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Abstract. In various information retrieval settings, it is of interest to
the user to receive search results that are not only relevant, but also di-
verse. As the precise goals and the underlying understanding of diversity
differs considerably from application to application, there is a need for a
language in which diversification strategies can be encoded and modified
in an intuitive way, yet which is sufficiently rich to capture all of the
subtleties that may arise. In this paper, we propose a language based on
ideas from fuzzy logics, and illustrate its flexibility and ease-of-use by
providing several examples of diversification strategies. Through a num-
ber of use-case scenarios, we also point out how some of the weaknesses
of existing methods can be avoided in our framework.

1 Introduction

The results returned by a search engine are useful to a user only insofar that
they are relevant to her information need, are up-to-date, and arise from an
authoritative source, among others. In addition to considering these qualities
of individual documents, however, it is also important to ensure that the list of
results is sufficiently diverse [1–3], for at least two reasons. First, when the query
issued by a user is ambiguous, it makes sense to display at least one search result
related to each possible understanding of the query. For example, when sending
the query apple to google, all results on the first page are related to apple com-
puters1, which is cumbersome for users who are looking for information about
fruit. Second, the list of search results should preferably not contain redundant
results: when a given document is relevant, but very similar to a higher ranked
document, it may be of little added value to the user. For example, in an image
retrieval setting where the query is Paris, it does not make much sense to present
the user with 20 photos of the Eiffel tower.

One way to deal with the problem of diversifying search results is to treat it
as a combinatorial optimization problem. Starting from a given set of documents
D, relevance estimates for these documents, and pairwise (dis)similarities, the
primary task is then to find an optimal subset S ⊆ D of k documents, which are
as relevant as possible, while being as different from each other as possible. In

1 Verified on February 14, 2011.
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[3], S is selected as the set of k documents which maximizes some optimization
criterion f . A first possibility is [3]:

f(S) = (k − 1) ·
∑
d∈S

rel(d) + 2λ
∑

di,dj∈S

dist(di, dj) (1)

where |S| = k, λ > 0, rel(d) is the relevance estimate of document d and dist is
a measure of dissimilarity. Two other possibilities are [3]:

f(S) = min
d∈S

rel(d) + λ min
di,dj∈S

dist(di, dj) (2)

f(S) =
∑
d∈S

(
rel(d) +

λ

|D| − 1

∑
d′∈D

dist(d, d′)
)

(3)

Note that the latter sum ranges over the set of all documents, rather than those
in S alone. As shown in [3], each of the alternatives (1)–(3) satisfies different
properties, corresponding to different aspects of diversity. In general, it is not
straightforward to translate a given intuition about diversification to an actual
optimization criterion, which always yields the most intuitive result. Moreover,
in different settings, different factors may have to be taken into account. When
retrieving product reviews, for instance, it may be of interest to the user to know
whether most reviews are positive or negative. In this sense, when 90% of the
reviews are negative, it would not be a good idea to display 5 positive reviews
and 5 negative reviews, even though this choice may maximize diversity and all
10 reviews might be relevant.

As different settings thus require different diversification mechanisms, there
is a need for a flexible framework in which the intuitions underlying a particular
setting can easily be translated to declarative specifications. In this paper, we
propose an approach based on fuzzy logics. As in classical logic, formulas in fuzzy
logics are built from constants, variables and logical connectives. In contrast
to classical logic, however, formulas may take an arbitrary truth value from
the unit interval [0, 1] instead of only 0 (false) and 1 (true). On one hand, the
resemblance with classical logic allows us to encode relations between graded
properties, such as relevance or similarity, in a logical fashion. This leads to
intuitive, declarative specifications, whose qualitative behavior can readily be
seen from the syntactic structure of the formulas. On the other hand, Boolean
connectives can be generalized to fuzzy logic connectives in different ways, which
provides a form of parameterization in fuzzy logic models. The exact behavior
of the resulting systems is therefore a combination of the syntactic structure
of the underlying formulas, and an appropriate choice for each of the logical
connectives.

The structure of this paper is as follows. In the next section, we introduce
a language based on fuzzy logics, which we will use to encode diversification
mechanisms. Subsequently, Section 3 presents a number of use case scenarios
to illustrate some issues with existing methods such as (1)–(3). Section 4 then
proposes various encodings of diversification strategies, as constraints on fuzzy
logic formulas. Finally, a discussion with some concluding remarks is provided.
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2 Constraints on fuzzy logic formulas

Let D = {d1, ..., dn} be the set of document under consideration, with cor-
responding relevance scores rel(di) and pairwise similarities sim(di, dj). Both
relevance scores and similarities are assumed to be in [0, 1]. When encoding di-
versification mechanisms, we will also consider a number of additional predicates.
If p is an m-ary predicate, then an expression of the form p(di1 , ..., dim) is called
a term. From these terms, formulas are constructed as follows:

– Constants in [0,1], such as rel(di) and sim(di, dj), are formulas.
– Each term is a formula.
– If α and β are formulas, then α⊗ β, α⊕ β, α→ β, α ∧ β, α ∨ β and ¬α are

formulas.
– If α is a formula and λ ∈ [0, 1], then λ · α is a formula.
– If each of α1, ..., αm are formulas, then also avg{α1, ..., αm}, ∀{α1, ..., αm}

and ∃{α1, ..., αm} are formulas.

