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ABSTRACT
In this work, we use machine learning (ML) to detect the cogni-
tive load of a user based on sensor data from a smart wrist-band,
sampled during 30 seconds. The data is provided by a challenge
at the UbiTtention 2020 workshop of UbiComp 2020; in this paper
we describe UW’s participation (team Lynx). The defining charac-
teristic of our approach is in the custom features that we extract
from the time series. While we do not have any labeled instances
for the test users, the fact that we do have multiple time series for
each test user, allows us to extract features that measure how much
individual time series deviate from the user’s average. We combine
this extracted information with other time series’ features from
the literature. We further use feature selection based on Gini impu-
rity and state-of-the-art techniques for training ML models such
as Logistic Regression, (Boosted) Decision Trees, Random Forests,
and Support Vector Machines, yielding ∼ 63% accuracy by 6-fold
cross-validation.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; •Computingmethodologies→ Feature selection;Clas-
sification and regression trees; Bagging.
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1 INTRODUCTION
The seemingly never-ending stream of notifications received through
mobile devices can be detrimental to one’s productivity, and in some
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situations even dangerous. The more aware devices become of the
user’s current cognitive load, the better these devices can adapt
their interactions with the user, and avoid unfortunate disruptions.

In the field of Ubiquitous Computing, researchers started to
study these phenomena in the context of attention management
[1]. Cognitive load (CL), which is originally a psychological term
to describe how much working memory resources are used, is used
as a metric to enable the design of intelligent devices that adapt
their interactions with the user. To this end, it is important for the
device to be aware of the user’s current CL.

Our focus in this paper is on the use of machine learning (ML) to
infer the CL of a user from physiological data collected through sen-
sors in wearable activity trackers, such as smart wrist-bands. These
wearable devices are already popular, and the users’ physiological
data can be measured through them in a non-invasive manner, mak-
ing smart wrist-bands viable for wide deployment of CL tracking.
We use an open-source dataset provided by the UbiTtention 2020
challenge at UbiComp 20201. For each user, the dataset contains
sensors measurements for 4 categories of physiological features,
sampled at 1 Hz rate during 30 second time windows. The goal is
to infer from these measurements whether the user is experiencing
CL or not. To this end, we train binary classifiers based on Logistic
Regression, (Boosted) Decision Trees, Random Forests, and Support
Vector Machines. We find that, while ML models trained directly
on the raw sensor measurements are better than random guessing,
there are substantial further accuracy improvements to be gained
through feature engineering.

After presenting the dataset and problem description in Section
2, in Section 3 we give an overview of the feature transformation,
feature extraction, and feature selection techniques that we included
in this study. Section 3 also contains a description of the ML model
training algorithms, and how we combined them with the feature
engineering techniques in a variety of different end-to-end pipelines
for CL inference, experimental results of which are detailed in
Section 4. The results that we obtain are at parwith results published
previously in the literature for similar tasks [8, 13].

2 PROBLEM DESCRIPTION AND DATASET
Cognitive load (CL) is related to physiological responses of the
human body [13], hence it is reasonable to try to infer CL from
physiological data collected from smart wrist-bands. The UbiTten-
tion2020 dataset [7] contains data for 18 train users and 5 test users.
As an illustration, the data for one of the users is visualized in
Fig. 1. The data for this particular user consists of 41 times series
(instances), each sampled during a 30 seconds time window at a 1
Hz rate. 4 different kinds of physiological responses are measured,

1https://www.ubittention.org/2020/
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Figure 1: Visualization of data for user with id 5gpsc, Red
solid lines are for instances with label 0 (CL) and green
dashed lines are for instances with label 1 (non-CL, i.e. rest).

which explains why there are 4 different pictures in Fig. 1. The mea-
surements for instance 𝑖 of user𝑢 (𝑖 = 1, . . . , 41 for the user in Fig. 1)
form a numerical vectorD𝑢 (𝑖) of length 120 that itself is composed
of 4 vectors of length 30, one for each kind of physiological data:

