
Int. J. Data Mining and Bioinformatics, Vol. x, No. x, xxxx 1

Modelling Gene and Protein Regulatory
Networks with Answer Set Programming

Timur Fayruzov1,∗, Jeroen Janssen2,
Dirk Vermeir2, Chris Cornelis1,
Martine De Cock1,3

1Ghent University,
Krijgslaan 281 (S9),
9000 Ghent, Belgium
E-mail: {timur.fayruzov, chris.cornelis}@ugent.be
*Corresponding author

2Vrije Universiteit Brussel,
Pleinlaan 2,
1050 Brussels, Belgium
E-mail: {dvermeir, jeroen.janssen}@vub.ac.be

3University of Washington,
1900 Commerce St.,
Tacoma, WA-98402, USA
E-mail: mdecock@u.washington.edu

Abstract: Recently, many approaches to model regulatory networks
have been proposed in the systems biology domain, however the task
is far from being solved. In this paper we propose an answer set
programming (ASP) based approach to model interaction networks.
We build a general ASP framework that describes the network
semantics and allows to model specific networks with little effort.
ASP provides a rich and flexible toolbox that allows to expand the
framework with desired features. In this paper we tune our framework
to mimic boolean network behaviour and apply it to model the
Budding Yeast and Fission Yeast cell cycle networks. Obtained steady
states of these networks correspond to those of the boolean networks.

Keywords: Systems Biology; Answer Set Programming; Network
Modelling; Budding Yeast; Fission Yeast; Cell Cycle; Steady State;
Steady Cycle;

Reference to this paper should be made as follows: Fayruzov,
T., Janssen, J., Vermeir, D., Cornelis, C., De Cock, M. (xxxx)
‘Modelling Gene and Protein Regulatory Networks with Answer Set
Programming’, Int. J. Data Mining and Bioinformatics, Vol. x, No. x,
pp.xxx–xxx.

Biographical notes: Timur Fayruzov holds a M.Sc. degree in
Computer Science from USATU (Russia). Currently he is a Ph.D.

Copyright c© 2009 Inderscience Enterprises Ltd.

2 Fayruzov et al.

student at Ghent University (Belgium), supported by a grant from the
University’s Special Research Fund. He worked as a visiting scholar at
the University of Washington, Tacoma (USA). His research interests
include text mining, knowledge representation and their application to
the domain of molecular biology.

Jeroen Janssen holds a M.Sc. degree in Computer Science from
Ghent University. Currently he is a Ph.D. student at the Vrije
Universiteit Brussel (Belgium), supported by a project from
the Research Foundation-Flanders. His research interests include
declarative programming and fuzzy logic.

Dirk Vermeir is a professor at the Dept. of Computer Science of the
Vrije Universiteit Brussel. His current research interests include answer
set programming semantics and applications.

Chris Cornelis is a Postdoctoral fellow of the Research Foundation-
Flanders at Ghent University. His research interests include fuzzy
sets and rough sets, machine learning and recommender systems.
He holds a M.Sc. and a Ph.D. degree in Computer Science from
Ghent University. He worked as a visiting scholar at the Academic
College of Tel-Aviv/Yafo (Israel), the University of Technology Sydney
(Australia), and the University of Granada (Spain).

Martine De Cock is an associsdew2ate professor at the Department of
Applied Mathematics and Computer Science of Ghent University (on
leave) and a visiting associate professor at the Institute of Technology
of the University of Washington, Tacoma. Her research interests are in
computational web intelligence. She holds a M.Sc. and a Ph.D. degree
in Computer Science from Ghent University. She worked as a visiting
scholar in the BISC group at the University of California, Berkeley
(USA), and the Knowledge Systems Laboratory at Stanford University
(USA).

1 Introduction

Recent advances in molecular biology have led to a vast increase of experimental
biological information. Integrating this information into a coherent model is an
important task of systems biology. Nowadays, mathematical and computer science
formalisms are widely adopted in this research domain to facilitate the modelling
process.

Existing approaches (see e.g. de Jong (2002), Fisher & Henzinger (2007)
for good overviews) can roughly be divided into two groups: quantitative and
qualitative ones. Typical quantitative models are built using differential equations.
Such models require specific mathematical skills and a lot of experimental data
to build, such as the concentration of different proteins over time, making their
construction costly and time-consuming.

Qualitative models are used to analyse the system dynamics when there is
a lack of experimental data, even though this has an influence on the model
precision. However, it turns out that significant simplifications made in qualitative
models, such as discrete timing and the absence of concentration dynamics, still

Modelling Gene and Protein Regulatory Networks with ASP 3

Figure 1 Examples of boolean networks

allow to model the behaviour of a system correctly. Discrete models are one
of the cornerstones of computer science, thus, many attempts were made to
adopt already developed techniques to the bioinformatics domain. Among them,
discrete dynamical networks based on boolean networks are one of the best
established qualitative modelling methods that are widely used by biologists to
model protein regulatory networks (see e.g. Albert (2004), Davidich & Bornholdt
(2008), Mendoza et al. (1999)). The nodes of a boolean network represent protein
molecules and the directed edges represent interactions. Edges can be typed to
represent different kinds of interactions, such as inhibition and activation. For
example, in Figure 1a, proteins a and b activate each other. When at least one
of the proteins is active at the initial state, the network settles in the state
{act(a),act(b)}, i.e. both proteins will eventually become active.

While liked for their simplicity, dynamical networks have the disadvantage of
not being self-descriptive, i.e. they are built under some background assumptions
that are not explicitly stated in the network itself. Furthermore, as will be
explained in Section 2.2, their use requires the development of specific algorithms
to retrieve the steady states of the network (see e.g. Garg et al. (2008)), and
different algorithms can cause different execution flows.

Moreover, dynamical networks provide little support for reasoning about
network behaviour. As it was argued in Tran (2006), reasoning can leverage
a biologist’s experience and simplify tasks of model analysis and observation
assimilation.

