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ABSTRACT 
The explosive growth in the biomedical literature has 
made it difficult for researchers to keep up with 
advancements, even in their own narrow specializations. 
In addition, this current volume of information has 
created barriers that prevent researchers from exploring 
connections to their own work from other parts of the 
literature. Although potentially useful connections might 
permeate the literature, they will remain buried without 
new kinds of tools to help researchers capture new 
knowledge that bridges gaps across distinct sections of 
the literature. In this paper, we present LitLinker, a 
system that incorporates knowledge-based 
methodologies, natural-language processing techniques, 
and a data-mining algorithm to mine the biomedical 
literature for new, potential causal links between 
biomedical terms. Our results from a well-known text-
mining example show that LitLinker can capture these 
novel, interesting connections in an open-ended fashion, 
with less manual intervention than in previous systems. 
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1. INTRODUCTION 
With the explosive growth in the scientific literature, 
researchers have much information at their fingertips, but 
sifting through that information to identify nuggets of 

useful knowledge has become even more difficult. 
Because huge quantities of information are published 
each day, most researchers struggle to keep abreast of 
work within their own narrow specialization and spend 
little or no time examining the literature from other 
related disciplines. However, such isolation can stagnant 
research progress; many innovations occur only when 
traditional field boundaries are bridged. This problem is 
particularly acute in the domain of biomedicine. For 
example, MEDLINE, the primary bibliographic database 
for biomedicine, contains over 12 million references to 
journal articles, and over 2000 new references are added 
each day.1 Obviously, no one is able to read about 
advancements across this entire body of published 
literature, even when they are motivated by the potential 
to save people’s lives. Tools are needed to help them 
capture and explore the knowledge in the literature. 
We have developed a system, called LitLinker, which 
provides a first step toward meeting this need. LitLinker 
bridges traditional field boundaries to identify and link 
together previously obscured connections in the 
biomedical literature. Our approach incorporates 
knowledge-based methodologies, natural-language 
processing techniques, and data-mining algorithms to 
mine the biomedical literature for new, potentially causal 
links between biomedical terms. The goal in this research 
is to develop a new type of retrieval approach that both 
will help researchers bridge gaps across specializations 
and will improve their ability to identify new research 
directions. To test LitLinker’s performance, we explore 
how well it works on a known text-mining example. 

2. RELATED WORK 
Other researchers have shared this research goal and have 
been working in the general area of biomedical text 
mining for nearly fifteen years. Swanson was responsible 
for much of the earliest work in biomedical text mining.2, 

3 He used a combination of citation analysis and manual 
review. The former was used to determine novelty by 
detecting disjoint literatures. The latter was used to 
identify plausible new connections across disjoint 
biomedical literatures by examining the titles from search 
results. In an early example of this process, he identified a 
hidden connection between the disjoint literatures on 
migraines and on magnesium.4 He noticed this hidden 
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connection by identifying several linking, intermediate 
medical terms, such as epilepsy and calcium channel 
blockers, that occurred frequently in the titles of both the 
magnesium literature and the migraine literature. Thus, 
those linking terms were able to act as a bridge between a 
medical problem, migraines, and the mineral, magnesium, 
which did not occur in the titles from the migraine 
literature. The key to his approach was to assume one-
level of transitivity held between correlated terms. In 
other words, the assumption is that if migraine is 
correlated with epilepsy, and epilepsy is correlated with 
magnesium, then migraine is correlated with magnesium. 
His text-mining success even spawned clinical studies to 
investigate several of his newly found connections. 
Clearly, Swanson’s work introduced seminal ideas for 
text mining; however, a limiting factor for his approach is 
the large amount of manual intervention required. 
Although his more recent research with Smallheiser 
incorporates an interactive tool called Arrowsmith, much 
work still is required to setup customized lists of stop 
words and to sort through the many spurious connections 
that Arrowsmith generates.5 For the migraine example, 
we identified over 2700 unique words in his set of 
migraine titles, but through the manual creation of a 
customized list of stop words (words that are assumed to 
provide little meaning and are eliminated from 
consideration), they reduced the number of words 
considered to about 200, thus, eliminating over 90% of 
the words manually. They recommend that this set of 
stopwords be revised for each new discovery task.  
Also, Arrowsmith functions in a closed-discovery 
fashion; the user must enter both a starting a point and a 
candidate or broad-category for a candidate target 
concept. Arrowsmith’s task is to generate the linking 
concepts between the starting concept and the target 
concept. Thus, Arrowsmith helps users explore 
hypotheses in the literature, but does not generate 
completely new connections.  
Others have built on this work and added components to 
reduce the required manual intervention for that first step 
of identifying intermediate linking concepts. Lindsay and 
Gordon developed a process that followed the same basic 
architecture as Arrowsmith, but they added a variety of 
techniques to weight terms using information-retrieval 
methods, such as term frequency and inverse document 
frequency.6 They evaluated the performance, in terms of 
precision and recall, for generating the linking terms, 
where Swanson’s identified linking terms served as the 
gold standard. Gordon and Dumais also explored 
alternative techniques for identifying the linking 
literature. They used latent semantic indexing to extract 
close terms that occur in overlapping sets of documents. 
They followed Swanson’s discovery approach and used 
his Raynaud’s Disease and Fish Oil example to compare 
the performance of latent semantic indexing with the 