D𝑢 (𝑖) = ⟨G𝑢 (𝑖),H𝑢 (𝑖),R𝑢 (𝑖),T𝑢 (𝑖)⟩
where

• G𝑢 (𝑖): galvanic skin response (gsr)
• H𝑢 (𝑖): heart rate (hr)
• R𝑢 (𝑖): rr intervals (rr)
• T𝑢 (𝑖): skin temperature (temp)

All G𝑢 (𝑖) vectors for the user with id 5gpsc, 𝑖 = 1 . . . 41, are depicted
in the top left picture in Fig. 1, all H𝑢 (𝑖) vectors in the top right
picture etc. Red solid lines are for instances with label 0 (CL) and
green dashed lines are for instances with label 1 (non-CL, i.e. rest).

As mentioned above, there are 18 such users in the train data.
The number of time series (instances) per user varies between 14
and 41, making up a total of 632 instances in the train data. 315 of
those instances have label 0 and 317 instances have label 1, hence
the train data is well balanced.

The test data consists of similar time series information for 5
users. For each user in the test data, the number of available time
series varies between 38 and 39. The difference between the train
data and the test data is that the time series in the test data are not
labeled. The inference problem addressed in this paper can hence
be formalized as: given a set D𝑢 = {D𝑢 (𝑖) | 𝑖 = 1, . . . , 𝑛𝑢 } of 𝑛𝑢
instances for test user 𝑢, assign a label 0 or 1 to each D𝑢 (𝑖) in D𝑢 .
Note that it is not immediately possible to train personalized ML
models for the test users in a supervised fashion, since no labeled
instances are provided at all for any of the test users. The fact that
multiple time series need to be labeled per test user does allow us
to extract statistical information per test user which can be used as
“per user” features for the classifier (see Section 3.1.2).

Since we have no labels available for the users in the test data
(they are kept hidden by the UbiTtention 2020 organizers for the

purpose of the competition), we can not evaluate the accuracy of
the methods proposed in this paper on the test data. Instead, we
evaluate our methods with 6-fold cross-validation (CV) on the 18
train users. For each fold, we use train data from 15 users and we
use the data from the remaining 3 users as validation data.

3 METHODOLOGY
3.1 Feature Engineering
In the remainder of this paper, we refer to the feature vectorsD𝑢 (𝑖)
from Section 2 as RAW feature vectors. In ML, substantial improve-
ments in accuracy are often achieved by preprocessing raw feature
vectors before model training. In this paper we evaluate the ef-
fect of a variety of feature engineering methods which draw on 3
main techniques: transformation, feature extraction, and feature
selection. The transformation methods that we use, namely fast
Fourier transform (FFT) and sliding mean filter (SMF), are specific
to preprocessing of time series data, while feature extraction and
feature selection are well known approaches that are very widely
applicable. Feature extraction (FE) aims at constructing new fea-
tures from existing features, while feature selection (FS) aims at
identifying subsets of features that are highly relevant for the in-
ference problem at hand [9]. ML models trained on a set consisting
of extracted and selected features are expected to perform as well
as or even better than ML models trained on raw data.

For feature selection, we use the filter approach based on Gini
impurity (Section 3.1.5). This means that for each feature we com-
pute a score, and we retain the features with the "best" score. For
feature transformation and extraction, we use a variety of differ-
ent approaches, many of which are well known in the literature
(Section 3.1.1 to 3.1.4).

Table 1 contains an overview of all features. The RAW features
were described in Section 2. Below we provide more details about
the other features. Since the features that we consider vary quite
a lot in numeric scale, e.g. gsr data < 10 while temp data > 50,
we normalize all extracted feature values before model training in
Section 3.2. To this end we use z-score normalization, which means
that from each feature value we subtract the mean of that feature,
and we divide the result by the standard deviation of the feature.

3.1.1 Fast Fourier Transform based Features (FFT)
FFT is an method to convert a signal from the time domain into

the frequency domain, by computing the discrete Fourier transform
(DFT) of a sequence [15]. Our use of FFT based features is inspired
by the work of Baldominor et al.[2], who use physiological time
series data collected from ubiquitous devices (smart phone/wrist-
band) for activity recognition, which, like our CL detection task, is
also a classification problem.