In this paper we propose to represent gene and protein regulatory networks by
answer set programs. Example 1 introduces our idea and illustrates the notation
we will use throughout the article.
Example 1 Program P1, consisting of the rules G1-G6 and S1-S6 below, models
the network in Figure 1a. Rule labels, preceding the rules and separated from
them by a colon ‘:’, are introduced to refer to a particular rule as well as to
distinguish general rules from specific ones. The specific rules or S-rules describe
the structure of a particular network, in this case S1-S4, and initial conditions, in
this case S5 and S6. The general rules or G-rules describe the semantics of the
network, i.e. what ‘activates’ or ‘inhibits’ means in the context of our network.
We refer to Section 3 for more details.

G1 : time(0..2). S1 : protein(a).
G2 : act(Y, T + 1) ← act(X,T), activates(X,Y, T). S2 : protein(b).
G3 : inh(Y, T + 1) ← act(X,T), inhibits(X,Y, T). S3 : activates(a, b, T).
G4 : ← act(X,T), inh(X,T). S4 : activates(b, a, T).
G5 : act(X,T + 1) ← act(X,T), not inh(X,T + 1). S5 : act(a, 0).
G6 : inh(X,T + 1)← inh(X,T), not act(X,T + 1). S6 : inh(b, 0).

4 Fayruzov et al.

As we will explain below, the answer set of P1 is {act(a,0), inh(b,0), act(a,1),
act(b,1), act(a,2), act(b,2), act(a,3), act(b,3)}. Here the predicate act(a,0) means
that protein a is active at time 0, and correspondingly, inh(b,0) means that protein
b is inhibited at time 0. In this answer set there is no difference between the
states at time steps 1 and 2, as both proteins remain active. Hence we conclude
that, under the given initial conditions, the steady state of the system is {act(a),
act(b)}. As we will see later, the actual answer set of the program includes more
information that is not relevant to our task. In our answer set representation we
omit this information for the sake of conciseness.

Note that in principle only network specific rules such as rules S1-S6 need to
be redefined for a given regulatory network, while the other rules model general
biological properties. This makes the representation of such networks as answer set
programs intuitively simple, while at the same time the ASP machinery becomes
available to analyse and predict the behaviour of the described network at hand.

One of the main advantages of representing gene and protein regulatory
networks by answer set programs is that all background information can be
expressed explicitly in the program itself. This allows to normalize differently
expressed networks with one standard representation, thus avoiding the ambiguity
of different descriptions. Furthermore, the use of ASP eliminates the need for
specific network execution algorithms to retrieve the steady states of the networks.
In fact, another main advantage of using ASP is that all supporting tools such as
solvers and grounders are readily available. For the results described in this paper
we used the clingo solver described in Gebser et al. (2007).

Our work is not the first attempt to use ASP to model biological networks. In
Baral et al. (2004), Dworschak et al. (2008), Tran (2006) the authors propose to
use ASP-based action languages to model, query or plan the execution of biological
systems. Our approach, however, is different from theirs in several aspects. First of
all, we do not use action languages; instead we propose a framework that models
boolean network semantics. Secondly, as we show in Section 6, our approach is less
verbose because only the structure of the network needs to be described, and the
semantics of the interactions is already defined in the framework itself.

This work is an extension of the study started in Fayruzov et al. (2009) in
which we proposed to model regulatory networks as answer set programs for the
first time. Here we provide a formal description of the approach we have developed
and prove that this approach obtains correct results. Furthermore, we provide
more detailed explanations of the framework along with additional examples.
Moreover, we add an extra protein regulatory network example to showcase that
our approach is easily scalable to other networks and present a modelling software
tool that facilitates the modelling process for a biologist.

The remainder of this paper is structured as follows. We begin by recalling
the necessary preliminaries about ASP and boolean networks in Section 2. In
Section 3 we explain in detail how to describe a regulatory network as an answer
set program: we develop a framework of general rules, the so-called G-rules, that
describe general boolean network semantics, and we give examples of specific rules,
the so-called S-rules, that allow the biologist to describe a specific network under
study. Further, in Section 4 we explain an efficient algorithm to solve resulting
answer set program, i.e. to find the steady states of the regulatory network while in

Modelling Gene and Protein Regulatory Networks with ASP 5

Section 5 we describe a tool that we developed to facilitate the modelling process.
In Section 6 we explain the relationship of our approach to existing work and
finally we conclude in Section 7.

2 Preliminaries

2.1 Answer set programming

Answer set programming (Gelfond & Lifschitz 1988) is a declarative formalism
that allows to express relations between truth values of propositions with rules
of the form α← β. Such a rule intuitively states that whenever β is true,
proposition α should be true as well. The basic building blocks of answer set
programs are constants, denoted by lower-case strings (e.g. a,b), that represent the
entities; variables, denoted by upper-case strings (e.g. X,Y) that are substituted
by constants during the program grounding stage; and predicates (e.g. protein(a),
activates(a, X)) that represent properties of, or relations between entities.

Answer set programming allows two types of negation: classical negation
denoted by ¬, and negation-as-failure (naf) denoted by not. For instance, rule G5
from Example 1 uses naf, stating that if protein X is active at time T and there is
no evidence that X becomes inhibited at time T + 1, then X should still be active
at time T + 1. On the other hand, if we would change naf by classical negation in
G5 the rule will state that if protein X is active at time T and there is an evidence
that X does not becomes inhibited at time T + 1, then X should still be active at
time T + 1.

In general, a rule is of the form

L0 ← L1, ..., Lm, not Lm+1, ..., not Ln. (1)

in which L0, L1, ..., Ln are literals. A literal is a constant, variable or predicate,
that can be preceded with ¬. An expression of the form not L is referred to as a
naf-literal, while an expression of the form L is referred to as a positive literal.
Expression of the form pred/3 denotes the arity of a predicate without an explicit
reference to its arguments. Given a rule r of the form (1):

• The left-hand side of the rule is called the head, and defined as head(r) =
{L0},

• The right-hand side of the rule is called the body, and defined as body(r) =
{L1, . . . , Lm, not Lm+1, . . . , not Ln},

• The set of all positive literals in the body of the rule is defined as pos(r) =
{L1, . . . , Lm},

• The set of all literals in the body of the rule preceded with not is defined as
neg(r) = {Lm+1, . . . , Ln},

• The set of all literals is defined as lit(r) = head(r) ∪ pos(r) ∪ neg(r).