performance of term frequency and inverse document 
frequency methods used by Lindsay and Gordon.7 In 
previous work, we used a knowledge-based approach to 
identify and prune potential linking terms. We found this 
approach produced more precise results than other 
approaches.8 However, none of these researchers pursued 
or evaluated how easy the target term (e.g., magnesium) 
would be to identify. 
In recent biomedical text mining work, Weeber et. al. also 
based their work on Swanson’s approach.9 They added 
both a natural-language processing component to identify 
biomedical terms and a knowledge-based approach to 
help prune spurious connections based on the semantic 
type of the connection term. These approaches still 
required a significant manual component for pruning 
possible connections, and none examined replicating 
Swanson’s results in a purely automated, open-ended 
fashion.  
In contrast, data-mining researchers have begun adapting 
their purely automated approaches for use with text. The 
most common approaches have been using association 
rules or term clustering. Much of that work and other 
work in information access has focused on identifying 
interesting phrases or correlations among terms within 
each document in a set of documents10-12 or generating 
document categories and summaries,13-16 rather than 
focusing on discovering new connections across 
documents. Although they make valuable contributions 
toward helping users see existing knowledge, none of 
these techniques incorporated Swanson’s notion of an 
intermediate, linking literature, and, thus, do not 
emphasize finding previously unknown connections. 

3. OUR APPROACH 
In developing LitLinker, we have taken an approach that 
builds upon Swanson’s fundamental idea of utilizing a 
linking literature, and incorporates techniques from both 
data mining and knowledge-based systems. Our approach 
offers several unique contributions. In contrast to 
Arrowsmith and the approaches that followed it, 
LitLinker uses data-mining techniques to identify 
correlations among concepts, and uses those correlations 
for open-ended discovery. In contrast to text-mining 
approaches from the data-mining community, LitLinker 
uses an intermediate literature to capture discoveries that 
are likely to be novel, and uses knowledge-based 
heuristics to limit the search space for such open-ended 
discovery.   
A high-level view of the overall process within LitLinker 
is illustrated in Figure 1. LitLinker starts with a provided 
starting concept, which specifies the concept that the 
researcher wants to investigate. From Swanson’s famous 
example of finding a connection between migraine and 
magnesium, this starting concept would be migraine 
(which Swanson refers to as the C-term).   



Next, LitLinker goes through a text-mining process to 
find a set of terms that are correlated with the starting 
concept and could form the first step in connecting the 
starting concept to a new concept. We refer to this first 
set of correlated terms as the linking concepts (aka B-
terms in Swanson’s papers).   
For each of those linking concepts, LitLinker uses the 
same text-mining process to identify a set of terms that 
are correlated with the linking concept. We call these 
final terms our target concepts (aka A-terms in 

Swanson’s papers). In Swanson’s migraine example, the 
identified target concept was magnesium.  
Finally, LitLinker groups and ranks the target concepts by 
the number of linking concepts that connect the target to 
the starting concept. Thus, it provides an organized list of 
possibilities for this open-discovery process. 
LitLinker uses a knowledge base as an integral 
component throughout the process. The knowledge base 
helps LitLinker both to identify all the medical terms, and 
to limit the search space by pruning away unhelpful terms 

Figure 2 – The Text Mining Process.  

Figure 1 – The Discovery Process in LitLinker.   
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and forming groups of similar terms. The data-mining 
component plays a key role in determining which 
concepts are correlated with each other. 
In the following sections, we describe in detail each of the 
major steps in the text-mining process, as well as the final 
step of assembling the target concepts.  