In our approach, for each instanceD𝑢 (𝑖), we transform the 4 raw
feature vectors G𝑢 (𝑖), H𝑢 (𝑖), R𝑢 (𝑖), and T𝑢 (𝑖), and subsequently
extract the same statistical information features from the trans-
formed vectors as Baldominos et al. [2]. For each instance, this
results in 4 features of each kind, i.e. for gsr, for hr, for rr, and for
temp. These features are marked as FFT features in Table 1.

As in [2], we also extract the mean and standard deviation from
each raw feature vector. While these are computed directly on the
raw data and do not involve an FFT step, we mark them as FFT
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Table 1: Overview of features

Features Description Method #
raw Unprocessed sensor measurements RAW 120

mean Mean of raw data FFT [2] 4
stdDev Std dev of raw data FFT [2] 4
median Median of FFT data FFT [2] 4
lowQuant Lower quantile of FFT data FFT [2] 4
upQuant Upper quantile of FFT data FFT [2] 4
skew Skewness of FFT data FFT [2] 4
kurtosis Kurtosis of FFT data FFT [2] 4

diffMean Mean diff of inst and user PUF 4

gMean Mean of SMF data SMF [13] 1
gStd Std dev of SMF data SMF [13] 1
gLowQuant Lower quantile of SMF data SMF [13] 1
gUpQuant Upper quantile of SMF data SMF [13] 1
gQuantDev Quantile deviation of SMF data SMF [13] 1
gSum Sum of SMF data SMF [13] 1

stdDevDiff Std dev diff between adjacent rr data HRV [8] 1
sqrtMean Sqrt of mean of square of diff HRV [8] 1

between adjacent rr data
perctDiff % of diff between adjacent rr data HRV [8] 29

anyway in Table 1 for simplicity: all features marked as FFT in
Table 1 coincide with the feature set used in [2]. Unlike in [2], we
compute FFT directly on each of G𝑢 (𝑖), H𝑢 (𝑖), R𝑢 (𝑖), and T𝑢 (𝑖) as
a whole instead of using a sliding window on each segment of data.
In our experiments, we used the fftpack package of scipy [16].

3.1.2 Per-User Features (PUF)
The features in Section 3.1.1 are extracted from each instance

D𝑢 (𝑖) in isolation. In addition to this, we propose the extraction
of per-user features that measure how the “Mean of raw data” for
a given instance 𝑖 for user 𝑢 differs from the average mean across
all instances 𝑗 for that user. For instance, letting G𝑢 ( 𝑗) denote the
mean value of G𝑢 ( 𝑗) (which in itself is one of the FFT features), we
compute a “difference of mean” feature as follows:

diffMean(G𝑢 (𝑖)) = G𝑢 (𝑖) −
1
𝑛𝑢

𝑛𝑢∑
𝑗=1

G𝑢 ( 𝑗) (1)

where 𝑢 is the index of the user and 𝑖 is the index of the instance for
which the feature value is computed. Note that, while the second
term on the right hand side of Formula 1 relies on information
about all instances for user 𝑢, the diffMean feature values are still
computed for each instance, and may differ from one instance to
the next. Indeed, the diffMean of each instance describes how far
the instance lies from the overall mean of the user in each category.
Computing diffMean for all 4 categories of physiological data yields
the 4 PUF features in Table 1.

3.1.3 Sliding Mean Filter Method based Features (SMF)
Pejović et al. [13] use SMF as a smoothing method to remove

noise of wristband sensor time series data. They apply this specifi-
cally to galvanic skin response data (gsr) and subsequently extract
statistical information features from the smoothed data. We include
6 features of this kind in our study, as shown in Table 1: gMean,
gStd, gLowQuant, gUpQuant, gQuantDev, gSum.

