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1. INTRODUCTION

Images of fuzzy sets under fuzzy relations have been investigated mainly in two contexts: on

the one hand, mostly under the term “full image” (Gottwald, 1993), they can be regarded as

very general tools for fuzzy inference, leading to the so-called “compositional rule of

inference” (Gottwald, 1993; Bauer et al., 1995). The theory of fuzzy relational

equations makes direct use of this fundamental principle, too (Sanchez, 1984; Miyakoshi

and Shimbo, 1985; di Nola et al., 1991; Gottwald, 1993; De Baets, 2000). On the other hand,

under the term “extensional hull”, the image of a fuzzy set under a fuzzy equivalence relation

yields the smallest fuzzy superset which is “closed” under the relation. This closedness

property is usually called “extensionality” (Kruse et al., 1994). The concepts of

extensionality and extensional hulls have turned out to be extremely useful, in particular

when the analysis and interpretation of fuzzy partitions and controllers is concerned

(Klawonn, 1993; Klawonn and Kruse, 1993; Klawonn and Castro, 1995; Klawonn et al.,

1995).
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In the first part of this paper, we would like to generalize the concept of extensionality to

arbitrary reflexive and T-transitive fuzzy relations—so-called fuzzy preorderings. Based on

this general and powerful notion, smallest closed supersets and largest closed fuzzy subsets

will be studied. It will turn out that again the two very common concepts of images under

fuzzy relations are obtained.

The second part is devoted to a new view on these images of fuzzy sets under fuzzy

relations—making use of the results on closedness and the corresponding closure operator,

we are able to provide a new framework for defining the ordering-based modifiers “at least”

and “at most”.

2. PRELIMINARIES

Throughout the whole paper, we will not explicitly distinguish between fuzzy sets and their

corresponding membership functions. Consequently, uppercase letters will be used for both

synonymously. The set of all fuzzy sets on a domain X will be denoted with F(X).

For intersecting and unifying fuzzy sets, we will suffice with minimum and maximum:

ðA > BÞðxÞ ¼ minðAðxÞ;BðxÞÞ

ðA < BÞðxÞ ¼ maxðAðxÞ;BðxÞÞ:

In general, aside from intersections and unions of fuzzy sets, triangular norms (Klement

et al., 2000) will be considered as our standard models of conjunction.

Definition 1 A triangular norm (t-norm for short) is an associative, commutative, and

non-decreasing binary operation on the unit interval (i.e. a ½0; 1�2 ! ½0; 1� mapping) which

has 1 as neutral element.

In this paper, unless stated otherwise, assume that T denotes a left-continuous triangular

norm, i.e. a t-norm whose partial mappings Tðx; :Þ and Tð:; xÞ are left-continuous.

Correspondingly, so-called residual implications are used as the concepts of logical

implication. In order to provide the reader with the basic properties of residual implications,

we will now briefly recall them. For proofs, the reader is referred to the literature (Gottwald,

1993; Hájek, 1998).

Definition 2 A mapping R : ½0; 1�2 ! ½0; 1� is called residual implication (residuum) of T

if and only if the following equivalence is fulfilled for all x; y; z [ ½0; 1� :

Tðx; yÞ # z , x # Rð y; zÞ: ð1Þ

Lemma 3 For any left-continuous t-norm T, there exists a unique residuum ~T given as

~Tðx; yÞ ¼ sup{u [ ½0; 1�jTðu; xÞ # y}:

Only briefly, we mention the concept of logical equivalence induced by a left-continuous

t-norm.

Definition 4 The biimplication yT of T is defined as

yTðx; yÞ ¼ minð~Tðx; yÞ; ~Tð y; xÞÞ:

For elementary properties of the fuzzy logical operations ~T and yT ; the reader is referred to

the relevant literature (Gottwald, 1993; Fodor and Roubens, 1994; Hájek, 1998; Klement

et al., 2000; Gottwald, 2001).
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In this paper, we will solely consider binary fuzzy relations, i.e. fuzzy sets on a product

space X 2 ¼ X £ X; where X is an arbitrary crisp set. Let us recall some basics of binary fuzzy

relations which will be important in the remaining paper.

Definition 5 A binary fuzzy relation R : X 2 ! ½0; 1� is called

1. reflexive if and only if ;x [ X : Rðx; xÞ ¼ 1;
2. symmetric if and only if ;x; y [ X : Rðx; yÞ ¼ Rð y; xÞ;
3. T-transitive if and only if ;x; y; z [ X : TðRðx; yÞ;Rð y; zÞÞ # Rðx; zÞ;
4. strongly complete if and only if ;x; y [ X : maxðRðx; yÞ;Rð y; xÞÞ ¼ 1:

Definition 6 A reflexive and T-transitive fuzzy relation is called fuzzy preordering with

respect to a t-norm T, short T-preordering. A symmetric T-preordering is called fuzzy

equivalence relation with respect to T, short T-equivalence.