3.1 Searching the Literature 
To collect the literature for the starting concept as well as 
the linking concepts, LitLinker connects to the National 
Library of Medicine’s (NLM) web-based client/server 
interface to MEDLINE and other databases, called 
Entrez.17 It searches for all citations that contain the 
desired concept in the title. For the evaluation, we used 
migraine as the start concept. Because Swanson’s work 
resulted in publications that directly discussed both 
migraine and magnesium, we limited the searches to all 
articles published prior to 1988, the dates over which 
Swanson performed his original quest. The originating 
search for migraine resulted in 2571 citations.  
This literature collection step saves only the titles of each 
article to a database. In the biomedical literature, titles 
tend to summarize the main point of the article. For 
example, a common form of a title is to state the disease 
and the studied treatment or correlated factor (e.g., Relief 
of common migraine by exercise or Asymmetric cerebral 
blood flow patterns in migraine). Thus, by limiting the 
collection to titles, we both reduce the number of terms 
that must be processed and include only the highly 
descriptive terms of an article. In addition, for the 
evaluation, we wanted to compare our results to those of 
other researchers who used this same example and who 
limited their analyses to only titles as well. 

3.2 Identifying Literature Concepts  
As part of the text mining process, the first challenging 
step is to identify the relevant concepts from the 
literature. This step is a critical component for insuring 
the quality and the accuracy of the connections generated 
by LitLinker. To identify biomedical concepts, LitLinker 
uses a knowledge-based, natural-language-processing 
approach to process the document titles. A key part of our 
approach is to use a knowledge base to help identify 
domain-specific terms. The biomedical domain already 
has a large, publicly available knowledge base called the 
Unified Medical Language System (UMLS). This 
knowledge base was created by the NLM and contains 
over 875,000 biomedical concepts as well as 2.1 million 
concept names.18 The system was created by unifying 
hundreds of other medical knowledge bases and 
vocabularies to create an extensive resource that provides 
synonymy links as well as parent-child relationships 
among the single or multi-word concepts.  
LitLinker uses MetaMap, a tool created by NLM that 
maps from free text to biomedical concepts from the 
UMLS.19 MetaMap uses the Xerox tagger to assign 

syntactic parts of speech and then uses the tags to identify 
phrases. It uses the UMLS to find the closest matching 
known concept to each identified phrase.  
LitLinker sends each collected title to MetaMap and saves 
every concept that MetaMap identifies in a data field 
linked to the title. LitLinker also groups together all the 
synonymous terms by merging any that have the same 
concept id, and then assigns a preferred name to that 
group. Weeber et. al. also used MetaMap to identify 
concepts, although it is unclear whether they merged 
synonymous terms.9 

3.3 Pruning Concepts  
The previous step of identifying biomedical concepts 
generates many concepts, but only a subset of those 
concepts would make medically plausible linking terms. 
We found three classes of problems: (1) many terms were 
too general (e.g., problem, test, therapeutic); (2) some 
terms were too closely related to the start term (e.g., 
headache, retinal migraine); and (3) some terms just did 
not make sense as plausible connections.  
For the first class of problems, we chose a pragmatic 
approach similar to that used in information retrieval to 
prune away uninformative terms that are so general or 
prevalent that they are correlated with most biomedical 
terms. Our original plan was to use the UMLS knowledge 
base for this determination. We observed that many 
general concepts, such as disease and drug, appear on the 
second level (children of roots – which were the names of 
the biomedical vocabularies) and third level (children of 
the concepts on the second level) of the UMLS hierarchy. 
Thus, LitLinker marks the concepts that are in those 
levels as too general, and prunes away all such terms. 
However, such a process eliminated only a small fraction 
of the general terms. The problem is that the UMLS is a 
conglomeration of many different biomedical 
vocabularies, each of which makes different assumptions 
about the meaning of the levels in the hierarchy, and 
many very general terms appeared much lower in some 
vocabulary’s hierarchy. Thus, we added another 
component that would prune terms that seemed too 
pervasive in the literature; LitLinker eliminated any 
concepts that appeared in the titles of more than 10,000 
MEDLINE documents.  
For the second class of problems, where the identified 
concepts were closely related to the starting concept, 
LitLinker used the UMLS to determine all the parents and 
children of the start concept, and then eliminated all those 
related terms. Thus, for the migraine example, LitLinker 
eliminated terms such as headache and retinal migraine 
as potential linking concepts because they were too 
closely related to the starting concept of migraine.  
For the third class of problems, the challenge was to 
create an automated, generalizable approach to pruning 
away those implausible, uninteresting terms. We again 