3.1.4 Heart Rate Variability Features (HRV)
HRV is a method used by Gjoreski et al. [8]. We include the “adja-

cent rr” features from [8] in our study, as these showed promise in
our preliminary experiments. Recall that each R𝑢 (𝑖) vector consists
of a time series of 30 raw rr feature values, i.e. 29 pairs of adjacent
rr values. stdDefDiff and sqrtMean in Table 1 capture statistical
information computed based on the difference between adjacent rr
values. We also compute 29 perctDiff features.

3.1.5 Gini Impurity Method (GINI)
Gini impurity (GINI) is a well known criterion for picking the best

feature as a new node for each iteration of decision tree learning
in the CART algorithm [4]. GINI can be used in a similar fashion
as a scoring criterion in the “filter approach” to feature selection.
The GINI value (G) of a set 𝑆 of labeled examples is computed as
follows:

𝐺 (𝑆) =
𝑁∑
𝑖=1

𝑝𝑖 · (1 − 𝑝𝑖 ) =
𝑁∑
𝑖=1

(𝑝𝑖 − 𝑝2𝑖 ) = 1 −
𝑁∑
𝑖=1

𝑝2𝑖 (2)

where 𝑁 is the number of classes (𝑁 = 2 in our case) and 𝑝𝑖 is
the probability of a randomly chosen element from 𝑆 to belong to
class 𝑖 . A numeric feature 𝑓 , like the ones we have in our study,
is considered “good” if it can reduce the GINI impurity a lot for a
suitable threshold 𝛼 in the range of feature values of 𝑓 . To measure
this, one constructs 𝑆1 = {𝑥 | 𝑥 ∈ 𝑆 ∧ 𝑓 (𝑥) ≤ 𝛼} and 𝑆2 = {𝑥 | 𝑥 ∈
𝑆 ∧ 𝑓 (𝑥) > 𝛼}, and computes

𝐺𝑠𝑝𝑙𝑖𝑡 (𝑆, 𝑓 , 𝛼) =
|𝑆1 |
|𝑆 | ·𝐺 (𝑆1) +

|𝑆2 |
|𝑆 | ·𝐺 (𝑆2) (3)

An optimal threshold 𝛼 for 𝑓 can be found by sorting the data 𝑆
based on the feature 𝑓 , identifying instances that differ in class
labels, and generating candidate thresholds midway between the
corresponding values of 𝑓 . See Mitchell [10] for more details.

After computing the GINI value for each feature, we sort all
features in ascending order based on GINI values and select the top
𝑘 features. In our experiments, we set 𝑘 to be approximately one
tenth of all features because of relatively high validation accuracy
compared with other ks.

3.2 Training Methods
In the training step, we use traditional ML algorithms which we
briefly recall below. Unless specified otherwise, we use the de-
fault hyperparameter settings of the sklearn library [12]. Each
ML algorithm takes as input a set of labeled training examples
((𝑥1, 𝑥2, . . . , 𝑥𝑚), 𝑦). The feature values x = (𝑥1, 𝑥2, . . . , 𝑥𝑚) are
real numbers corresponding to a subset of the features in Table 1,
while the class label 𝑦 is 0 (CL) or 1 (non-CL). The goal is to learn a
function from the data that maps previously unseen feature values
to a corresponding class label.

Logistic Regression. A LR classifier corresponds to a function
of the form 𝑔(x) = 𝜎 (w · x + 𝑏). In this expression, 𝜎 is the logistic
function 𝜎 (𝑧) = 1/(1 + 𝑒−𝑧) and x = (𝑥1, 𝑥2, . . . , 𝑥𝑚) is the input
feature vector. The weight vector w = (𝑤1,𝑤2, . . . ,𝑤𝑚) and the
bias 𝑏 are model parameters that are learned during an iterative
training process. If 𝑔(x) < 0.5, instance x is classified as label 0, and
label 1 otherwise.
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(Boosted) Decision Trees. A DT is a tree structure in which
each internal node tests the value of a particular feature against a
corresponding threshold and branches according to the result. Each
leaf node specifies one of the classes. The result of the classification
is the class associated with the leaf reached from traversing the
tree, starting from the root. During training, a DT is grown in a
top-down manner. For each internal node, a feature 𝑓 is chosen
that, after splitting, will help reduce the “impurity” the most in the
set of training examples that have reached that node. In Section
3.1.5, we briefly sketched how this works in CART algorithm [4].
A similar technique is used in the C4.5 algorithm [14], in which
entropy is used instead of Gini impurity. The entropy of a set of
examples 𝑆 is defined as𝐻 (𝑆) = −∑𝑁