6 Fayruzov et al.

There exist two special kinds of rules: constraints and facts. A constraint is a
rule with an empty head, such as rule G4 from Example 1. A rule with an empty
body is called a fact. We usually write these as ‘α.’ instead of ‘α← .’. Rules S1-S6
are examples of facts.

Definition 1 (Answer set program) A program P composed of rules of the
form (1) is called an answer set program. Similarly to the definitions on the rule
level, the following shorthand notations are defined for a program:

pos(P) =
⋃

r∈P pos(r) lit(P) =
⋃

r∈P lit(r)
neg(P) =

⋃
r∈P neg(r) head(P) =

⋃
r∈P head(r)

At solving time all variables in a rule r are instantiated with all possible
constants. This process is called grounding. An answer set program that contains
only grounded rules is called a grounded program.
Example 2 Consider the following program

somePred(p).
protein(a).
protein(b).
act(Y) ← activates(X,Y), protein(X), protein(Y).

The grounding of this program will be as follows

somePred(p).
protein(a).
protein(b).
act(a) ← activates(a, a), protein(a), protein(a).
act(a) ← activates(b, a), protein(b), protein(a).
act(b) ← activates(a, b), protein(a), protein(b).
act(b) ← activates(b, b), protein(b), protein(b).

Note that constant p was not associated with variables X and Y , because we put
a restriction on the variables that they should occur as an argument of the protein
predicate. This predicate is called a domain predicate, and variables X and Y are
said to be domain restricted.

To define what it means for a program to be solved, we recall the concepts of
consistency, interpretation and satisfiability. A set of positive grounded literals S
is said to be consistent if it does not contain the literals a and ¬a together. An
interpretation of a grounded program P is any consistent subset I ⊆ pos(P).

Definition 2 (Satisfiability) An interpretation I is said to satisfy a grounded
rule with a non-empty head like (1), if {L1, ..., Lm} ⊆ I and {Lm+1, ..., Ln} ∩ I = ∅
imply that L0 ∈ I. When the head is empty, interpretation I is said to satisfy the
rule if {L1, ..., Lm} 6⊆ I or {Lm+1, ..., Ln} ∩ I 6= ∅.

Modelling Gene and Protein Regulatory Networks with ASP 7

In other words, to satisfy a rule with a non-empty head, an interpretation I
should contain the head when all positive literals and none of the literals with
naf-prefix in the rule body are contained in I. Otherwise, if the head is empty,
the interpretation should break the body conditions, i.e. either it does not contain
some of the positive literals or it contains literals that have a naf-prefix in the
body of the rule.

Definition 3 (Minimal model) Any interpretation I that satisfies all rules of a
program P is called a model of P . A model I is called a minimal model of P iff
there is no model K such that K ⊂ I.

Based on this notion of a model we can define answer sets. First, we consider
the case of naf-free programs and then we proceed to programs containing
negation-as-failure. First of all, for a program P without negation-as-failure, an
answer set of P is a minimal model of P .
Example 3 Consider the program consisting only of a rule p← q. The possible
models of this program are {p, q}, {p} and ∅. Indeed, if q is in the model, then
p should be in the model because of the satisfiability definition; if there is no
information on q then we can make any conclusion about p, which means that
p can be present or absent. The minimal model of the program is ∅, hence the
unique answer set of this program is ∅.

The concept of an answer set is extended for programs containing negation-
as-failure as follows. Suppose that an interpretation I is a model of a program P
(with negation-as-failure), and our hypothesis is that I is an answer set of P . Then
we first transform P into a naf-free program P I with respect to the hypothesis I
and solve this program as explained above. More formally,

Definition 4 (Gelfond-Lifschitz transformation) (Gelfond & Lifschitz 1988)
Let P be a ground answer set program. For an interpretation I, let P I be the
program called a reduct program obtained from P by deleting (1) all rules that
contain a naf-literal not L with L ∈ I and (2) all the naf-literals from the bodies of
the remaining rules.

Definition 5 (Answer set) Given a program P , any interpretation I that is a
minimal model of the reduct program P I built from P is an answer set of the
original program P .

Example 4 A program with negation-as-failure can have more than one answer
set. Suppose that we have one seat and two persons p and q, and we want to assign
the seat to a person. We can model this by the following program P

seat(p)← not seat(q).
seat(q)← not seat(p).

It has two answer sets S1 = {seat(p)} and S2 = {seat(q)}. Indeed, by applying
the Gelfond-Lifschitz transformation we can obtain the reduct program PS1

consisting of the only rule seat(p)← . The second rule is removed in the first step
of the transformation, and the body of the first rule is removed in the second step.

8 Fayruzov et al.

PS1 is a naf-free program, and has a unique answer set {seat(p)}. This answer
set coincides with our hypothesis S1, which means that it is an answer set of the
initial program P . One can verify in a similar way that S2 is an answer set too.

We denote the set of all answer sets of a program P as AS(P). Two programs
P1 and P2 are said to be equivalent if they produce the same answer sets, i.e. if
AS(P1) = AS(P2).

2.2 Dynamical networks

A dynamical network of protein interactions, such as a boolean network, captures
interactions between proteins in the form of a directed graph G = (V,E) with
V a set of nodes and E a set of edges. The nodes represent proteins while the
edges represent interactions between proteins. Pointed edges are used to represent
activation and blunt edges are used to represent inhibition. At any given time, a
protein or node is in one of two states: either it is active, denoted by 1, or it is
inhibited, denoted by 0. The state of a protein interaction network at any given
time is defined in terms of the states of its nodes.