Definition 7 Consider an arbitrary fuzzy set A [ FðXÞ: The full image of A under R,

denoted R " A and its dual R # A are defined as

R " AðxÞ ¼ sup{TðAð yÞ;Rð y; xÞÞjy [ X};

R # AðxÞ ¼ inf{~TðRðx; yÞ;Að yÞÞjy [ X}:

Note that R " A has sometimes been called direct image (Kerre, 1993) or conditioned fuzzy

set (Bellman and Zadeh, 1970), while the names superdirect image (Kerre, 1993) and a-

operation (Sanchez, 1984) have already occurred for R # A:

Lemma 8 The following propositions hold for all A;B [ FðXÞ and all binary fuzzy

relations R; S [ FðX 2Þ :

1. A # B ) R " A # R " B:
2. A # B ) R # A # R # B:
3. R # S ) R " A # S " A:
4. R # S ) R # A $ S # A:
5. R " ðA < BÞ ¼ R " A < R " B:
6. R # ðA > BÞ ¼ R # A > R # B:
7. ðR < SÞ " A ¼ R " A < S " A:
8. ðR < SÞ # A ¼ R # A > S # A:

Proof These propositions follow directly from the monotonicity properties of triangular

norms and their residual implications (see Gottwald, 1993; Kerre, 1993 for more detailed

proofs of 1–5). A

3. THE BASIC CONCEPT OF CLOSEDNESS AND ITS PROPERTIES

The closedness with respect to a fuzzy equivalence relation, often called “extensionality”

(Klawonn and Kruse, 1993; Kruse et al., 1994), and the induced closure operators are rather

well-studied matters (Jacas, 1988; Kruse et al., 1994; Jacas and Recasens, 1995; Klawonn

and Castro, 1995; Boixader et al., 2000; Bělohlávek, 2002). We will now define appropriate

generalizations which do not assume symmetry.

Throughout this section, assume that R denotes a fuzzy preordering with respect to some

left-continuous t-norm T.
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Definition 9 A fuzzy set A [ FðXÞ is called closed with respect to R, for brevity

R-closed, if and only if, for all x; y [ X;

TðAðxÞ;Rðx; yÞÞ # Að yÞ:

In words, the meaning of closedness is that, for any element x of A, all y are also contained

in A which are in relation to x.

Example 10 Let us briefly mention a few simple examples which demonstrate the variety of

properties that can be expressed by means of closedness.

1. The universe X and the empty set Y are both closed with respect to any fuzzy preordering

on X.

2. A crisp set is closed with respect to a crisp equivalence relation if and only if it can be

represented as the union of equivalence classes.

3. A crisp set is closed with respect to a crisp ordering if and only if it is an up-set.

4. A fuzzy set is closed with respect to a crisp ordering W if and only if its membership

function is non-decreasing with respect to W .

5. If a fuzzy equivalence relation is considered, closedness is equivalent to extensionality

(Klawonn and Kruse, 1993; Kruse et al., 1994).

As immediate consequences of the residuation principle (1), we can derive equivalent

formulations of R-closedness, which will be helpful later.

Lemma 11 For any fuzzy set A [ FðXÞ; R-closedness is equivalent to each of the

following two propositions:

;x; y [ X : Rðx; yÞ # ~TðAðxÞ;Að yÞÞ ð2Þ

;x; y [ X : AðxÞ # ~TðRðx; yÞ;Að yÞÞ: ð3Þ

If R is, in addition, symmetric, A is R-closed if and only if the following inequality holds:

;x; y [ X : Rðx; yÞ # yTðAðxÞ;Að yÞÞ: ð4Þ

Proof The equivalence of R-closedness to formulae (2) and (3) follows directly from the

definition of residual implications.

On the other hand, if we swap x and y in the definition of R-closedness, we obtain

TðAð yÞ;Rð y; xÞÞ # AðxÞ

which is, due to Eq. (2), equivalent to

Rð y; xÞ # ~TðAð yÞ;AðxÞÞ: ð5Þ

If we assume that R is symmetric and taking Eqs. (2) and (5) into account, we obtain

Rðx; yÞ # minð~TðAðxÞ;Að yÞÞ; ~TðAð yÞ;AðxÞÞÞ ¼ yTðAðxÞ;Að yÞÞ:

The opposite direction, i.e. that Eq. (4) implies R-closedness, is trivial if we consider

Eq. (2) and the definition of the biimplication. A
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In particular, Eq. (2) has a trivial consequence we will need very often in the following.

Corollary 12 Let Q be another T-preordering. If a fuzzy set A is R-closed and Q # R;
then A is also Q-closed.

The next result clarifies in which way closedness is preserved for finite and infinite unions

and interactions (with respect to max and min, respectively).

Lemma 13 For any family of R-closed fuzzy sets ðAiÞi[I ; the fuzzy sets defined by

i[I
sup AiðxÞ and

i[I
inf AiðxÞ

are also R-closed. If the index set I is finite, the same holds even if T is not left-continuous.

