in Question 8, by simply taking as definitions thedéfarmations from
.y, 2, &7, 2 to Z,2z, P,¢,Q,a (without any consideration of physical meaning,
or whether or not there are disturbance forces), the inveesesformation from
z,Z,P¢,Q,a t0 x,y,2,%,9,% is also well-defined, and takes the same form
regardless of whether or not there are disturbance forces.

Now, considering the forced equations of relative motiaquéions (9.11) and (9.12)
in the book)

T = 2wz + fu,
3 = 2ot + 3wz + f.,
j=—wiy+fy,

show that the dynamics far, z, P, ¢, Q, « are given by

3w, _ 2

z=-— z—w—ofz,

. 2

Ez_fwa

. 2sin cos

P=- ¢fm+—¢fza

(o] wO

. 2 cos ¢ sin ¢

¢_ 0_%—me_%—P.fZ7
Ccos &

- wo fya
&= w, smafy.
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Chapter 10 Exercises

1. Determine the extension of Equations (10.4) and (10.®nwiy is no longer confined
to the plane of the orbit of»; andms.

2. Using numerical root-finding software, validate the tomas ofL,, Lo, andLs for the
Earth-Moon system.

3. Consider Equations (10.13) and (10.14) and adopt theim@mdionalizations

556:(517/7"12

0y = dy/r12
_d)

()—7, T =wt

(We have redefined the symbgl)). Show that the equations for the triangle
equilibrium pointsL, andLs become

61—2§y——6A—¥( —1>6A

3V3 .. 9.

for L, and

2

5@+259@+¥(p——)5A 59=0

1
6:6—253/——6 —I—ﬂ (p——)éyzo
J
4
for L5, wherep = ma/(m; + ms). Determine the range of mass ratiegeading to
stability of the triangle points. In particular, verify thiéney are stable for the Earth-
Moon system wherg = 0.01215.
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Chapter 12 Exercises

1. A spacecraft with a principal axes body-fixed fraffig has corresponding principal
moments of inertid,, = 100 kg-m?, I,, = 120 kg-m?, I, = 80 kg-m*. The spacecraft
attitude relative to the Earth centered inertial frafeis described by a yaw-pitch-roll
(3-2-1) Euler sequence, represented by the rotation matrix

CoCy CoSqp —Sp
Coc (0, 0,9) = | s50cy — o5y S¢s05y +Cocy S4Ca
CHSOCY + S¢Sy CHSeSy — S¢pCyp  ChCh

wheres; = sin b ande, = cosb. Whereg, 6 and are the roll, pitch and yaw angles,
respectively. Currently, the attitude is representedpby ¢ = ¢» = 7 rad, and the
spacecraft orbital position (in ECI coordinates) is

0
R,=FL| 0 | km.
R,

Determine the gravity-gradient torque acting on the spafecExpress the result
in spacecraft body coordinates. Note that= 3.986 x 105 km?/s* is the Earth’s
gravitational constant.

2. The International Geomagnetic Reference Field (IGR&giwbal model of the Earth’s
magnetic field. The IGRF model gives the Earth magnetic fielttar at the spacecraft
positionr’ in spherical coordinates, where the spherical coordimatadF; is defined
as shown in Figure 10.1. That is, the IGRF model proviBesBy and B, such that

B = F'B, = By%, + Brys + B, 7.

The magnetic field components., By and B), are functions of the spacecraft orbital
radiusr, the spacecraft geocentric longitutland the spacecraft geocentric co-latitude
6 = 90° — § (¢ is the geocentric latitude), as shown in Figure 10.2. Fongta, the
first set of terms of the IGRF model are given by the dipole apijpnation

B, = 2 (%3)3 [99 cos® + (g1 cos A + hisin \)sin6],
By = (£2)" [¢¥sin6 — (g] cos A+ hisin\) cosf],
By = (]ff)3[g%sin)\—h%cos)\],
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where R, is the Earth’s equatorial radius, and, ¢gi and h} are given IGRF
coefficients.

Let the spacecraft have residual magnetic dipole momeat ]?bTmb, where the com-
ponentsm, in the spacecraft body frame are given. Also given are theespaft

inertial attitudeC,s, and the spacecraft orbital position vector in ECI coortlina
r=Flr.

Write down the equations required to compute the residuagmatic disturbance
torque in spacecraft body coordinates, using only the giméarmationm,, C,¢ and
r (as well as the magnetic field parametgfs g+ and ki and the Earth’s equatorial
radius, R., and rate of rotationuveq, ).