Definition 6 (Network state) Let G = (V,E) be a graph representing a protein
interaction network. Then a mapping S : V → {0, 1}, that maps every protein in
V to a protein state in {0, 1}, is called a network state. We use SG to denote the
set of all possible network states of a protein interaction network represented by a
graph G.

Every node has input nodes that are determined by the inbound edges, and
output nodes that are determined by the outbound edges of the node. For example
in Figure 1a, node b is at the same time an input and output node for node a.
For every node in the network a deterministic transition function can be defined
that determines the next state of the node depending on the node’s inputs. The
network can switch from one state to another by applying such update functions
on its nodes. The update can occur synchronously (all elements are updated
simultaneously) or asynchronously (one or several nodes are updated at once). In
this paper we only consider synchronous updates, which allows us to consider a
transition function acting on the network as a whole.

Definition 7 (Transition function) Let G = (V,E) be a graph representing a
protein interaction network. Then a mapping f : SG → SG, that maps every
network state to a network state is called a transition function of G.

For notational convenience, we use f (k)(S) to denote the state that is obtained
after applying transition function f to an initial state S ∈ SG k times, e.g.
f (0)(S) = S, f (1)(S) = f(S), f (2)(S) = f(f(S)), etc.

Definition 8 (Trajectory) Let G = (V,E) be a graph representing a protein
interaction network, f be a transition function of G, and k ≥ 1, then a sequence
[S, f(S), . . . , f (k)(S)] with S ∈ SG is called a trajectory of the network.

Modelling Gene and Protein Regulatory Networks with ASP 9

S a b

S0 0 0
S1 0 1
S2 1 0
S3 1 1

(a)

S f(S)
S0 S0

S1 S3

S2 S3

S3 S3

(b)
Table 1 The network states and the transition function for the network in Figure 1a

Definition 9 (Steady state, steady cycle) A state S of a network is called
a steady state w.r.t. a transition function f iff S = f(S). A trajectory
[f (m)(S), . . . , f (n)(S)] with m < n is called a steady cycle iff f (m)(S) = f (n)(S).

Note that once a steady state or cycle has been reached there is no point to
calculate the trajectory further, because no new states can be obtained due to the
deterministic nature of the transition function.
Example 5 Let us consider the network in Figure 1a. The mapping for the
network states is given in Table 1a, and the transition function is defined in
Table 1b. Let us define the initial state of the network as S1, then the next
state is f(S1) = S3. To obtain the following state we apply the transition function
once again: f(f(S1)) = f(S3) = S3. The state does not change on this step, which
means that we encountered a steady state. The trajectory we have computed is
T = [S1, S3, S3].

A set of trajectories that reach the same steady state or cycle is called a
basin of attraction. For example, let us consider trajectory T ′ = [S2, S3, S3] of the
network from Figure 1a. The set of trajectories {T , T ′} is a basin of attraction for
the state S3 of the network in Figure 1a.

3 Building a network model in ASP

In this section we set up the framework for describing gene and protein regulatory
networks as answer set programs. We begin with a detailed explanation of the S-
rules and G-rules of P1 in Example 1. Next we deal with issues such as conflicts
and self-degradation that do not occur in the network of Figure 1a but might
manifest themselves in other interaction networks.

3.1 Describing entities and their influences

The first step in describing a protein network is to introduce the network structure,
cfr. rules S1-S6 in Example 1. Rules S1 and S2 define the proteins in the network,
rules S5 and S6 define the initial state of these proteins, while rules S3 and
S4 describe activation interactions between proteins. We add the extra time
parameter T in these predicates to be able to model the dynamical network
structure. Some interactions can be affected by external factors and be present or
absent at different time points.

By themselves these rules (facts) do not model anything yet; although they
define the connection between proteins, they do not describe the influence of these

10 Fayruzov et al.

connections on the proteins at different time steps. To this end, we introduce the
G-rules. First of all, rule G1 is merely a shorthand for

time(0). time(1). time(2).

to introduce time steps into the program. Rules G2 and G3 define the actual
semantics of the activation and inhibition concepts. Rule G4 of program P1 is a
constraint that expresses that a protein can not be active and inhibited at the
same time. Indeed, recall that to satisfy a constraint, at least one of the body
conditions needs to be broken. Rules G5 and G6 are inertia rules that express what
happens to a protein when there is no environmental influence: at the next time
step a protein stays in the same state unless its state was changed.

Once we have described the problem using ASP, the grounder is used to
substitute variables with all possible constants. The activation rule G2, for
example, says that protein Y will be active at time step T + 1 if protein X is active
and there is an activating connection between X and Y at the previous time step.
When grounded, this rule will result in the following rules:

act(b, 1)← act(a, 0), activates(a, b, 0).
act(b, 2)← act(a, 1), activates(a, b, 1).
act(b, 3)← act(a, 2), activates(a, b, 2).
act(b, 1)← act(b, 0), activates(b, b, 0).
. . .

In the programs presented in this paper we omit domain predicates for the sake
of brevity. In a real program every rule that contains variable T would additionally
contain the predicate time(T), and every rule that contains at least one of the
variables X,Y, Z would contain a corresponding predicate protein(X), protein(Y),
protein(Z) in its body.

After the grounding has been done, the task of an ASP solver is to find an
answer set of the ground program. In our application scenario, an answer set
contains a sequence of protein states for each time point (see e.g. Example 1).
Therefore, we can retrieve the steady state of the network w.r.t the transition
function implicitly defined by G-rules by looking at the protein states in an answer
set at each time step. When the protein states in two consequent time steps do not
change, a steady state has been reached. In Example 1 we reach the steady state
at time point 1, because the protein states do not change after this point. Note
that, even though the last time step in rule G1 in Example 1 is 2, the network
evolution is computed up to time step 3 because the heads of the rules of program
P1 contain T + 1.
Example 6 If we change rule S4 in program P1 to inhibits(b, a, T)., we
obtain the network from Figure 1b. The answer set of the resulting program
P2 is {act(a, 0), inh(b, 0), act(a, 1), act(b, 1), inh(a, 2), act(b, 2), inh(a, 3), act(b, 3)}
(here and in the rest of the paper we omit from answer sets the predicates that are
not essential for trajectory, e.g. protein(a), activates(a, b, 0), etc). Intuitively, this
answer set can be explained as follows: all facts are in the answer set by definition,
thus the predicates from rules S1-S6 are in the answer set; rules S3 and S5 trigger
a ground version of rule G2 that causes the presence of act(b, 1); rule G5 causes
the presence of predicate act(a, 1); the fact act(b, 1) that is already in the answer

Modelling Gene and Protein Regulatory Networks with ASP 11

set together with the new version of rule S4 triggers a ground version of rule G3,
resulting in inh(a, 2), and rules G5 and G6 result in the other predicates that are
in the answer set.