Proof For arbitrary x; y [ X; we know that

TðAiðxÞ;Rðx; yÞÞ # Aið yÞ

holds for all i [ I: Due to the monotonicity of t-norms, R-closedness is then preserved

for finite intersections and unions (with respect to minimum and maximum,

respectively).The same even holds for infinite intersections if we take the following into

account (basic consequence of the monotonicity of t-norms):

T
i[I
inf ui; v

� �
#

i[I
inf Tðui; vÞ:

For infinite unions, left-continuity has to be fulfilled:

T
i[I
sup AiðxÞ;Rðx; yÞ

 !
¼

i[I
sup TðAiðxÞ;Rðx; yÞÞ #

i[I
sup Aið yÞ:

A

Nonchalantly speaking, Corollary 12 has shown that the smaller a fuzzy preordering R is,

the easier fuzzy sets are R-closed. The next theorem gives a unique characterization of how

large a relation R may be such that a given family of fuzzy sets is still R-closed.

Theorem 14 Consider an arbitrary family of fuzzy sets ~A ¼ ðAiÞi[I : Then

R ~Aðx; yÞ ¼ inf{~TðAiðxÞ;Aið yÞÞji [ I}

is a T-preordering which is, in addition, the largest binary fuzzy relation R such that all Ai

are R-closed. Furthermore,

R0
~A
ðx; yÞ ¼ inf{yTðAiðxÞ;Aið yÞÞji [ I} ð6Þ

is a T-equivalence and the largest symmetric binary fuzzy relation R such that all Ai are

R-closed.

Proof Reflexivity and T-transitivity of R ~A follow from basic properties of residual

implications (see Valverde (1985) for more details). Analogously, reflexivity, symmetry, and

T-transitivity of R0
~A

follow from elementary properties of the biimplication yT : Closedness and

maximality of both relations follow immediately from Lemma 11, formulae (2) and (4),

respectively. A

Note that the construction (6) directly corresponds to the fundamental representation

theorem for fuzzy preorderings by Valverde (1985). Theorem 14 shows that this

representation naturally connects to the closedness property.
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4. OPENING AND CLOSURE OPERATORS

Now we can turn to our actual objects of study—opening and closure operators induced by

fuzzy preorderings. We will soon see that the two image operators R " and R # play a central

role; so, let us start to investigate their properties in terms of closedness. Again, we make the

convention that R denotes a T-preordering on some fixed domain X.

Proposition 15 All images R " A and R # A are R-closed.

Proof For proving that R " A is R-closed, consider the left-continuity of T and the

T-transitivity of R:

TðR " AðxÞ;Rðx; yÞÞ ¼ Tðsup{TðAðzÞ;Rðz; xÞÞjz [ X};Rðx; yÞÞ

¼ sup{TðTðAðzÞ;Rðz; xÞÞ;Rðx; yÞÞjz [ X}

¼ sup{TðAðzÞ; TðRðz; xÞ;Rðx; yÞÞÞjz [ X}

# sup{TðAðzÞ;Rðz; yÞÞjz [ X}

¼ R " Að yÞ:

If we take T-transitivity of R, the monotonicity properties of ~T and the well-known

inequality ~TðTðx; yÞ; zÞ # ~Tðx; ~Tð y; zÞÞ into account, we obtain

R # AðxÞ ¼ inf{~TðRðx; zÞ;AðzÞÞjz [ X}

# inf{~TðTðRðx; yÞ;Rð y; zÞÞ;AðzÞÞjz [ X}

# inf{~TðRðx; yÞ; ~TðRð y; zÞ;AðzÞÞÞjz [ X}

# ~TðRðx; yÞ; inf{~TðRð y; zÞ;AðzÞÞjz [ X}Þ

¼ ~TðRðx; yÞ;R # Að yÞÞ

which is, by Lemma 11, Eq. (3), a sufficient condition for R-closedness. A

Theorem 16 For any A [ FðXÞ; R " A is the smallest R-closed fuzzy superset of A and

R # A is the largest R-closed fuzzy subset.

Proof From Proposition 15, we know that R " A and R # A are R-closed.

The inclusion properties can be proved as follows:

R # AðxÞ ¼ inf{~TðRðx; yÞ;Að yÞÞjy [ X}

# ~TðRðx; xÞ;AðxÞÞ ¼ ~Tð1;AðxÞÞ ¼ AðxÞ

¼ TðAðxÞ; 1Þ ¼ TðAðxÞ;Rðx; xÞÞ

# sup{TðAð yÞ;Rð y; xÞÞjy [ X}

¼ R " AðxÞ:
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It remains to show minimality/maximality. Suppose B is an arbitrary R-closed fuzzy

superset of A. Then we obtain, for all x; y [ X;

BðxÞ $ TðBð yÞ;Rð y; xÞÞ $ TðAð yÞ;Rð y; xÞÞ:

Hence, we can even take the supremum over all y on the right-hand side, i.e.

BðxÞ $ sup{TðAð yÞ;Rð y; xÞÞjy [ X} ¼ R " AðxÞ;

which shows that B must be a fuzzy superset of R " A: Since B was chosen arbitrarily, R " A

must be the smallest R-closed fuzzy superset.