Note: As shown in Figure 10.2, the Earth Centered Earth F{E&ZEF) frameFr

is obtained from the Earth Centered Inertial (ECI) fraiie by a rotation about the
z-axis through an anglec = weqrtn(t — to), Which is known as the right ascension
of the Greenwich meridian, andgl.,,;j, IS the rate of rotation of the earth. Itis clear that
the spacecraft geocentric longitude is given\oy o — a, wherea is the spacecraft
right ascension.

. Consider a flat surfacg illuminated by the sun as shown in Figure 10.3. The surface

has normal vectoni, and the unit vector pointing from the surface to the sus is

(a) Show that the torque about the pairtue to the solar pressure on the sideSof
with outward normati is given by

— N B H.A>
B, - { BaxFs dS20
0 n-s<0.

3

wherepg, = fsfds is the center of area of, A = [, dS is the area ofS,
Fg = —pA(1l - §)Sis the total solar pressure force Srandp is the solar pressure
magnitude.

(b) The surface of a spacecraft may be approximated by a nuofiflat surfaces
S1, Sa,....S,. Each surface has aref, outward pointing normal vector given in
body coordinates ag; = .f;f n;, and center of area located from the spacecraft
center of mass also given on body coordinates as= prA,i fori=1,...,n.

If the sun pointing vector is given in inertial coordinatessa= .fITsl, obtain
the expression required to compute the total solar predsugeie about the
spacecraft center of mass in body coordinates.
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Figure10.1 Spherical coordinate frame definition

ZG MF

B

C

Figure 10.3 Flat surface under solar pressure
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Chapter 13 Exercises

1. A spacecraft is launched into a low Earth orbit. The spadeprincipal moments of

inertia arel,, = 98 kg-m?, I,, = 102 kg-m?, I, = 150 kg-m?. For stability, the launch
vehicle deploys the spacecraft such that it is in a major spiis when released, with
w, = 0.5 rad/s. Because no deploymentis perfect, the spacecrattatssome angular
velocity about the other two principal axes, givendsy= 0.1 rad/sw, = 0.02 rad/s.
Making appropriate approximations:

(a) Describe the resulting spacecraft attitude motion é@r¢hare no disturbance
torques.

(b) Determine the nutation angle.
(c) Determine the precession rate.

. A uniform thin disk is thrown into the air, and is observediwobble such that its axis
of symmetry traces out a cone with half angle 6@nce per second.

(@) Show that the transverse and axial moments of inertia rofuaiform
infinitesimally thin disk satisfy

1
It = §Ia-

Assume that the disk has uniform mass per unit area
(b) Determine the relative spin-rate of the disk.
(c) Determine the disk angular velocity vector in inertiabedinates.
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1. Consider a spacecraft with principal inertias satigfyin > I, > I,,. Sometimes it
may be necessary to spin the spacecraft about the interteedis (in this case the
principal z-axis). One method to accomplish this could be to apply cbrarques
Tey = —kwy, Tey = —kw, andT,, = —k, (w, — v), wherev is the desired spin-rate
about the body-axis. The equations of motion become

Ly + (I, — I))wyw, = Teg,
Iywy + (Igg — Iz)wwwz = Tcya
L, + Iy — Ip)wywy = T,

(a) Find the values ok and ks that make a spin about the intermediate axis
asymptotically stable.

(b) Is the feedbacl., = —k, (w. — ) necessary to stabilize the intermediate axis
spin?

2. Consider a rigid axisymmetric spinning body with priradimoments of inertid, =
I, =L andl, = I,.

(a) Show that the rotational kinetic energy is given by

B h? [sin?~  cos?y

_?< A )
whereh is the magnitude of the total angular momentum ani¢ the angle
between the axis of symmetrg,() and the angular momentum veciar
Note: for a rigid body, the rotational kinetic energy is giviey T' = %Imwﬁ +
%Ing + %Izwf.

(b) Under the Energy Sink Hypothesis, internal energy dasn results in a
reduction in rotational kinetic energy, while the angulamentum is conserved.
That is, 7" < 0 andh = constant. Show that under the energy-sink hypothesis
for an axisymmetric quasi-rigid body,

T

h? sin 2

T = I, — I,)A
5T 1, ( 1)y <0,

for~ # 0,90°.
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(c) Noting that we can always choose tigaxis such that < ~ < 90°, explain
how the result obtained in part (b) is consistent with theanakis rule.
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Chapter 15 Exercises

1. Find all equilibrium solutions for a dual-spin satellitith dynamics given by

Lowe + (I = Iy) wyw, + hawy = 0,
Iywy + (I — L) waw, — hswy, = 0,

2. Consider an axisymmetric dual-spin satellite, with pial inertiasl,, = I, = I; and
1. = I,. The wheel spin axis coincides with the satellite axis of syetry, namely the
principal z-axis. The wheel has a positive constant spin angular mamerlative to
the spacecrafi; > 0. The spacecraft is nominally non-spinning, thabig0) = 0.