From the above we conclude that the steady state of this network is
{inh(a),act(b)}.

3.2 Resolving conflicts

Rules G2-G4 might fail to work for more complex regulatory networks. Below
we explain why they should be replaced with more refined rules, as well as
supplemented by supporting rules.
Example 7 Let us consider the network in Figure 1c. This network can be
presented as follows

S1 : protein(a). S4 : activates(c, b, T). S6 : act(a, 0).
S2 : protein(b). S5 : inhibits(a, b, T). S7 : act(b, 0).
S3 : protein(c). S8 : act(c, 0).

The program consisting of these facts S1-S8 together with the rules G1-G6 from
Example 1 does not have an answer set under initial conditions S6-S8. Indeed, S5
together with S6 trigger the rule G3, thus forcing inh(b,1) to be in the answer
set. On the other hand, S4 together with S8 triggers the rule G2, thus pushing
act(b,1) to the answer set. However, due to constraint G4 both these predicates
cannot be in the same answer set, thus the program does not have an answer set
at all.

To resolve this conflict, we adopt a solution used in Davidich & Bornholdt
(2008): if there are more incoming activation links than inhibition links, then the
protein is active; if there are more inhibition links, then the protein is inhibited;
if their number is equal, then the protein keeps the previous state. To implement
this, we need to adjust the constraint as well as the activation and inhibition
rules. The superscript in the rule labels below denotes the version of the rules; the
compound numeration denotes the supporting rules for the main rule.

G21 : act(Y, T + 1) ← act(X,T), activates(X,Y, T), not conflict(Y, T).
G2.1 : act(Y, T + 1) ← conflict(Y, T),# act(Y,A, T),# inh(Y, I, T),

A− I > 0.
G31 : inh(Y, T + 1)← act(X,T), inhibits(X,Y, T), not conflict(Y, T).
G3.1 : inh(Y, T + 1)← conflict(Y, T),# act(Y,A, T),# inh(Y, I, T),

I −A > 0.
G41 : conflict(Y, T)← activates(X,Y, T), inhibits(Z, Y, T),

act(X,T), act(Z, T).

The rules G21 and G31 say that if there is no conflict, then the old definitions
work, but if there is a conflict (the body of rule G41 is satisfied), then we count the
number of activation and inhibition links for the conflicting instance and make the
decision based on this count (rules G2.1 and G3.1). The integrity constraint G4
we had before is now transformed to the definition of conflict (rule G41). It fires

12 Fayruzov et al.

only if there are inh/3 and act/3 links on the protein and both can be executed
at the current time point. The definition of the # act/3 and # inh/3 predicates
is omitted here, but can be found in Fayruzov (2009).

This setup already allows to model fairly complex interaction networks, such
as the Budding Yeast network described in Li et al. (2004). We describe the model
of this network in Fayruzov (2009).

3.3 Sensitivity thresholds

Some features still cannot be expressed in this framework. For example in reality,
proteins can become active when their inhibitors are not active, even without
an external activation input. Another example is that some proteins can have a
certain ‘tolerance’ to an inhibition/activation influence. For example, a protein
can become inhibited only if two or more proteins that suppress it are active,
otherwise it is not affected. To address these issues we introduce the notion of
inhibition and activation thresholds. Let us return to Figure 1c. Under the current
definitions, protein b does not change its state when both a and c are active, i.e.
if b is active it remains active. Imagine now that we want to modify the behaviour
of b to change its sensitivity to the activating or inhibiting influence such that
it requires less effort (less activation/inhibition inputs) to change the state of
the protein. This requirement can be implemented in the system by introducing
inhibition/activation thresholds.

G22 : act(Y, T + 1) ← act(X,T), activates(X,Y, T), not conflict(Y, T),
not mod act th(Y).

G2.11 : act(Y, T + 1) ← conflict(Y, T), act th(Y, Th),
act(Y,A, T),# inh(Y, I, T), A− I > Th.

G2.2 : act(Y, T + 1) ← act th(Y, Th), Th 6= 0,# act(Y,A, T),
inh(Y, I, T), A− I > Th.

G32 : inh(Y, T + 1) ← act(X,T), inhibits(X,Y, T), not conflict(Y, T),
not mod inh th(Y).

G3.11 : inh(Y, T + 1) ← conflict(Y, T), inh th(Y, Th),# act(Y,A, T),
inh(Y, I, T), I −A > Th.

G3.2 : inh(Y, T + 1) ← inh th(Y, Th), Th 6= 0,# act(Y,A, T),
inh(Y, I, T), I −A > Th.

G7 : act th(X, 0) ← not mod act th(X).
G7.1 :mod act th(X) ← act th(X,Th), Th 6= 0.
G8 : inh th(X, 0) ← not mod inh th(X).

G8.1 :mod inh th(X)← inh th(X,Th), Th 6= 0.