Now let us consider an arbitrary R-closed fuzzy set C, such that C # A: In a similar way as

above, we obtain the following for each x; y [ X :

CðxÞ # ~TðRðx; yÞ;Cð yÞÞ # ~TðRðx; yÞ;Að yÞ:

Since this holds for any x; y [ X; we can also take the infimum over all y on the right-hand

side and the proof of maximality is finished:

CðxÞ # inf{~TðRðx; yÞ;Að yÞÞjy [ X} ¼ R # AðxÞ: A

According to Theorem 16, it is therefore justified to call R " the closure operator of R and

to call R # the opening operator of R.

Corollary 17 The closure and the opening operator of a T-preordering R can also be

represented in the following way:

R " AðxÞ ¼ inf{BðxÞjB is an R-closed fuzzy superset of A}

R # AðxÞ ¼ sup{CðxÞjC is an R-closed fuzzy subset of A}:

Proof From Theorem 16, we know that any R-closed fuzzy superset of A is a fuzzy superset

of R " A: Since R " A is an R-closed fuzzy superset of A itself, the representation must hold.

The representation of R # A can be proved analogously. A

Theorem 16 provides us with the mathematical apparatus for proving several basic

properties of closures and openings.

Corollary 18 The following propositions hold for any A [ FðXÞ :

1. A is R-closed if and only if A ¼ R " A:
2. A is R-closed if and only if A ¼ R # A:
3. R " ðR " AÞ ¼ R " A:
4. R # ðR # AÞ ¼ R # A:
5. R " ðR # AÞ ¼ R # A:
6. R # ðR " AÞ ¼ R " A:

Proof The first two propositions follow directly from Theorem 16. The others are

immediate consequences of the first one. A

Items 3 and 4 in Corollary 18 refer to idempotency with respect to composition, i.e. that

R " 8 R "; R " and R # 8 R #; R # : In order to investigate such algebraic properties a little

further, we now formulate a sufficient condition under which the applications of closure and

opening operators commute.
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Theorem 19 Given two T-preorderings R1 and R2 such that R1 < R2 is T-transitive, the

following propositions hold for any A [ FðXÞ :

ðR1 < R2Þ " A ¼ R1 " ðR2 " AÞ ¼ R2 " ðR1 " AÞ ¼ R1 " A < R2 " A

ðR1 < R2Þ # A ¼ R1 # ðR2 # AÞ ¼ R2 # ðR1 # AÞ ¼ R1 # A > R2 # A:

Proof Let R1 < R2 be T-transitive. Then the reflexivity of R1 and R2 implies that R1 < R2 is

a T-preordering, and all the results achieved so far are applicable to R1 < R2 as well.

First of all, ðR1 < R2Þ " A is R1 < R2-closed. Therefore, by Corollary 12, ðR1 < R2Þ " A is

R1-closed and, due to Corollary 18,

R1 " ððR1 < R2Þ " AÞ ¼ ðR1 < R2Þ " A:

Since R2 # R1 < R2; monotonicity (cf. Eqs. (1) and (3) of Lemma 8) entails

R1 " ðR2 " AÞ # R1 " ððR1 < R2Þ " AÞ ¼ ðR1 < R2Þ " A: ð7Þ

The inclusion property (see Theorem 16) and monotonicity (cf. Lemma 8) yield

R1 " A # R1 " ðR2 " AÞ; ð8Þ

R2 " A # R1 " ðR2 " AÞ: ð9Þ

Putting Eqs. (8) and (9) together, we obtain

R1 " A < R2 " A # R1 " ðR2 " AÞ: ð10Þ

Since

ðR1 < R2Þ " A ¼ R1 " A < R2 " A

holds anyway due to Lemma 8, Eq. (10) is equivalent to

ðR1 < R2Þ " A # R1 " ðR2 " AÞ: ð11Þ

Then Eqs. (7) and (11) together prove that

ðR1 < R2Þ " A ¼ R1 " ðR2 " AÞ:

The second equality

ðR1 < R2Þ " A ¼ R2 " ðR1 " AÞ

follows immediately if we swap R1 and R2.

Now let us turn to the second line of equalities. Again, trivially, ðR1 < R2Þ # A is R1 < R2-

closed. Hence, due to Corollary 12, ðR1 < R2Þ # A is R1-closed and, again by Corollary 18,

R1 # ððR1 < R2Þ # AÞ ¼ ðR1 < R2Þ # A:

Since R2 # R1 < R2; monotonicity (see Eqs. (2) and (4) of Lemma 8) implies

R1 # ðR2 # AÞ $ R1 # ððR1 < R2Þ # AÞ ¼ ðR1 < R2Þ # A: ð12Þ

On the other hand, the inclusion property (see Theorem 16) and monotonicity imply

R1 # A $ R1 # ðR2 # AÞ;

R2 # A $ R1 # ðR2 # AÞ:

Joining these two inclusions yields

R1 # A > R2 # A $ R1 # ðR2 # AÞ: ð13Þ
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Since we know from Prop. (8) of Lemma 8 that

ðR1 < R2Þ # A ¼ R1 # A > R2 # A;

the inequalities (12) and (13) imply

ðR1 < R2Þ # A ¼ R1 # ðR2 # AÞ:

The second equality

ðR1 < R2Þ # A ¼ R2 # ðR1 # AÞ

follows again immediately if we swap R1 and R2. A

5. AN APPLICATION: ORDERING-BASED MODIFIERS

Already in their beginning, fuzzy systems were considered as appropriate tools for

controlling complex systems and for carrying out complicated decision processes (Zadeh,

1973). It is well known and easy to see that, if rule bases are represented as complete tables,

the number of rules grows exponentially with the number of variables—a fact which can be

regarded as a serious limitation in terms of surveyability and interpretability.