(a) Obtain the solution for the resulting torque-free atté motion.

(b) Provide a physical interpretation of the resulting tardree attitude motion,
analogous to that obtained in Section 13.2 in the book.

(c) Supposéis = 1 Nms, I, = 10 kg-m? and I, = 12 kg-m?, and the spacecraft
axis is observed to trace out a cone in inertial space withidrale 30. How
long does it take to trace out a single cone?

3. Consider a nominally non-spinning dual-spin spaceevift principal inertiasl, I,
andI,. The wheel axis coincides with tlg axis of a body-fixed principal axes frame.
The wheel relative angular momentum is givern/y> 0.

(a) Show that this situation corresponds to an equilibriantdrque-free motion.

(b) Show that small perturbations to the spacecraft angudkcity lead to purely
oscillatory behavior inv, andw, with frequency

4. A spacecraft with principal axes body frarfg, has corresponding principal moments
ofinertial, = 8 kgm?, I, = 12 kg-m?, I, = 10 kg-m?.
It is desired to spin the spacecraft about the principalig-aith angular velocity
w, = 0.1 rad/s. Assuming that the spacecraft has a momentum whekl spin-
axis aligned with the principal z-axis, determine the reegirelative wheel angular
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momentumi, to make the desired attitude motion passively stable urmdquée-free
conditions.

5. Chapter 2, Question 3.
6. Chapter 2, Question 4.
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Chapter 16 Exercises

1. Chapter 2, Question 2

2. Consider an arbitrary spacecraft body frathe (not necessarily a principal axes
frame). That is, the spacecraft inertia matrix evaluatefi,itas the form

Iww Imy Iwz
I= Iwy Iyy Iyz
Imz Iyz Izz

Let the spacecraft body-franig, coincide with the orbiting reference fran¥ for a
circular orbit about earth. That is, the spacecraft has langelocity

0
- _ ]_iT _ _
Wp = JSp Wor, Wor = Wo

0

)

wherew, = y/u/r3 is the orbital angular velocity, is Earth’s gravitational constant
andr is the spacecraft orbital radius.

(a) Show that the gravity-gradient torque vector in spaafédrody coordinates is
given by

(b) Evaluatew,;Iwy;.

(c) Making use of parts (a) and (b) in the equations of motwhat are the
requirements on the inertia matdxXor an earth-pointing equilibrium#, = F,)
in the presence of gravity-gradient torque? What does #yisbout?;,?

3. Consider the spacecraft shown in Figure 14.1. The spaft&cib is a solid cubic block
of mass 100 kg and side 1 m. To provide gravity-gradient btglihe spacecraft inertia
is augmented by the addition of four lump masses of equal masscated from the
spacecraft center of mass by massless rods of ldngth

(a) Determine the moment of inertia matrix for the spacednatrms ofm andi.
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(b) Based on the result of part (a), is the spacecraft grayriaglient stabilized?

(c) Inaddition to the gravity-gradienttorque, there is agtant solar pressure torque
about the pitch axis given by, , = 105 Nm. Assuming that the spacecraft is
in a circular orbit, and)(0) = 6(0) = 0, find the solution for the pitch ang#)
in terms of the orbital rate,, the massn and the rod length

(d) Assume now that the spacecraft is in a circular orbit waitheriod of 6 hours.

How long must the rods be to ensure that the maximum excuisiguitch is
limited to 5°? Assume thatn = 2 kg.

m m
appendage 2 \/ 1/ appendage 1
2%/
600// \\600
/ \}_(,b
[ I_ —_ e — =, -0
! /
60" 7 60°
l l
a’ppendage 3 appendage 4
m m

Figure14.1 Satellite with inertia augmentation for Question 3
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Chapter 17 Exercises

1. Consider a spin-stabilized spacecraft nominally spigrabout the principat-axis
with spin-ratev. The desired angular velocities are therefare= 0, w, = 0 and
w, = v. It may be desirable to control the spin-rate. The equatidmaotion are (as

usual)
Imwm + (Iz - Iy)wywz = Tcm + Tdmv
Iywy + Iy — L)waw, = Tey+ Tay,
Lo, + (I, — I)wywy = Tep+ Ty

whereT, are control torques, arfi;, are disturbance torques. The principal moments
of inertia arel,, = 10 kg-m?, I, = 12 kg-m?, I, = 8 kg-m?.