turned to our knowledge base for help with such an 
approach. In the UMLS, each concept is connected 
through an isa link to one or more semantic types from a 
small set of general medical terms in a hierarchy that the 
NLM calls the Semantic Network. For example, the term 
migraine has a semantic type of disease or syndrome, and 
magnesium has a semantic type of biologically active 
substance. We selected a subset of semantic types that 
were plausible for terms that could be correlated with a 
medical condition or disease and a potential treatment 
(see Table 1). Then, LitLinker pruned away any concepts 
that did not match the semantic-type criteria. A similar 
approach has been used in other work on biomedical text 
mining,8, 9 and in organizing search results.16 In contrast, 
Swanson addressed this problem by manually creating a 
query-customized list of stop words to filter out the 
uninteresting concepts, but such a level of word-based 
customization could be difficult to scale to new kinds of 
query concepts and connections. 

Table 1 The allowable UMLS semantic types for 
pruning implausible medical concepts. 

Semantic Type 
laboratory or test result 
clinical attribute 
fully formed anatomical structure (and 5 sub-types) 
substances (and 23 sub-types except for materials, 

diagnostic aids, or hazardous substances) 
organ or tissue function 
organism function (and 1 sub-type) 
pathologic function (and 3 subtypes except for 

neoplastic process or experimental model of 
disease) 

3.4 Finding Correlations 
A key part of our text-mining approach is the process of 
identifying associated or correlated concepts. This 
process produces both the linking concepts and the target 
concepts. To identify the correlated concepts, LitLinker 
uses Apriori, the reference algorithm for identifying 
association rules.20 Specifically, we used ARtool, a free, 
association rule mining application that was written in 
Java and distributed under the GNU General Public 
License.21 For our approach to text-mining, a starting 
literature already provides the context for associations; 
thus, we only care about the first component of Apriori, 
which generates frequent itemsets. This data-mining 
approach requires a specific level of support before 
generating the frequent itemsets. The level of support 
indicates the probability that a term will occur in the 
document collection. For our approach, level of support is 
calculated as the number of titles with the concept divided 
by the total number of titles. 
We decided that associations were likely to be spurious 
unless the concept occurred in at least five titles, which 
resulted in a support level of 0.002 for identifying the 
linking concepts in our migraine example. The initial 

number of identified linking concepts for this example 
was 167. To identify the target concepts for each of the 
linking concepts, the support level was set in the same 
manner, requiring at least five occurrences in the titles. In 
an interactive version, it could be helpful to allow users to 
specify such thresholds of support. 
Initially, the concept for the literature search is the 
starting concept and the correlated concepts that are 
found in this step act as the linking concepts. LitLinker 
repeats the same process, using each linking concept to 
initiate a separate literature search. The resulting 
correlated concepts for each linking concept create the 
total set of target concepts. 

3.5 Grouping Concepts 
This step of grouping related concepts occurs before the 
step to find correlations, but aspects of the finding 
correlations step are needed to understand the importance 
of grouping concepts. For text mining, we are looking for 
high-level but strong patterns among terms, and those 
patterns could go undetected if similar terms are not 
grouped together. It does not make sense to make subtle 
distinctions of meaning in this process. For example, 
distinguishing among the many ways to measure 
magnesium in the body is unimportant; the key concept is 
magnesium. This problem of subtly different concepts is 
particularly acute because a minimum level of support is 
needed to find a correlation. However, if one central 
concept is represented by many subtly different words or 
phrases, the level of support might be too low to be 
noticed. 
Initially, we assumed that the synonymy links in the 
UMLS knowledge base would help LitLinker group 
together such subtly different concepts. However, those 
synonymy links are only among terms that have exactly 
the same meaning. For example, migraine and 
migrainous headache are synonyms in the UMLS, but 
common migraine and migraine are not considered 
synonyms because common migraine is just one of 
several kinds of migraines. Although for many 
biomedical applications such a fine level of distinction is 
appropriate, for text mining, we need to consider a much 
coarser level of synonymy that would allow us to ignore 
such subtle distinctions.  
Because the UMLS could not provide us with a clear 
method for determining this coarse level of similarity, we 
created a combined semantic and lexical approach to 
address this problem. The basic intuition behind this 
approach is to cluster related concepts into a group 
labeled with the shortest concept name that is a common 
subset of all the terms in a group. For example, migraine 
and common migraine would be grouped into a cluster 
named migraine. The goal is that the resulting group 
name would represent a cluster of similar terms that 
would be used to identify target concepts.  