Almost all fuzzy systems make implicit use of orderings. More specifically, it is quite

common to decompose the universe of a system variable into a certain number of fuzzy sets

by means of the ordering of the universe—an approach which is often reflected in labels like

“small”, “medium”, or “large”. We will now demonstrate by means of a simple example how

such ordering information can be used to reduce the size of a rule base while improving

expressiveness and interpretability. Consider a typical PD-style fuzzy controller with two

inputs e, De and one output variable f, where the universes of all these variables are covered

by five fuzzy sets labeled NB, NS, Z, PS, and PB:

One possibility to reduce the size of this rule base is to take neighboring rules with the

same consequents, such as,

IF e is NB AND De is NB THEN f is NB.

IF e is NS AND De is NB THEN f is NB.

IF e is Z AND De is NB THEN f is NB

and to replace them by a single rule like the following one1:

IF e is at most Z AND De is NB THEN f is NB.

Of course, there is actually no need to do so in such a simple case. Anyway, grouping

neighboring rules by means of expressions, such as, “at least”, “at most”, or “between”, could

help to reduce the size of larger rule bases considerably.

De

e NB NS Z PS PB

NB NB NB NB NS Z
NS NB NB NS Z PS
Z NB NS Z PS PB
PS NS Z PS PB PB
PB Z PS PB PB PB

1It depends on the underlying inference scheme whether the result is actually the same. We leave this aspect aside
for the present paper, since this is not its major concern.
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In addition, such elements can be useful in rule interpolation. Sometimes, when experts or

automatic tuning procedures only provide an incomplete description of a fuzzy rule base, it

can still be necessary to obtain a conclusion even if an observation does not match any

antecedent in the rule base (Kóczy and Hirota, 1993). Moreover, it is considered as another

opportunity for reducing the size of a rule base to store only some representative rules and to

interpolate between them (Kóczy and Hirota, 1997). In any case, it is indispensable to have

criteria for determining between which rules the interpolation should take place. Beside

distance, orderings play a fundamental role in this selection. As an alternative to distance-

based methods (Kóczy and Hirota, 1997), it is possible to fill the gap between the antecedents

of two rules using a fuzzy concept of “between”, which leads us to the ordering-based

modifiers mentioned above.

The fact remains that we are still lacking a way to represent such expressions under the

presence of fuzziness. In order to have a universal approach which is applicable in a wide

variety of practical problems, at least the following two properties should be satisfied:

1. If there is a kind of inherent context of gradual equality in the given environment,

ordering-based modifiers should take it into account. Stressing the well-known example

of the height of men, this means that a fuzzy set “at least 180 cm” should not exclude

179.9 cm completely, since both values are almost indistinguishable.

2. Of course, the operators should be applicable to fuzzy sets, too, in order to be able to

model expressions like “at least medium”.

Usually, an expression like “at least” deeply relies on an underlying concept of ordering.

Taking the first of the two above requirements into account, it is, however, not sufficient to

consider only crisp concepts of ordering. With the aim to have a vague model of ordering

based on an underlying vague concept of equality/equivalence, a generalization of fuzzy

orderings has been proposed (Höhle and Blanchard, 1985; Bodenhofer, 2000).

Definition 20 A T-transitive binary fuzzy relation R [ FðX 2Þ is called a fuzzy ordering

on X with respect to a t-norm T and a T-equivalence E, for brevity T–E-ordering, if and only

if it additionally satisfies the following two axioms:

1. E-reflexivity: ;x; y [ X : Rðx; yÞ $ Eðx; yÞ:
2. T–E-antisymmetry: ;x; y [ X : TðRðx; yÞ;Rð y; xÞÞ # Eðx; yÞ:

For more details on this concept of fuzzy orderings, its properties and applications, the

reader is referred to Bodenhofer (2000; 2003). We just mention that, by replacing the fuzzy

equivalence relation E by the crisp equality, the well-known definition of fuzzy partial

orderings (Zadeh, 1971) is obtained. Moreover, one easily verifies that this still includes crisp

orderings.