(a) Assuming small angular velocities, = ¢,, w, = ¢,, obtain the linearized
equation for the spin-rate,.

(b) Given that the output of interestis= w., and the control inputis = 7., find
the plant transfer functio@', (s) such that

Y(s) = Gp(s) [U(s) + sz(s)} .

(c) The reference signal is the desired spin-ratev. Therefore, the spin-rate error
ise =v —w = r — y. Assuming proportional control

u(t) = Kpe(t),

Draw a block-diagram for the closed-loop system.

(d) Find the closed-loop transfer function relationshipstf the reference signal
R(s) to the errorE(s) and from the disturbancg,. (s) to the errorE(s). What
restriction must be placed on the proportional gé&ip to ensure asymptotic
stability?

(e) Find the responss€(t) to a step disturbancg;. (t) = T,.. What restriction must
be placed on the proportional gal), if the steady-state error to a disturbance of
magnitudel;, = 10~°Nm is to be kept below 1 deg/s?

(f) Find the response(t) to a step reference signa(t) = 7. What restriction must
be placed on the proportional galf, if the spin-ratey(t) is to be within 2% of
the desired spin-rate within 10 seconds?
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Chapter 17 Exercises

2. Consider the spacecraft attitude control problem for rglei axis. The attitude

dynamics are given by )
10 =u+ Ty,

wherel is the related moment of inertiés the related attitude angle,is the control
torque applied about the axis by an actuator, dhds a disturbance torque. The
actuator has dynamics

whereu is the control torque applied by the actuathy,is the actuator time constant,
andu, is the control torque commanded by the control law.

(a) Find the actuator transfer function.
(b) The control law is chosen to be a modified PD control law

ue = Kpe(t) — Kay(t),

where the plant output is the attitude angJét{ = 6(t)), the reference signal is
the desired attitude angle(¢) = 64), ande(t) = r(t) — y(¢) is the attitude error.
Draw a block diagram representation of the closed-looesyst

(c) Find the transfer function from reference sigi¥ls) to outputY'(s), and the
transfer function from disturban@g(s) to outputY (s).

3. Consider the spacecraft attitude control problem forraglei axis. Neglecting the

disturbance torque, the attitude dynamics are given by
16 = u,

whereu is the control torque. The moment of inertialis= 1 kg-m?.
The following transient specifications are given for theseld-loop step response:

e Maximum overshoot requirement/, = 20%
e Settling time requirement, = 60 seconds

Design a modified PD control law such that the transient $igations are satisfied.

. Consider the modified proportional-derivative attitadatrol about a single spacecraft

axis as shown in Figure 15.1, whefe= 10 kg - m? is the corresponding moment of
inertia,y = @ is the corresponding attitude angte= 6, is the desired attitude angle,
K, = 0.1is the proportional gain anf; = 0.5 is the derivative gain. With regards to
a unit step input:

(a) Determine the settling time.
(b) Determine the percent overshoot.
(c) Determine the rise time.

(d) Is it possible to reduce both the settling time and pedrosershoot without
changing the proportional gain? lllustrate your reasomiitg a diagram.
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R(s) + Y (s)
- K, A I
de

Figure15.1 Modified PD control law for Question 4
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Chapter 18 Exercises

1. A plant has transfer function

_Y() _ 1
Grls) = U(s) s(s3+s2+2s+1)
The plantis to be controlled using a controlléfs) = G.(s) E(s), as shown in Figure
16.1.

(a) A proportional controlG.(s) = K, is proposed. Determine the range of
proportional gainf, over which the closed-loop system is asymptotically stable

(b) What is the system type with proportional control?

(c) What are the steady-state errors of the closed-loogsy&t unit step and ramp
inputs whenk,, = %? What are they whek',, = 2?

2. Aplant has transfer function
Y (s) s+1
U(s) s2(s2+2s5s+2)
The plantis to be controlled using a controlléfs) = G.(s) E(s), as shown in Figure
16.1.

(a) Determine the closed-loop transfer functi (3 when the control is
proportional, that is whetv.(s) = K.

(b) Using a Routh analysis, determine if it is possible tonastpotically stabilize the
system using proportional control only. If it can, determthe range of{,, that
makes it asymptotically stable.