Rules G41, G5 and G6 are omitted because they do not change. We replace
G21 and G31 by G22 and G32 so that now they take into account the possible
presence of a threshold. Conflict resolving rules G2.1 and G3.1 are changed in
the same manner, and a comparison of the inhibition and activation influence is
made against the threshold now. If there is no conflict, but an activation and/or
inhibition threshold is imposed, we follow rules G2.2 and G3.2. Rules G7 and G8
set the activation and inhibition threshold of every protein to 0 in case it was
not set explicitly by a special S-rule (G7.1 and G8.1). If the threshold values are

Modelling Gene and Protein Regulatory Networks with ASP 13

not modified, the G-rules described above will lead to the same answer sets as
ones in Section 3.2. Having both inhibiting and activating thresholds instead of
one threshold is not redundant, since these thresholds characterize not the ‘on/off’
level of the protein, but rather an effort that is needed to change its state. The
thresholds can be viewed as tolerance degrees of a protein to a corresponding
input. Positive values make the protein more tolerant and negative ones make it
less tolerant. The default value can be altered by a specific rule as illustrated in
Example 9.
Example 8 Let P3 be the answer set program consisting of general rules G1,
G22, G2.11, G2.2, G32, G3.11, G3.2, G41, G5, G6, G7, G7.1, G8, G8.1 and the
specific rules from Example 7. The activation and inhibition thresholds of these
proteins are not explicitly defined; hence they are automatically set to the default
value. The answer set of this program is {act(a,0), act(b,0), act(c,0) act(a,1),
act(b,1), act(c,1), act(a,2), act(b,2), act(c,2), act(a,3), act(b,3), act(c,3)}. The
state of protein b does not change over time since its inhibiting and activating
inputs are equal, and its thresholds for activation and inhibition are both 0. From
the answer set we retrieve that the steady state is {act(a), act(b), act(c)}.

Example 9 For the network in Figure 1c, let us explicitly set the inhibition
threshold of b to −1 to indicate that this protein is susceptible to inhibition. In
other words, let P4 be the answer set program containing all the rules from P3 as
well as the additional S9: inh th(b,-1). The answer set of this program is {act(a,0),
act(b,0), act(c,0), act(a,1), inh(b,1), act(c,1), act(a,2), inh(b,2), act(c,2), act(a,3),
inh(b,3), act(c,3)}. The steady state in this case is {act(a), inh(b), act(c)}.

The phenomena of self-activation and self-degradation can also be modelled by
adjusting activation and inhibition thresholds. Self-activation/degradation means
that a protein is able to change its state when no external influence is applied. Let
us consider the following example:
Example 10 Let P4 be the answer set program containing all the rules from the
program from Example 9, but we replace rules S6-S8 with the following:

S6 : inh(a, 0).
S7 : inh(b, 0).
S8 : inh(c, 0).

to indicate that all proteins in Figure 1c are initially inhibited. Furthermore,
we add the additional rule S9: act th(b,-1). to indicate that b is susceptible to
activation. According to rule G2.2, in this case protein b activates itself when no
inhibition influence is applied, i.e. self-activation takes place. The answer set of
program P4 is {inh(a,0), inh(b,0), inh(c,0), inh(a,1), act(b,1), inh(c,1), inh(a,2),
act(b,2), inh(c,2), inh(a,3), act(b,3), inh(c,3)}. The steady state in this case is
{inh(a), act(b), inh(c)}.

3.4 Starting conditions

By writing S-rules, a user can model various networks and observe their behaviour
under certain initial conditions. This requires the user to consequently set

14 Fayruzov et al.

various initial protein activation combinations and analyse the results of each
execution. On large networks with tens of proteins, the number of different possible
combinations is very high, which makes this task very tiresome. To automate this
process, we introduce two additional general rules that deal with different initial
condition combinations:

G9 : act(X, 0) ← not inh(X, 0).
G10 : inh(X, 0)← not act(X, 0).

These rules force the solver to make a choice for each protein: either it is
active at the initial time point, or inhibited. In this way, different answer sets
are automatically generated for each possible combination of active and inhibited
proteins, which decreases the need for manual input of the user drastically.

4 Efficient network modelling

Each network has 2N possible states, where N is the number of proteins in
the network. As one can see for instance in Example 6, in the answer set
representation, the state of a protein corresponds to a predicate in the set, and
a network state corresponds to a subset that contains all protein states for one
timepoint. For example, {act(a, 1), act(b, 1)} is a part of the answer set for the
program in Example 6 that describes the state of the network at timepoint 1.
There are two problems associated with the approach as proposed in Section 3.
First of all, when computing a trajectory for a given state it is impossible to
estimate how many time steps are needed (the upper time bound). Trajectories
within too short time intervals may not reach the steady state, while too long
intervals increase computational expenses. For instance, if we limit the upper time
bound in Example 6 by 1 (set rule G1 as time(0..1).) the steady state will not be
present in the answer set. On the other hand, if we set the upper time bound to e.g.
5, we will find a steady state but at the same time we will compute 3 extra states
that do not contain any additional information about the network behaviour.

Another problem, which follows from the first one, is that we can not compute
attraction basins efficiently. We can iterate over all possible initial states, but for
every initial state we need to adjust the time interval every time, which, again,
makes the whole process extremely computationally inefficient.

In Fayruzov et al. (2010) we introduced a method to efficiently solve time-
dependent answer set programs like the ones resulting from the approach proposed
in Section 3. To this end, we introduced the notion of Markovian programs
and provided a temporal algorithm to solve these programs efficiently without a
reference to a specific upper time bound.

A time-dependent predicate is a predicate whose last argument represents time.
Examples of time-dependent predicates in the framework proposed in Section 3
are activates, inhibits, active, inhibited, conflict, # act, and # inh. A Markovian
program is an answer set program that satisfies the following condition: every rule
with a time-dependent predicate in its head that depends on time T contains only
time-dependent predicates that depend on T or T − 1 in its body. In other words,
the next state of the model depends only on the previous state or is determined
with respect to other components in the current state of the model. Note that there

Modelling Gene and Protein Regulatory Networks with ASP 15

Figure 2 Graphical user interface with the Budding Yeast network model

are no specific constraints on rules that do not contain time-dependent predicates.
It is easy to see that the framework we have built in Section 3 conforms to the
definition of a Markovian program, which means that we can use the temporal
algorithm described in Fayruzov et al. (2010) to analyse the behaviour of the
models built in our framework.