Now let us start with the problem of how to define an operator “at least”. If we restrict

ourselves to crisp sets and crisp orderings, the following definition seems intuitively correct:

x [ “at least M” , ð’y [ X : y [ M ^ y W xÞ:

For generalizing this formula to a fuzzy set A and a given T–E-ordering R, two logical

concepts have to be fuzzified as well—the conjunction and the existential quantifier. For

conjunction, the underlying t-norm T seems to be the ready-made choice. If we take, as usual

in t-norm-based predicate logic (Hájek, 1998), the supremum as fuzzy substitute for the

existential quantifier, the following generalization is obtained:

“at least A”ðxÞ ¼ sup{TðAð yÞ;Rð y; xÞÞjy [ X}:
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Actually, this is nothing other than the full image or closure of A with respect to R:

“at least A” ¼ R " A:

In order to make our formulas a little shorter and easier to read, we will denote this

operator with ATL in the following.

Analogously, it is possible to define an operator “at most” just by taking the inverse

ordering R21ðx; yÞ ¼ Rð y; xÞ

“at most A”ðxÞ ¼ sup{TðAð yÞ;Rðx; yÞÞjy [ X}

which will be denoted ATM in the following. To make notation consistent, let us denote the

closure of E—the so-called extensional hull—as EXTðAÞ ¼ E " A:
The question arises what the benefits of the results from Section 3, as promised earlier, are.

First of all, and this is neither surprising nor really spectacular, ATL(A) is R-closed and

ATM(A) is R 21-closed. As an immediate consequence of Corollary 12, ATL(A) and

ATM(A) are both extensional, i.e. E-closed. Moreover, we know from Corollary 18 that both

operators are idempotent in the sense that

ATLðATLðAÞÞ ¼ ATLðAÞ;

ATMðATMðAÞÞ ¼ ATMðAÞ:

We have mentioned above that the T-equivalence-based approach to fuzzy orderings is

very much inspired by the typical practical situation that there is a given crisp concept of

(mostly linear) ordering, however, with an additional context of gradual equality (like in the

height example). We will now study this case in more detail. It will turn out that the results

from Section 3, enable us to represent ATL and ATM by closures with respect to the crisp

ordering and the fuzzy concept of equality. Before that, let us formalize this typical case in a

mathematically exact way.

Definition 21 A T–E-ordering R is called a direct fuzzification of a crisp ordering W if

and only if it admits the following resolution:

Rðx; yÞ ¼
1 if x W y

Eðx; yÞ otherwise:

(
ð14Þ

It is important to mention that strongly complete fuzzy orderings are uniquely

characterized as direct fuzzifications of linear orderings (Bodenhofer, 2000). An alternative,

slightly more restrictive definition of antisymmetry using the minimum t-norm TMðx; aÞ ¼

minðx; yÞ has been proposed by Bělohlávek (2002). As the minimum t-norm is the largest

t-norm, any fuzzy relation fulfilling TM–E-antisymmetry (for some fuzzy equivalence

relation E) also fulfills T–E-antisymmetry (for any t-norm T). Note that strongly complete

T–E-orderings—no matter which underlying t-norm T we consider—also fulfill the stronger

condition of TM–E-antisymmetry.

As is easy to see from Eq. (14) a direct fuzzification of a crisp ordering is the max-union of

a crisp ordering and a T-equivalence, which allows us to apply Theorem 19.

Theorem 22 Let R be a T–E-ordering which is a direct fuzzification of a crisp ordering

W . Then the following equalities hold

ATLðAÞ ¼ EXTðLTRðAÞÞ ¼ LTRðEXTðAÞÞ ¼ EXTðAÞ< LTRðAÞ; ð15Þ

ATMðAÞ ¼ EXTðRTLðAÞÞ ¼ RTLðEXTðAÞÞ ¼ EXTðAÞ< RTLðAÞ; ð16Þ
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where the operator LTR denotes the closure with respect to W while RTL stands for the

closure with respect to the inverse relation of W :

LTRðAÞðxÞ ¼ sup{Að yÞjy W x}

RTLðAÞðxÞ ¼ sup{Að yÞjx W y}:

Moreover, ATL(A) is the smallest fuzzy superset of A which is extensional and has a non-

decreasing membership function. Analogously, ATM(A) is the smallest fuzzy superset of A

which is extensional and has a non-increasing membership function.

Proof Let us start with the closures induced by the relations W and X . For representing

W as a fuzzy relation, we consider its characteristic function

xWðx; yÞ ¼
1 if x W y;

0 otherwise:

(

Taking into account that x W y , xWðx; yÞ ¼ 1; Prop. (2) in Lemma 11 implies that a fuzzy

set A is W -closed if and only if, for all x; y [ X;

xWðx; yÞ # ~TðAðxÞ;Að yÞÞ:

In particular this means that, if x W y; the equality ~TðAðxÞ;Að yÞÞ ¼ 1 must hold. Since
~Tðx; yÞ ¼ 1 if and only if x # y; we obtain that W -closedness is equivalent to non-

decreasingness of the membership function:

x W y ) AðxÞ # Að yÞ:

Analogously, we can show that X -closedness corresponds to the non-increasingness of

the membership function. Since W is a crisp relation, the following holds:

LTRðAÞðxÞ ¼ sup{TðAð yÞ; xWð y; xÞÞjy [ X} ¼ sup{Að yÞjy W x}:

The analogous argument applies to prove the corresponding representation of RTL.