(c) Determine the closed-loop transfer functio’é% when the control is
proportional-derivative, that is whe®.(s) = K, + sKg.

(d) Using a Routh analysis, determine conditions on the gmagnal gain X, to
asymptotically stabilize the system if the derivative gaif, = 1.

3. Consider the small-angle roll-yaw equations for a nothimgon-spinning dual-spin
satellite,

de’ - hsw = Tzv
Izd; + hsd’ =T..
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78 Chapter 18 Exercises

with proportional-derivative control for each axis
T, =~ (kyo + kad)
T. =~ I (kyp + kath) .

(a) Show that the closed-loop roll and yaw poles satisfy tleracteristic equation

h2
st + 2kgs® + <2kp+ k3 + 77 ) % 4 2kpkqs + k= 0.

Ttz

(b) Using a Routh analysis, show thakif > 0 andkq > 0, the closed-loop roll and
yaw equations are asymptotically stable.

R(s) +_ E(s) U(s) Y(s)

Figure16.1 Feedback control system
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Chapter 19 Exercises

1. Consider the feedback control system in Figure 17.1. i@sy proportional control
G.(s) = K with K > 0, sketch the root locus plots when the plant transfer funstio

are:
(a)
10
%) = GG 9613)
(b)
a _ 1
W)= D@ 1Y)
(c)
s+2
) = I+
(d)
s+1
)= a9
(e)
s+ 3
G = DG
®
a _ 1
p(s) (s+1)(s+2)(s2+2s+2)
)]

s24+4s+5
(s+1)(s+2)(s2+25+2)
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Note: If there are asymptotes, compute the angles and cddtemot compute
breakaway and break-in points or imaginary axis crossings.

2. Consider the small-angle roll-yaw equations for a nothimgon-spinning dual-spin
satellite,

Im¢ - hsw = Taca
Iz'l./} + hs¢ =T..

with proportional-derivative control for each axis
T — 1, (k,,qs + kdé) :
T, =1, (k,,zp + k,ﬂb) .

As found in Question 3, Chapter 18, the closed-loop roll aad poles satisfy the
characteristic equation

2

h
s+ 2kqs® + (2kp+k§+ i )52+2kpkds+k§ =0.

(a) Show that the characteristic equation can be rewritieiivalently as

h2 2
E i —0.

14 =
IzIz (82 + de + kp)z

(b) Assume that the gairfs, andk, are chosen according g, = 2¢w,, andk, =
w2, whered < ¢ < 1isthe desired damping ratio aayl is the desired undamped
natural frequency. Sketch a root-locus plot for the cloeeghpoles as the wheel
angular momentum changes, that is,f@?;L > 0. Compute the asymptote angles
and center, but do not compute any other details.

R(s) +_ E(s) U(s) Y(s)

Figurel7.1 Feedback control system
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Consider the feedback control system in Figure 18.1.

1. The plant has transfer function

a

(s+1)(s+2)(s+3)’

Gp(s) =

wherea > 0. Suggest a controllef.(s) if the closed-loop system is to exhibit no
oscillatory behavior (no complex closed-loop poles) rdigss of the value af.

2. Consider again the plant with transfer function

a

Gpls) = G+1)(s+2)(s+3)

wherea > 0. What are the minimum number of zeros that must be contaimédei
controllerG.(s) such that the closed-loop system will never go unstablercégss of
the value ofa? Where must it be placed?

3. The plant has transfer function

1

Gp(s) = ST1

The control lawG..(s) is to be designed such that the closed-loop system has dotnina
poles ats = —3 4 j3, and a zero steady-state error to a step impjt= 1.

(a) Can the control objective be met with pure integral cgntf.(s) = %? Hint:
do the desired dominant poles lie on the root locus?

(b) Design a combined lead-integral control
1
Guls) = KT T)_
s(s+37)

with 7" > 0 and0 < « < 1. such that the closed-loop requirements are met. You
may takel' = % Hint: you may augment the plant with the integrator.

)
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R(s)+ E(s) | . U(s) Y(s)

Figure18.1 Feedback control system



19

Bias Momentum Control Design
Exercises - Chapters 17 to 20

The following exercises will involve the design of an attieucontrol system for a bias
momentum satellite, and ties together the subjects of @maf¥ to 20.