𝑖=1 𝑝𝑖 · log2 (𝑝𝑖 ) where 𝑁 is the
number of classes (𝑁 = 2 in our case) and 𝑝𝑖 the probability of a
randomly chosen element from S to be class 𝑖 . This is the technique
we use for DT model training in Section 4.

In addition to single DTmodels, we use boosting-based ensemble
models trained with the AdaBoost algorithm (AB) [6]. An ensemble
is a set of DTs used together to classify new instances. The DTs in
a boosted model are trained in sequence; the training process for
each DT gives more importance to instances that were misclassified
by DTs trained earlier in the sequence. While boosted DT models
are computationally more expensive to train than single DTs, they
usually yield higher accuracy, as we also see in our experiments.

Random Forests. A RF is an ensemble of DTs that are each
trained on a bootstrap replicate of the original data. To create a
replicate of a data set 𝑆 with 𝑛 instances, one samples 𝑛 times, with
replacement. In addition, during the DT growing process, the best
feature for each node is chosen from a randomly selected subset
of the features instead of from all features. This process of bagging
(for instances) and subspace sampling (for features) makes the DTs
in the ensemble sufficiently different from each other, allowing RFs
to yield higher accuracy than individual DTs [3].

Support Vector Machines. A SVM [5] with a linear kernel, as
we use in this study, corresponds to a linear decision boundary
ℎ(x) = w · x +𝑏. The parameters w and 𝑏 are learned during an op-
timization process aimed at finding a “maximal margin” hyperplane
that separates the two classes and that is as far away as possible
from each training example. The tolerance for training examples to
be on the wrong side of the decision boundary is controlled by a
penalty parameter 𝐶; in our experiments 𝐶 = 1.

Voting-based Ensemble. Voting-based Ensemble is a method
to combine models by classifying an instance based on the majority
of labels inferred by all ML models [11]. This method may improve
accuracy when some single models perform not very well.

We did not include deep learningmethods in our study because of
the small size of the dataset. Baldominos et al. [2] compared the use
of convolutional neural networks (CNNs) with traditional ML algo-
rithms for classification of time series data from smartphone/wrist-
band and observed that the CNN was outperformed by traditional
methods.

3.3 Approaches
We combine the ML algorithms from Section 3.2 with the feature en-
gineeringmethods from Section 3.1 in different end-to-end pipelines
which we categorize in 5 general approaches:

Figure 2: Approach on extracted data (FFT + PUF)

Figure 3: Approach on selected data (FS(RAW))

(1) Approach on raw features (RAW). In this approach (Fig. 3
without FS block), we concatenate features of all physiological
data along columns to get D𝑢 (120 features) for each user u.
Then we train the ML models without feature engineering.

(2) Approach on extracted features (FE). In this approach (Fig. 2
as example of FFT+PUF), we use FE only. We apply 3 combina-
tions of FE: FFT+PUF/SMF+ HRV/FFT+PUF+SMF+HRV. Then
we train the ML models on the concatenated data extracted by
those combinations with 32/37/69 features. For comparison, we
train models on RAW+FFT+PUF+SMF+HRV with 189 features
as well.

(3) Approach on selected features (FS(RAW)). In this approach
(Fig. 3), we use FS only. We do FS onD𝑢 with GINI to select one
tenth of the RAW features with smallest GINI values for each
fold (approx. 9 from rr data and 3 from hr data are selected).