The main idea behind the temporal algorithm is that instead of solving the
answer set program for some long interval {0, . . . , tmax} we consecutively solve
smaller programs for intervals {0, 1}, {1, 2},. . ., {tmax − 1, tmax}, which can be
done more efficiently. In Fayruzov et al. (2010) we have shown that by doing
so we obtain the same answer sets as by solving the initial program for interval
{0, . . . , tmax}. Moreover, we can stop the solving process at every moment, as soon
as we encounter a steady state or cycle. For more details of how these smaller
programs are defined, and for a more complete description of the algorithm, we
refer to (Fayruzov et al. 2010).

5 Modelling software

In Section 3 we explained how to model a regulatory network with ASP. However,
the more practical question is: how can a biologist benefit from this framework?
Does s/he need to know anything about ASP in order to use it?

16 Fayruzov et al.

Figure 3 An attraction basin of the Budding Yeast network

To facilitate the use of the framework by biologists, we have developed a
Java-based GUI tool. This tool provides an interactive interface and performs
translations to ASP and back automatically. No intervention from the user’s side
is required in this translation process. This means that the tool can be used by a
biologist with no background knowledge in ASP. In fact, it is possible to use the
tool while remaining completely unaware of the underlying ASP model, i.e. while
operating only at a conceptual level of genes, proteins and interactions.

The interactive interface consists of two tabs. The first tab, presented in Figure
2, is used to build graphical network models and to set node properties. This figure
shows the Budding Yeast network, with nodes representing proteins and edges
representing interactions between them. There are two possible ways to build a
network. The first option is interactive editing in which a user can add or delete
nodes and edges, indicate self-activation and self-inhibition, edit node names and
define activation and inhibition thresholds. The initial state of the network can
also be set by switching the nodes on/off. The second option is to write a network
in ASP and load it from a file; it can still be edited interactively after that.

After building a network, a user can start the modelling process, which again
can be performed in two scenarios. The first scenario is to build complete network
state transition charts at once. Here, every possible state of the network is analysed
and its steady states or cycles are computed. Another scenario is when a user
wants to know the trajectory of the system from one particular state. In this case,

Modelling Gene and Protein Regulatory Networks with ASP 17

the user can change the default state of the network by switching certain proteins
on/off. Then, only the attractor for this state is computed.

During this phase our application translates the graph built by the user to
an ASP program, and uses clingo to ground and solve the program. The answer
sets are translated back into a graphical representation as shown in Figure 3. This
tab represents network trajectories, and in the case of the first scenario it can
show all attraction basins together or separately. The graph shown in the figure
was computed within the first scenario and represents one attraction basin of the
Budding Yeast network. Here a node represents a network state, and an edge
between nodes represents a transition of the network from one state to another.
The steady state of the network (marked by a color node on the graph, the bottom
one in this case) and the size of the attraction basin is shown in the top-left corner.
Each node has a corresponding network state printed next to it.

We have applied our tool to model the Budding Yeast network presented in
Li et al. (2004) and the Fission Yeast network described in Davidich & Bornholdt
(2008). The details and complete answer set programs can be found in the
technical report Fayruzov (2009). More information on the application of our
approach to the Fission Yeast network is also available in Fayruzov et al. (2009).

6 Related work

A detailed analysis of related approaches to model biological networks is provided
in Tran (2006). Many of the approaches proposed to model regulatory networks
such as Peleg et al. (2002), Ciocchetta & Hillston (2008), Regev et al. (2001)
follow a simulation-perturbation strategy, i.e. to analyse the behaviour of a system,
the biologist changes the input and observes the changes in the output. Even
though the structure of the system is known, it still works as a blackbox in the
sense that the solution cannot be explained. As a result, many computationally
expensive experiments may be needed to explain some properties of the model.
ASP based methods aim to overcome this limitation as they provide methods for
system analysis such as prediction and planning as it is argued in Tran (2006).

To the best of our knowledge, all existing approaches that adopt ASP to model
biological network behaviour are based on the concept of action languages. An
action language is a high-level language with a simple intuitive syntax that allows
to describe the states of the world and effects of actions on these states (Gelfond
& Lifschitz 1992). The statements and queries in this language are then translated
to standard ASP syntax and executed to find the answer sets.

The first attempt to model biological processes by means of ASP was made
by Baral et al. (2004) where they present a BioSigNet-RR system that allows to
represent and reason about signal networks. In this paper they define an action
language that allows to express the structure of a signal network (they use the
NFκB network as an example) as well as the means to query the network (does
protein a bind to b?), plan the execution (what sequence of actions should be
taken to make a active?) and explain the results (given that a is active at a
certain point, what was the initial state?). This work was further extended by
Dworschak et al. (2008) who introduced several extra concepts such as allowance

18 Fayruzov et al.

and noconcurrency, as well as a special language for biological modeling called
CTAID.

It is important to emphasize the difference between the above described action
language-based approaches and the approach we propose here. The former requires
that for each model the whole program is built from scratch and every interaction
is defined as its own rule. In other words, the framework describes only the
description language, and the biologist has to describe every interaction separately.
In our setting we go one step further, and provide the biologist with a background
theory based on a boolean network model semantics. For example, let us consider
an example where protein b is activated by a and c and inhibited by d. In the
default boolean network semantics, if the number of activating links is higher than
the number of inhibition links, then protein b would be activated; if it is lower
it would be inhibited; if it is equal, the state remains unchanged. To express this
with action languages we need 2 actions: activating prot b, inhibiting prot b, and
the following set of statements:

activating prot b causes b
inhibiting prot b causes¬b
a,¬d causes activation prot b
c,¬d causes activation prot b
a, c causes activation prot b
d,¬a,¬c causes inhibiting prot b

The number of required rules grows combinatorially with the number of
interactions.