Background

A bias momentum satellite is an earth-pointing dual-spielkte, with attitude controlled
relative to an orbiting reference fran#€, as shown in Figure 19.1. The momentum wheel
spin axis is aligned with the orbit normal (an inertially fikdirection for a two-body orbit),
making it a pitch wheel. We describe the spacecraft attitatigive to the orbiting frame by a
yaw-pitch-roll (3-2-1) Euler sequence, wherg andy denote the roll, pitch and yaw angles
respectively. For small rotations, constitutes a rotation abost,, 6 is a rotation abouy,
andv is a rotation abouz,, (as shown in Figure 19.1).

For many bias momentum satellites, the only attitude seissom Earth sensor. An Earth
sensor gives the direction of the center of earth from theapaft (-r) in body coordinates.
The roll and pitch angles and# can be determined from this measurement. However, as
can be seen from Figure 19.1, if the spacecraft undergoeseaypw rotation, the rotation
is about—r, so it does not change in body coordinates. Therefore, theayale cannot be
measured by an earth sensor.

Bias momentum stabilization for an earth pointing satehias the following benefits:

e Coupling between the roll and yaw axes due to the bias momenthis means that
the yaw angle can be stabilized without using a yaw sensor.

e Gyroscopic stability of the roll and yaw angles due to theslrementum.
e The pitch wheel can be used to control the pitch angle (by gingrit's speed)

e The pitch wheel can be used to control roll and yaw angles (&king small changes
to the spin axis (aka control moment gyro))

The equations of motion are given by
1w + hea + w* [lw + hea] = T, + Ty + T,

where T, is the control torqueTy is the external disturbance torqug, is the gravity-
gradient torque, and all other symbols have the same measitgthe book. We take the
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wheel spin-axis to be

Assuming that the body frame is a principal axes frame, tlaeegraft is in a circular orbit,
and that the angles and rates are small, the equations amrelative to the orbiting frame
become

Izd) - [(I:c + Iz - Iy)wo - hs] 'IZ) + [4(Iy — Iz)wg + wohs] (b = Tcz “+ sz’
Iy9 + 3(II - Iz)wge e Tcy + Tdy7
Lip+ (I + I. — Iy)wo — hs] ¢+ [(Iy — Ln)w? + wohs| ¥ = Teo+ Ty,

whereT,, = —h if the momentum wheel is used to control the pitch, agd= /u/r3 is
the orbital angular rate. These equations may be compaegltations (16.14) to (16.16) in
the book, for a gravity-gradient stabilized spacecraft.

Finally, we make the approximation thaftl,w,|, |lyw,|, |I.w,| << |hs|, greatly
simplifying the equations of motion to

Im(b + hsw + Wohs¢ = Tcm + Tdma
Iy9+ kg9 = Tcy + Tdya
Izz/] - hs(b + Wohsz/] Tcz + sza

wherek, = 3(I, — I.)w?. It can be seen that the pitch equation is decoupled fromathe r
and yaw equations.

Spacecr aft and Orbital Parameters

The spacecraft principal inertias akg= 0.4 kg-m?, I, = 0.5 kg-m?, I, = 0.6 kg:-m?. The
spacecraft is in a circular orbit with altitud#®0 km, such that the orbital angular rate is
wo = 0.001083 rad/s. The expected maximum disturbance torquearg, o = Tay,maz =
Tazmaz = 5 x 1076 Nm.

Control System Requirements

e The maximum allowable steady-state errors in responsertstaot disturbances are
bss < 0.1deg,b,s < 0.1deg and),, < 4 deg.

e The closed-loop poles for the roll/lyaw loop are to have dagpatios¢ = 0.7.

The spacecraft is expected to be capable of making pitch uvang with transient
specification for a pitch step response:

e Settling-timet, < 200 seconds.
e Percent overshood/, < 30 %.

You will need the Earth’s gravitational constant

1= 3.986 x 10° km3/s?,



Bias Momentum Control Design Exercises - Chapters 17 to 2085

and the equatorial radius of the Earth
R. = 6378.1363 km.
Exercises
1. The pitch controller is to be of the modified PD type
Tey(t) = kE(0a — 0) — k50,
whered, is the desired pitch angle.

(a) Find the plant transfer function for the pitch angle.

(b) What is the system type for the pitch loop with the abovaticd law? What are
the implications on the steady-state pitch error for a péigp command in the
absence of a disturbance torque?

(c) Obtain an expression for the steady-state pitch errertdwa pitch disturbance
torqueTy, (s) = ij.

(d) Find the closed-loop transfer function from desiredipéngled,; to actual pitch
angled.

(e) Design the pitch control gains such that the closed-futgh specifications are

met. Note: keep the proportional gdif) small.