(4) Approach on extracted and selected features (FS(RAW)
+ FE). In this approach (Fig. 4 as example of FS(RAW)+FFT+
PUF), we combine both FE and FS separately. As in approach
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Figure 4: Approach on extracted and selected data
FS(RAW) + FFT + PUF

Figure 5: Approach on extracted-then-selected data
FS(RAW + FFT + PUF)

2, we extract features with 3 combinations. Like approach 3,
FS for each fold with GINI selects 12 features from D𝑢 . Then
we concatenate selected data with extracted data of all com-
binations to get FS(RAW)+FFT+PUF / FS(RAW)+SMF+HRV /
FS(RAW)+FFT+PUF+SMF+HRV with 44/49/81 features. Finally,
we train the ML models on those concatenated data.

(5) Approach on extracted-then-selected features (FS(RAW+
FE)). In this approach (Fig. 5 as example of FS(RAW+FFT+PUF)),
we apply FE and then FS. As in approach 2, we extract fea-
tures with 3 combinations. Then we concatenate extracted
data of all combinations with D𝑢 . After that, we do FS for
each fold on those concatenated data to get FS(RAW+FFT+PUF)
/ FS(RAW+SMF+HRV) / FS(RAW+FFT+PUF+SMF+HRV) with
15/15/18 features (selected features are mostly from extracted
data). Finally, we train the ML models on those selected data.

4 RESULTS
Table 2 contains the accuracy results of all approaches from Section
3.3, measured with 6-fold CV with respect to users. In each fold
we used data from 15 users for training, and data from 3 users for
testing. The RF and AB models are ensembles of 20 trees each. The

best results of each kind of model architecture from Section 3.2
across the 5 approaches from Section 3.3 is highlighted in bold,
identifying approach 4 as the best one.

The importance of feature extraction, i.e. the construction of
features that represent the data well, is very clear from Table 2. The
approaches that do not involve feature extraction, namely approach
1 and 3, are clearly outperformed by the other approaches in terms
of accuracy. Comparing the results of approach 3 with approach
1, one can also observe that applying feature selection to the raw
features did not systematically help. This does not mean that fea-
ture selection has no merit: comparing the last row of approach
2 with the last row of approach 4, one can see that applying fea-
ture selection to the raw data before combining it with the other
features improved the accuracy across all model architectures. We
observed a similar phenomenon for the combination of the raw
features with subsets of the extracted features, i.e. first applying
FS to RAW gives better results than not applying FS to RAW for
all combinations in approach 4; we omitted results for some of the
combinations without FS for conciseness, focusing on the better
performing techniques instead.

Comparing approach 4 and 5 shows that feature selection as a
filtering step across all features (not just the RAW ones) in advance
of model training, as done in approach 5, mostly hurts the accuracy.
This is likely because each of the ML algorithms from Section 3.2
have a built-in feature selection technique based on entropy (DT,
RF, AB) or a feature weighing technique (LR, SVM) that is applied
dynamically and/or looks at weighted combinations of features,
while the feature selection technique based on GINI from Section
3.1.5 is a filter approach that measures the importance of each
feature in isolation only.

We now turn our attention to some of the best performing mod-
els, in particular the SVMmodel with FFT+PUF+SMF+HRV features
of approach 2, and the LR model with FS(RAW)+SMF+HRV features
of approach 4. Per-user results of these approaches, as provided in
Table 3, show that both approaches have fairly similar misclassi-
fication rates, and that there are users on which both models do
well (e.g. c24ur) while other users are challenging for both models
(7swyk, iz2ps).

5 CONCLUSION AND FUTUREWORK
We used a variety of feature engineering techniques combined with
traditional machine learning algorithms to infer from wrist-band
data whether a user is experiencing high cognitive load (CL). We
obtained our best results, i.e. an accuracy of ∼ 63%, with a Logistic
Regression model trained on 4 categories of physiological data,
namely galvanic skin response, heart rate, rr intervals, and skin
temperature data. While ∼ 63% is substantially better than random
guessing, it may not be sufficiently accurate for deployment.