Equality (15) follows directly from Theorem 19 if we consider R1 ¼ E and R2 ¼ xW; while

equality (16) follows in the same way with R1 ¼ E and R2 ¼ xX:
Of course, ATL(A) is extensional and has a non-decreasing membership function (by

Corollary 12, since E and W are both subrelations of R). For proving that ATL(A) is the

smallest extensional fuzzy superset of A with a non-decreasing membership function,

suppose that a superset B $ A is extensional and has a non-decreasing membership function.

Hence, B is a superset of both EXT(A) and LTR(A). Then

B $ EXTðAÞ< LTRðAÞ ¼ ATLðAÞ

must hold, which proves the minimality of ATL(A). Analogous arguments can be applied to

prove that ATM(A) is the smallest extensional fuzzy superset of A with a non-increasing

membership function. A

The representations (15) and (16) can be interpreted as commutative diagrams, one of

which is shown in Fig. 1.

Finally, let us clarify the interplay between the operators ATL, ATM, and EXT and convex

hulls, where we base our understanding of convexity of fuzzy sets on an underlying crisp

notion of ordering. Note that, more traditionally (Zadeh, 1965; Lowen, 1980), the convexity

of a fuzzy set is defined as the convexity (in the usual sense common in linear algebra) of all

its a-cuts. For the real numbers with their canonical linear ordering, these two ways of

defining convexity coincide.
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Definition 23 Provided that the domain X is equipped with some crisp ordering W (not

necessarily linear), a fuzzy set A [ FðXÞ is called convex if and only if, for all x; y; z [ X;

x W y W z ) Að yÞ $ minðAðxÞ;AðzÞÞ:

Lemma 24 Any fuzzy set with non-decreasing or non-increasing membership function is

convex.

Proof Consider a fuzzy set A [ FðXÞ with a non-decreasing membership function. Then

the following holds for all x; y; z [ X :

x W y W z ) AðxÞ # Að yÞ # AðzÞ:

Therefore, Að yÞ $ AðxÞ ¼ minðAðxÞ;AðzÞÞ must always be fulfilled for an ascending

sequence x W y W z; and A is guaranteed to be convex. Analogously, the same can be proved

for a fuzzy set with non-increasing membership function. A

Therefore, we can conclude, under the assumption that R is a direct fuzzification of some

crisp ordering W , that ATL(A), ATM(A), LTR(A), and RTL(A) are convex fuzzy sets for

any A [ FðXÞ:

Lemma 25 The min-intersection of any two convex fuzzy sets is again convex.

Proof Assume that A and B are two convex fuzzy sets, i.e.

x W y W z ) Að yÞ $ minðAðxÞ;AðzÞÞ;

x W y W z ) Bð yÞ $ minðBðxÞ;BðzÞÞ:

Taking an arbitrary ascending sequence x W y W z; we obtain

minðAð yÞ;Bð yÞÞ $ minðminðAðxÞ;AðzÞÞ;minðBðxÞ;BðzÞÞÞ

¼ minðAðxÞ;AðzÞ;BðxÞ;BðzÞÞ

¼ minðAðxÞ;BðxÞ;AðzÞ;BðzÞÞ

¼ minðminðAðxÞ;BðxÞÞ;minðAðzÞ;BðzÞÞÞ: A

Lemma 26 Assume that W is an arbitrary, not necessarily linear ordering on a domain X.

Then the fuzzy set

CVXðAÞ ¼ LTRðAÞ> RTLðAÞ

is the smallest convex fuzzy superset of A.

FIGURE 1 A commutative diagram depicting the relationships (15) for a given fuzzy set A.
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Proof First of all, CVX(A) is a convex fuzzy superset of A, since it is the intersection of two

convex fuzzy sets both of which are supersets of A.

Now assume that B is a convex fuzzy superset of A, i.e. for all x; y; z [ X;

x W y W z ) Bð yÞ $ minðBðxÞ;BðzÞÞ:

Since this holds for all chains x W y W z; we can even, for a fixed y, take the suprema over

all x W y and z X y and the following is obtained:

Bð yÞ $ minðsup{BðxÞjx W y}; sup{BðzÞjy W z}Þ

¼ minðLTRðBÞð yÞ;RTLðBÞð yÞÞ

$ minðLTRðAÞð yÞ;RTLðAÞð yÞÞ

¼ CVXðAÞð yÞ:

The fuzzy set B was supposed to be an arbitrary convex fuzzy superset of A; therefore,

CVX(A) must be the smallest convex fuzzy superset of A. A

Theorem 27 With the assumptions of Theorem 22 and the definition

ECXðAÞ ¼ ATLðAÞ> ATMðAÞ;

the following representation holds:

ECXðAÞ ¼ EXTðCVXðAÞÞ ¼ CVXðEXTðAÞÞ ¼ EXTðAÞ< CVXðAÞ: ð17Þ

Furthermore, ECX(A) is the smallest fuzzy superset of A which is extensional and convex.