2. The control law for the roll/yaw loop only makes use of mkasurements, and takes
the form

Tcz = a (k;yd) + k2y¢) )
wherea > 0, k¥ > 0 andk}” > 0 are parameters to be determined.

(a) Show that the closed-loop roll/lyaw equations aftentghiaplace transforms are

given by
$2I, + sk + wohs + k3 shs o(s) 1 _ [ Tua(s) |
— (s(hs +aky’) +aky?) L +wohs | | 4(s) Ty-(s)
(b) Show that the solution for the roll and yaw angles sassfie
o) ] 1 $2I, + wohs —shs Tz (s)
O(s) | A(s) | sths +aky?) +akyy  s?L + sk}’ + wohs + kY | | Ty.(s)
where
A(s) = LLs*+ Lk}s®+ [(Iw + I )wohs + LkY + h? + akgyhs] 52

+ [wohsky! + ahsky¥] s + wohs(wohs + k).

(c) Assuming that the closed-loop system is asymptoticstifple A(s) = 0 has
roots with negative real parts), show that the steady-stditand yaw errors for
step disturbancek, (s) = 2= andT,.(s) = L2 are

sz w _ ak;deI sz
Wohs + kp?" 77 Wohs(wohs + kpY) T wohs

¢ss =
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(d) Typically, the control system shall be designed such tha 1 and k¥ >>
wohs. Therefore, the yaw error may be upper-bounded by

|Tdm| + |sz|

<
ss| < wolhs]

Using this approximation, and the expressiondgy from part (c), determine the
required bias momentui, and the proportional gaiky¥ such that the roll and
yaw steady-state specifications are satisfied. Note:/takie¥ > 0.

Having selected ; andk;y, all that remains is to selek@y anda such that the
closed-loop poles have the required damping ratio. Thisigeds follows. From
part (b), the closed-loop poles satisfy the characterisfication

(e

~

A(s) = 0.

We would like the closed-loop poles to be= —Cwp1 + jwniv/1 — (2, —Cwna £
jwnay/1 — (2, where( is the required damping ratio of the poles, and and
wneo are the undamped natural frequencies of the poles. Therdfa character-
istic equation should have the form

(82 + 2Cwn18 + w? ) (8% + 2¢wnas + w?2,) = 0.
To find the required}” anda, we equate
A(s) = L1 (5* + 2Cwn1s + w?,) (5% 4+ 2Cwnas + w?y).

Equating the coefficients of powers &f leads to four equations in four
unknowns, namel¥”, a, w,1 andwys (the damping ratiod is given). We are
only interested in the first two.

i. Show that the solutions fd,” anda are

vy \/E(B—(4<2—2>F>
kLY =

EA? —C(AF - D)’

AF — D
o= APl

where ( ) kv )

1 I+ L)hw, Kk h?

A= B =~z 2)ls%o

21, I1. I, + LI’

oo he o wohs g Mk

L1, 21,1, 21,1,

\/ woh 4R

ii. Find k¥ anda.
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3. The pitch control command obtained in question 1 is to lpdiegh by an actuator with
dynamics

1
To(s) = 7rzg Uels),

whereT > 0 is the actuator time constarit,(s) is the control torque commanded
by the control law given in Question 1, afid,(s) is the pitch torque applied to the
spacecraft by the actuator.

(a) Show that the characteristic equation for the closeg-kystem is
I,Ts® + 1,5° + (kyT + kf)s + kg + kb = 0.

(b) Determine the condition that the actuator time-cortstamust satisfy for the
closed-loop system to be asymptotically stable.

(c) Sketch a root locus for the closed-loop poles %OQ 0. It does not need to
be to scale. Do not determine details like breakaway poimndsiaaginary axis
crossings. Note: Be mindful of the sign kf. What can you conclude from the
root locus?

4. The pitch actuator is much slower than you had origingtigc#fied as the control
system designer, with a time constaht= 5 seconds. Is it possible to redesign the
PD controller obtained in Question 1 so that the closed-miem (when actuator
dynamics are included) has the dominant poles you obtaim&uiestion 1? If it is
possible, redesign the PD controller.

To simplify the problem, you may séf, = 0. To save some effort in finding the open-
loop transfer function, note that the characteristic eguain part (a) of Question 3
may be rewritten as (with, = 0)

kP
ko (s+ )
I,T s%(s + 7)
From this, we can identify
kT—'
kp (S + _g)
Go(s) = —dzikdlv

V3 P

as the open-loop transfer functioﬁdf as the open-loop gain, and= —:—5 as the PD
Yy d

zero.