In the framework that we propose, only factual input is needed from
the biologist: activates(a,b), activates(c,b), inhibits(d,b). The boolean network
semantics implemented in the framework will do all other necessary inference.
Moreover, as ASP offers non-monotonic inference, the existing semantics can be
extended to handle exceptions when needed, making the framework scalable.

Another interesting application of ASP in the biological domain was recently
proposed in Schaub & Thiele (2009). Here the authors use ASP to expand
metabolic networks and check if the network can be completed to reach a certain
state. In contrast to the previously described approaches, this method does not
aim to study system evolution over time.

Finally, in Section 4 we proposed a method to efficiently solve ASP programs
built to model network behaviour. However, this is not the only way to deal with
the problem. The authors of Gebser et al. (2008) described another theoretical
formalism, which is called incremental program solving, and provided a description
of a specially constructed solver iclingo that allows to solve incremental programs.
Although this approach is proposed in a general setting, it fits well to the
network modelling problem. While duplicating the functionality of our framework,
the incremental program approach has an important limitation. A network can
potentially converge to different steady states from one starting state, while an
incremental program would terminate after finding the first steady state and
disregard the other ones. The temporal algorithm on the other hand allows us to
compute all possible steady states.

Modelling Gene and Protein Regulatory Networks with ASP 19

7 Conclusions and future work

In this paper, we have proposed a modelling and simulation tool for gene and
protein regulatory networks based on answer set programming. In the user
interface a biologist can build a network of proteins and specify the properties
of the elements in a straightforward and intuitive way. Use of the tool does not
require any formal logic knowledge from the biologist, who can operate with
predefined concepts to build a model. At the same time, this approach has the
advantage of being more expressive compared to boolean networks, since all
implicit assumptions and background knowledge can explicitly be described in the
body of the program. Moreover, due to the non-monotonic nature of ASP the
framework is scalable, i.e. it can be extended with non-typical cases that are not
considered in the current version.

The constructed network is then automatically translated to an answer set
program that can be solved with any of the off-the-shelf solvers to produce steady
states of the network. In this paper we proposed a theoretically justified algorithm
that allows a more efficient network computation.

One of the limitations, inherited from boolean networks, is that every action
should happen within one time step. In other words, it is impossible to model slow
and fast interaction; everything is aligned to the same speed. Another problem is
that in the current version of the system only synchronous execution is supported.
We plan to address these issues in the near future.

References

Albert, R. (2004), Boolean modeling of genetic regulatory networks, in ‘Complex
Networks’, Springer, pp. 459–481.

Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A. & Berens, M. (2004),
‘A knowledge based approach for representing and reasoning about signaling
networks’, Bioinformatics 20(1), 15–22.

Ciocchetta, F. & Hillston, J. (2008), Process algebras in systems biology, in
‘Formal Methods for Computational Systems Biology’, Springer, pp. 313–365.

Davidich, M. I. & Bornholdt, S. (2008), ‘Boolean network model predicts cell cycle
sequence of fission yeast’, PLoS ONE 3(2), e1672.

de Jong, H. (2002), ‘Modeling and simulation of genetic regulatory systems: A
literature review’, Journal of Computational Biology 9(1), 67–103.

Dworschak, S., Grell, S., Nikiforova, V. J., Schaub, T. & Selbig, J. (2008),
‘Modeling biological networks by action languages via answer set programming’,
Constraints 13(1-2), 21–65.

Fayruzov, T. (2009), Technical report 2009-01, Technical report, Ghent University.
http://www.cwi.ugent.be.

Fayruzov, T., De Cock, M., Vermeir, D. & Cornelis, C. (2009), Modeling protein
interaction networks with answer set programming, in ‘2009 IEEE International
Conference on Bioinformatics and Biomedicine’, pp. 99–105.

20 Fayruzov et al.

Fayruzov, T., Janssen, J., Vermeir, D., Cornelis, C. & De Cock, M. (2010), Efficient
solving of time-dependent answer set programs.

Fisher, J. & Henzinger, T. A. (2007), ‘Executable cell biology’, Nature
Biotechnology 25(11), 1239–1249.

Garg, A., Cara, A. D., Xenarios, I., Mendoza, L. & Micheli, G. D. (2008),
‘Synchronous versus asynchronous modeling of gene regulatory networks’,
Bioinformatics 24(17), 1917–1925.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. & Thiele, S.
(2008), Engineering an incremental asp solver, in ‘ICLP ’08: Proceedings of the
24th International Conference on Logic Programming’, pp. 190–205.

Gebser, M., Kaufmann, B., Neumann, A. & Schaub, T. (2007), clasp : A conflict-
driven answer set solver, in ‘LPNMR’, pp. 260–265.

Gelfond, M. & Lifschitz, V. (1988), The stable model semantics for logic
programming, in ‘ICLP/SLP 1988’, pp. 1070–1080.

Gelfond, M. & Lifschitz, V. (1992), Representing actions in extended logic
programming, in ‘ICLP/SLP 1992’, pp. 559–573.

Li, F., Long, T., Lu, Y., Ouyang, Q. & Tang, C. (2004), ‘The yeast cell-cycle
network is robustly designed’, PNAS 101, 4781–4786.

Mendoza, L., Thieffry, D. & Alvarez-Buylla, E. R. (1999), ‘Genetic control of
flower morphogenesis in arabidopsis thaliana: a logical analysis’, Bioinformatics
15(7), 593–606.

Peleg, M., Yeh, I. & Altman, R. B. (2002), ‘Modelling biological processes using
workflow and petri net models’, Bioinformatics 18(6), 825–837.

Regev, A., Silverman, W. & Shapiro, E. Y. (2001), ‘Representation and
simulation of biochemical processes using the pi-calculus process algebra’,
Pacific Symposium on Biocomputing 2001 pp. 459–470.

Schaub, T. & Thiele, S. (2009), Metabolic network expansion with answer set
programming, in ‘ICLP ’09: Proceedings of the 25th International Conference
on Logic Programming’, pp. 312–326.

Tran, N. (2006), Reasoning and hypothesing about signaling networks, PhD thesis,
Arizona State University.