There are several possibilities for improvement. First of all, col-
lecting a larger training dataset would lead to higher accuracy of
the models trained in this paper, and it would also enable the use
of “data hungry” deep learning architectures. Second, the set-up
of the UbiTtention2020 challenge “forced” us to treat the CL in-
ference problem for each user as a “cold start” problem (zero-shot
learning), because there are no labeled training instances given at
all for the 5 users in the test data. To mimic this set-up as closely
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Table 2: Accuracy results of proposed approaches (6-fold CV based on users)

Approach Features LR DT RF AB SVM Ensemble

1 RAW 50.90% 54.22% 56.36% 53.86% 55.12% 54.91%
FFT+PUF 62.42% 55.82% 58.28% 58.72% 61.80% 60.84%

2 SMF+HRV 62.26% 54.15% 58.08% 56.47% 60.63% 60.29%
FFT+PUF+SMF+HRV 59.47% 52.63% 59.30% 57.91% 62.32% 61.47%
RAW+FFT+PUF+SMF+HRV 60.16% 56.00% 57.41% 56.24% 61.65% 62.29%

3 FS(RAW) 52.50% 53.24% 53.99% 52.63% 52.47% 54.38%
FS(RAW)+FFT+PUF 62.65% 57.92% 59.83% 58.74% 62.08% 61.80%

4 FS(RAW)+SMF+HRV 63.30% 53.33% 58.81% 55.93% 62.54% 62.34%
FS(RAW)+FFT+PUF+SMF+HRV 61.82% 57.79% 57.89% 57.82% 62.26% 62.93%
FS(RAW+FFT+PUF) 60.27% 52.15% 58.96% 56.66% 60.25% 59.51%

5 FS(RAW+SMF+HRV) 59.70% 54.91% 59.54% 55.21% 59.71% 59.18%
FS(RAW+FFT+PUF+SMF+HRV) 60.26% 56.25% 58.47% 56.13% 59.95% 58.83%

Table 3: Per user results for SVM with FFT+PUF+SMF+HRV and for LR with FS(RAW)+SMF+HRV

fold id SVM with FFT+PUF+SMF+HRV LR with FS(RAW)+SMF+HRV
TP TN FP FN misclassification rate TP TN FP FN misclassification rate

5gpsc 16 14 6 5 26.83% 18 12 8 3 26.83%
1 wjxci 5 17 2 14 42.11% 8 16 3 11 36.84%

rc1in 13 11 8 6 36.84% 10 9 10 9 50.00%
ibvx8 12 9 8 6 40.00% 12 8 9 6 42.86%

2 yljm5 12 10 10 7 43.59% 13 16 4 6 25.64%
hpbxa 1 6 0 7 50.00% 2 6 0 6 42.86%
7swyk 1 16 1 18 52.78% 2 16 1 17 50.00%

3 e4gay 15 14 5 4 23.68% 12 15 4 7 28.95%
ef5rq 8 14 6 10 42.11% 11 12 8 7 39.47%
8a1ep 5 8 2 4 31.58% 5 7 3 4 36.84%

4 f3j25 6 16 4 13 43.59% 9 13 7 10 43.59%
tn4vl 11 11 6 7 37.14% 8 12 5 10 42.86%
2nxs5 17 11 9 2 28.21% 18 10 10 1 28.21%

5 1mpau 14 12 7 5 31.58% 10 16 3 9 31.58%
iz2ps 5 9 10 14 64.86% 5 10 9 14 60.53%
b7mrd 8 11 4 8 38.71% 11 11 4 5 29.03%

6 c24ur 16 16 4 3 17.95% 16 14 6 3 23.08%
dkhty 13 12 6 6 32.43% 13 14 4 6 27.03%

as possible, we evaluated our approaches with 6-fold CV on the
training data, setting the data of 3 users aside for validation in each
fold. We observed higher accuracies in a 10-fold CV setup across all
632 instances in which we held out 63 instances for validation in
each fold, allowing user overlap between train and validation data,
indicating that having some labeled training instances available for
a user (i.e. few-shot learning) improves inference accuracy on new,
unseen instances for that same user. Finally, one can combine the in-
ference techniques used in this paper with other information that is
indicative of a user’s CL, such as additional features extracted from
wrist-band measurements [8, 13] or other environmental sensors.
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