To accomplish this grouping goal, LitLinker first 
transforms each multi-word concept into all possible 
adjacent word subsets. For example, LitLinker converts 
the UMLS concept blood magnesium level into six 
different forms: blood, magnesium, level, blood 
magnesium, magnesium level, and blood magnesium 
level. Some forms, such as level, are concepts that are too 
general to be informative. As with the pruning step, 
LitLinker eliminates all such general terms automatically 
by looking at their level in the UMLS hierarchy. It also 
removes all words or phrases that are not valid terms in 
the UMLS. For example, this grouping process produces 
a cluster called magnesium, which includes 25 similar, 
but not strictly synonymous terms, such as magnesium 
deficiency, magnesium ion, urine magnesium, and blood 
magnesium level. 
If we consider Swanson’s migraine-magnesium example, 
epilepsy is one of the linking concepts, but LitLinker 
would never identify it as a linking concept without 
grouping. The main reason for this oversight is that the 
word magnesium has a very low support value in the 
epilepsy literature. However, three other concepts that are 
closely related to magnesium (serum magnesium, 
magnesium level, and magnesium deficiency) also appear 
in the epilepsy literature. Individually, those related 
concepts also have insufficient support values, but with 
grouping, the sum of their support values passes the 
support test and correctly designates epilepsy as a linking 
concept that connects migraine and magnesium. Without 
this grouping step, many potentially interesting concepts 
would have been overlooked. 

3.6 Assembling Target Concepts 
Assembling target concepts from all the linking concepts 
requires multiple processing steps. First, LitLinker 
merges the lists of target concepts from each of the 
linking concepts. It also retains a connection to each of 
the linking concepts that connect that target to the starting 
concept.  
Second, because we are interested in only novel 
connections, LitLinker must prune previously known 
connections from the list of target concepts. We decided 
that any co-occurrence with the starting concept 
constituted a known connection. Thus, LitLinker checked 
each candidate target term against the entire set of UMLS 
concepts that were extracted for the starting literature. If a 
candidate target term was an element of this set, LitLinker 
eliminated it as a potential target term.  
The final result of the assembly process is to list the target 
concepts together with their linking concepts. LitLinker 
ranks the target concepts according to the number of 
linking concepts that connect that target concept to the 
original start concept. Such a list should provide enough 
information to help researchers evaluate and explore these 
possible correlations and determine which seem worthy 
of further investigation. 

4. RESULTS FOR MIGRAINE EXAMPLE 
To explore how well our new approach to text mining 
works, we ran LitLinker with migraine as a starting 
concept and compared the results to Swanson’s example 
that finds a connection between migraine and magnesium. 
We compare LitLinker’s ability to find Swanson’s 
specified linking connections as well as its ability to 
identify magnesium as a correlated and potentially 
causally related target term. 

4.1 Results for Linking Concepts 
LitLinker identified a total of 118 linking concepts that 
met our level of support for the migraine literature, but 
only 29 of those concepts linked migraine to magnesium. 
In Swanson’s work, he identified eleven valid 
connections between migraine and magnesium, and 
LitLinker was able to identify five of those.  
Four of the linking concepts that LitLinker did not 
identify (inflammation, substance p, brain hypoxia, and 
vascular tone and reactivity) were too infrequent in the 
migraine literature to satisfy our level of support 
threshold. For example, only three titles in the migraine 
literature include substance p and none include 
inflammation.  
One other missed linking concept, spreading cortical 
depression, could not be retrieved as a linking concept 
because MetaMap never identified it as a medical 
concept. The MetaMap lexical analyzer breaks spreading 
cortical depression into two separate phrases, spreading 
and cortical depression. The program then eliminates 
spreading because it is not a concept in the UMLS and 
maps cortical depression to two separate terms, cortex 
and depression. This problem illustrates how important 
the step of identifying biomedical concepts is.  
For the final missed concept, personality, LitLinker did 
include it in the total set of 118 linking concepts, but it 
was not in the 29 correlated with magnesium because it 
did not occur in any titles from the magnesium literature. 
However, LitLinker did identify an additional 24 linking 
terms that could help a biomedical researcher understand 
how magnesium and migraines are related. In Table 2, we 
have listed the 29 concepts that link migraine to 
magnesium. In future work, it will be interesting to get 
input from migraine researchers on the legitimacy and 
usefulness of our larger list of linking concepts. Swanson 
used his own expertise to choose his 11 linking concepts, 
but they were never verified with experts. 