Hint for solving the problem: Check the maximum possiblelarz(g(s + ’;—2) that the
d
PD zero can provide, and compare it to what is required.
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Figure19.1 Orbiting Reference Frame
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Chapter 21 Exercises

1. Sketch the frequency responses (Bode plots) for theragstgth transfer functions:

@
10
G(s) = (s+0.1)(s+1)(s + 10)
(b)
s+1
G6) = GTonG T 10
(©)
G(s) = 5+ DE+10)

(s +0.1)(s 4+ 100)

2. If afilter H(s) is to be designed such that low frequency inputs are passedijdh
frequency inputs are blocked, what is the requirement ontingber of zeros and poles
of H(s)?
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1. Sketch the polar plots for the systems with transfer fionst

(a)
“6) = 6 +52)(s 1 0.5)
(b)
=G +51;L(32+ 3)
(c)
Gls) = 52

s(s+1)(s+3)

2. Consider the feedback system with open-loop transfestiom

K

Gol8) = ST DG T DG -05)

Using the Nyquist criterion, determine whether or not tlesetd-loop system is stable
or unstable in each of the following cases.

(@) K =1 (see Figure 21.1)
(b) K =10 (see Figure 21.2)
(c) K =100 (see Figure 21.3)

(d) Sketch a root-locus for the above system. Can you extiiainesults in parts (a),
(b) and (c) using the root locus?

3. Consider the spacecraft attitude control with outpuriittg as shown in Figure 21.4.
Sketch the Nyquist plot in each of the following two casesngshe Nyquist criterion,
verify that the closed-loop system is stable, and find the geirgins.
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(a) PD control

Low pass filter

System parameters:
I=1 T=1, K,=001, Kq=0.1.
(b) PID control K
Ge(s) = Kp + Kgs + ?Z

Double low pass filter
1

H(s) = 77y

System parameters:
I=1, T=1, K, =001, K;=0.1, K; =10"*

4. Sketch the Bode plot corresponding to part (a) of Quesdiokstimate the phase
margins and the allowable time-delay in the feedback loop.

5. Figure 21.5 shows the Bode plot corresponding to partf(iuestion 3. Estimate all
stability margins.

Nyquist Diagram

Imaginary Axis

-1 -0.8 -0.6 -0.4 -0.2 0
Real Axis

Figure21.1 Nyquist plot for Question 2(a){ = 1
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Nyquist Diagram

Imaginary Axis

-35 -3 -2.5 -2 -15 -1 -0.5 0
Real Axis

Figure21.2 Nyquist plot for Question 2(b)K” = 10

Nyquist Diagram

Imaginary Axis

~10 I I I I . .
-35 -30 -25 -20 -15 -10 -5 0
Real Axis

Figure21.3 Nyquist plot for Question 2(c)i = 100

G.(s) = >

H(s)

Figure21.4 Spacecraft feedback attitude control with output filtering
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Bode Diagram

Magritude (dB)
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Frequency (rad/sec)

Figure21.5 Bode plot for Question 3(b)
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Chapter 25 Exercises

1. A spacecraft is orbiting the Earth, as shown in Figure 22slshown in the figure,
at this particular location in the orbit, the earth-poigtend sun-pointing vectors are
given in the ECI frame as

—, _1 —, 0
n.=FL| 0 |, na,=F, ]| 1
0 0

Also, as shown in Figure 22.1, the spacecraft attitude iainbtl by a rotation of 45
aboutzg.

(a) DetermineC¢.

(b) Determine the coordinates of the earth and sun vedtoasidii; respectively, in
the spacecraft body framé&;.

(c) Determine the coordinates of the unit vectors definiegititermediate framé;
(see Section 25.2.4 in the book), in the spacecraft bodyedramnd in the ECI
frame (as in the TRIAD method).

(d) Obtain the rotation matricgs,; andCg; as in Section 25.2.4 in the book.

(e) Using your solution to part (c) above, comp@g; using the TRIAD method.
Compare this with the result in part (a).

() Using the measured vectors obtained in part (b), compti{e using the
Davenportg-method and QUEST. Verify that you obtain the same resulhas i
part (d). Note that it should be exactly the same, since nsuarement noise has
been added.

Spacecraft Dynamics and Control - An IntroductiomAnton H.J. de Ruiter, Christopher J. Damaren and James Re&or
(© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sdrid.
Companion Website: http://www.wiley.com/go/deruitpesecraft
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Ya ¥ 1 2
o kel
Xa Spacecraft
Earth

Figure22.1 Attitude determination question