Proof Taking into account that, for min and max, the laws of distributivity hold, we obtain

the following from Theorem 22:

ECXðAÞðxÞ ¼ minðATLðAÞðxÞ;ATMðAÞðxÞÞ

¼ minðmaxðEXTðAÞðxÞ;LTRðAÞðxÞÞ;maxðEXTðAÞðxÞ;RTLðAÞðxÞÞÞ

¼ maxðEXTðAÞðxÞ;minðLTRðAÞðxÞ;RTLðAÞðxÞÞÞ

¼ maxðEXTðAÞðxÞ;CVXðAÞðxÞÞ:

Using Eqs. (15) and (16), we immediately obtain from the definition of CVX(A) that

ECXðAÞ ¼ ATLðAÞ> ATMðAÞ

¼ LTRðEXTðAÞÞ> RTLðEXTðAÞÞ

¼ CVXðEXTðAÞÞ:

On the other hand, ECX(A) is an intersection of two convex fuzzy sets and, therefore,

convex. Thus, by Lemma 26, ECX(A) is a fuzzy superset of CVX(A). Moreover, ECX(A) is

extensional, since it is the intersection of two extensional fuzzy sets (cf. Lemma 13).

All together, ECX(A) is an extensional fuzzy superset of CVX(A), which implies

(cf. Theorem 16)

ECXðAÞ $ EXTðCVXðAÞÞ: ð18Þ

U. BODENHOFER et al.356



Since A # CVXðAÞ always holds, the following is obtained (see Eq. (1) of Lemma 8 and

Theorem 16):

EXTðAÞ # EXTðCVXðAÞÞ

CVXðAÞ # EXTðCVXðAÞÞ:

This immediately implies

ECXðAÞ ¼ EXTðAÞ< CVXðAÞ # EXTðCVXðAÞÞ

which, together with Eq. (18), completes the proof of Eq. (17).

Now assume that B is an extensional and convex fuzzy superset of A. Since extensionality

implies B $ EXTðAÞ while convexity implies B $ CVXðAÞ; we see that

B $ CVXðAÞ< EXTðAÞ ¼ ECXðAÞ

and the minimality of ECX(A) is proved as well. A

Example 28 Figure 2 shows a simple example of a non-trivial fuzzy set A [ FðRÞ and the

results which are obtained by applying various operators we have discussed so far.

FIGURE 2 A fuzzy set A [ FðRÞ and the results which are obtained when applying various ordering-based
operators.
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The relations used for representing these operators are the natural linear ordering of real

numbers # and the following two fuzzy relations:

Eðx; yÞ ¼ maxð1 2 jx 2 yj; 0Þ

Rðx; yÞ ¼
1 if x # y

maxð1 2 x þ y; 0Þ otherwise:

(

One easily verifies that E is indeed a TL-equivalence on the real numbers and that R is a

TL–E-ordering, which directly fuzzifies the linear ordering of real numbers, where TL stands

for the so-called Łukasiewicz t-norm

TLðx; yÞ ¼ maxðx þ y 2 1; 0Þ:

In particular, Fig. 2 demonstrates the commutative diagram shown in Fig. 1 and all the

other equalities of Eqs. (15)–(17).

The unary ordering-based modifiers ATL and ATM can be used as the basis for defining

more sophisticated binary ordering-based modifiers, such as, “between”. A starting point is

provided in Bodenhofer (2002).

6. CONCLUDING REMARKS

This paper provides a theoretical framework for studying opening and closure operators of

fuzzy preorderings. While many results transfer directly from the symmetric case, i.e. from

the theory of fuzzy equivalence relations, fundamental additional insight has been gained

about the way the successive application of opening and closure operators commutes

(cf. Theorem 19). Based on these considerations, we have seen that the results on closure

operators have fruitful applications in the construction and analysis of ordering-based

modifiers.
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Höhle, U. and Blanchard, N. (1985) “Partial ordering in L-underdeterminate sets”, Inf. Sci. 35, 133–144.
Jacas, J. (1988) “On the generators of T-indistinguishability operators”, Stochastica 12, 49–63.
Jacas, J. and Recasens, J. (1995) “Fuzzy T-transitive relations: eigenvectors and generators”, Fuzzy Sets Syst. 72,

147–154.
Kerre, E.E., ed. (1993) Introduction to the Basic Principles of Fuzzy Set Theory and Some of its Applications,

Communication and Cognition, Gent.
Klawonn, F. (1993) “Mamdani’s model in the view of equality relations”, Proc. EUFIT 93(1), 364–369.
Klawonn, F. and Castro, J.L. (1995) “Similarity in fuzzy reasoning”, Mathware Soft Comput. 3(2), 197–228.
Klawonn, F. and Kruse, R. (1993) “Equality relations as a basis for fuzzy control”, Fuzzy Sets Syst. 54(2), 147–156.
Klawonn, F., Gebhardt, J. and Kruse, R. (1995) “Fuzzy control on the basis of equality relations—with an example

from idle speed control”, IEEE Trans. Fuzzy Syst. 3, 336–356.
Klement, E.P., Mesiar, R. and Pap, E. (2000) Triangular Norms, Trends in Logic (Kluwer Academic Publishers,

Dordrecht) Vol. 8.
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