4.2 Results for Magnesium as Target 
To identify target terms for migraine, LitLinker analyzed 
a total of 223,413 titles that contained the starting concept 
or any of the 118 linking concepts. After the pruning and 
ranking stage, magnesium is tied at a rank of 11 in the 
total list of 528 target concepts. Figure 3 illustrates the 
top 12 target concepts and the number of concepts that 
link them to the starting concept, migraine.  



Although the point of the pruning step is to eliminate 
general, uninformative terms, that process is not perfect. 
In the list of top 12 ranked target terms in Figure 3, there 
remain two such overly general terms: liquid substance 
and enhancer. In addition, some potentially interesting 
target concepts are pruned from the original list. For 
example, concepts such as sodium and rheumatoid 

arthritis, were pruned but seem like reasonable target 
concepts. LitLinker eliminated those two examples 
because the number of titles that they appear in exceeded 
our threshold for too frequent terms, which was meant to 
and did eliminate many of the overly general terms. Thus, 
future experiments should examine the effect of this 
threshold in all the pruning phases. Another possible 
solution to the pruning problem would be to create an 
interactive version of LitLinker. An interactive feature 
would allow a researcher to have control over both the 
support thresholds and the pruning heuristics to balance 
the task of sorting through extraneous target terms against 
the possibility of missing important target concepts.  
If we were to evaluate the results without the final 
pruning step, magnesium would be at a tied ranking of 
23rd out of a total of 564 concepts. Thus, the pruning did 
help make magnesium more visible to a researcher 
searching for connections, but even without the final 
pruning stage, magnesium still would have been an 
obvious connection. The other target concepts from 
LitLinker’s results could provide interesting insights to 
migraine researchers as well, but we have not yet asked 
experts to evaluate the list. 

5. CONCLUSION 
With the explosion of the scientific literature, text mining 
systems such as LitLinker will become critical for helping 
researchers make discoveries across distinct portions of 
the biomedical literature. We have shown that our 
combination of a data-mining approach and a knowledge-
based approach can be incorporated into an effective text-
mining system. For Swanson’s famous migraine-
magnesium example, LitLinker automatically identified 

Table 2 – The 29 linking concepts for connecting 
migraine and magnesium. * denotes the concepts found 
by Swanson. 

Linking Concepts 
prolactin heparin 
propranolol histamine 
epilepsy* hydroxytryptamine 
tryptophan estradiol 
aspirin progesterone 
reserpine caffeine 
cerebrospinal fluid calcium antagonist*  
serotonin* lithium 
prostaglandins* nifedipine 
hemodynamics antagonists 
blood platelets free fatty acids 
substances clinical aspects 
platelet aggregation* arteries 
cerebral cortex catecholamines 
muscle contraction  
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Figure 3 – The First 12 Target Concepts and the Number of Concepts that Link them to Migraine. The chart 
shows the number of linking concepts out of 118 possible linking concepts. The only target concepts listed are the first 
12 out of the 528 target concepts identified. Magnesium is ranked as tied in 11th place. 



magnesium in a short list of concepts that could be 
causally linked to migraine.  
LitLinker also identified a large set of linking terms that 
connect magnesium to migraine. Although the results did 
not include all of Swanson’s 11 linking terms, LitLinker 
detected an additional 24 plausible links that previous 
approaches have never identified.  
Evaluating knowledge discovery systems is a 
fundamentally challenging task because if they are 
successful, by definition they are capturing new 
knowledge that has yet to proven useful. Thus, we 
evaluated LitLinker on the most widely used example 
case for text mining.  Unlike previous systems which 
explored this example, LitLinker was able to make this 
connection in a purely open-ended discovery process. 
Other researchers have focused mainly on replicating the 
linking terms in Swanson’s examples, and none have 
provided a ranking of possible target terms. 
The system that we described operated automatically in a 
batch mode to identify potential new target terms. Our 
plan is to build on this base and extend LitLinker into the 
type of interactive system that researchers need to 
identify, capture, and explore new discoveries in the vast 
biomedical literature.   
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