For the ease of presentation, we also write e.g. ∀d ∈ D . p(d) for ∀{p(d) | d ∈ D},
or even expressions such as avgd∈D(∀d′ ∈ D . p(d, d′)). There are three important
differences with classical logic. First, arbitrary values from [0, 1] may appear in
formulas as constants. Second, there are a number of connectives that have no
counterpart in classical logic, namely the scaling operator · and the averaging
operator avg, which are tied to the numerical interpretation of truth degrees.
Finally, there are two types of conjunction (∧ and⊗) and two types of disjunction
(∨ and ⊕), which are defined as follows:

α ∧ β = min(α, β) α ∨ β = max(α, β)
α⊗ β = max(α+ β − 1, 0) α⊕ β = min(α+ β, 1)

Note that ∧ and ⊗ indeed correspond to logical conjunction when their argu-
ments are restricted to the classical truth values 0 and 1, and that ∨ and ⊕
correspond to logical disjunction. The operators ⊗ and ⊕ are the connectives
from  Lukasiewicz logic, and provide a truth degree which is a bounded linear
combination of their arguments. The operators→ and ¬ are the implication and
negation from  Lukasiewicz logic, defined as

α→ β = min(1, 1− α+ β) ¬α = 1− α

The scaling operator · is simply interpreted as multiplication. Finally, avg, ∀ and
∃ are defined as

avg{α1, ..., αm} =
α1 + ...+ αm

m
∀{α1, ..., αm} = min(α1, ..., αm)
∃{α1, ..., αm} = max(α1, ..., αm)

In the following, we will consider sets E of equalities of the form α = β, with α
and β formulas. Such a set of equalities will be called a theory. These equalities
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are seen as constraints on the possible truth values of terms, which are treated
as variables. An assignment ω from terms to [0, 1] is called a model of a set of
equalities E if substituting every term t by its value ω(t) causes all equalities
in E to be satisfied. We will consider sets of equalities E such that every model
of E corresponds to a solution of the diversification problem, i.e. a reasonable
choice of k documents among those in D.

By construction, all formulas can be written as the combination of a number
of linear expressions using the minimum and maximum operators. Seeing terms
as variables, it is therefore possible to translate a set of equalities E to a mixed
integer program P , such that there is a one-on-one correspondence between the
models of E and the solutions of P , using a straightforward extension of the
procedure proposed in [4]. This means that models of E can be found using
fast mixed integer programming solvers such as CBC2. Under some conditions,
models can also be found using finite constraint satisfaction methods [6]. Alter-
natively, approximate models can be found using heuristic search techniques.

3 Motivating examples

Before illustrating how equalities of fuzzy logic formulas may be used to specify
diversification mechanisms, we point out some weaknesses of existing methods
using a number of scenarios:

Scenario A Suppose that the set D contains two duplicates (or near-
duplicates) d1 and d2 which are highly relevant. Ideally, only one of
d1 and d2 should appear in the set S, no matter how relevant these
documents are.

If the set S is selected based on (1) or (3), both of d1 and d2 may appear when
these documents are sufficiently relevant and/or sufficiently different from the
documents in S \ {d1, d2} (when using (1)) or D \ {d1, d2} (when using (3)).

Next, we consider the scenario where a query term is ambiguous, and all
documents that correspond to the same understanding of the query are very
similar:

Scenario B Suppose that D can be partitioned in D1∪...∪Dm such that
documents from the same partition are highly similar, and documents
from different partitions are highly dissimilar.

Let us first assume that m < k. When using (1), S will then more or less
be balanced, in the sense that approximately the same number of documents
are chosen from each partition block Di. However, as at least two highly similar
documents will be contained in S, criterion (2) trivializes, causing many different
sets S to be considered as optimal, not all of which may also be intuitively
satisfactory. Finally, criterion (3) will lead to the unintuitive behavior of choosing
only documents from the partition blocks with the fewest documents.
2 http://www.coin-or.org/projects/Cbc.xml
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Now assume that m ≥ k. Then (1)–(2) will select one document from k
different partition blocks, mainly chosen based on their relevance, while (3) would
still lead to choose documents from the smallest partition blocks.

Scenario C Suppose that D contains one document d1 which is not
among the k most relevant documents, but which is highly dissimilar
from all other documents in D. Assume furthermore that the documents
in D \ {d1} are all somewhat similar to each other.

Using (1) and (3), d1 would typically be included in S, with the remaining
documents to a large extent being chosen based on their relevance. Using (2),
however, depending on the value of λ, either d1 would not be included in S or
relevance would not be taken much into account for selecting the other k − 1
documents.

4 Encoding diversification strategies

As the previous section illustrates, it is difficult to specify global optimization
criteria that always lead to those results that are intuitively most desirable. In
this section, we present an alternative, in which equalities between fuzzy logic
formulas encode in a declarative fashion whether a given choice of S is optimal. In
particular, we introduce a predicate imp, such that for each document d, imp(d)
represents the degree to which it is important to include d in S. By construction,
the set S then contains the k most important documents w.r.t. this predicate:

in(d) = (in1(d) ∨ ... ∨ ink(d)) (4)

where we use in(d) to denote that d is included in S and ini(d) to denote that
d is the ith ranked document. The terms ini(d) and in(d) are assumed to be
Boolean, and the right-hand side of (4) should accordingly be regarded as a
Boolean expression. The following formulas encode that ini(d) should be the ith

most important document:

in1(d) = (∀d′ 6= d . imp(d) > imp(d′) ∨ (imp(d) = imp(d′) ∧ ¬in1(d′))) (5)
in2(d) = (∀d′ 6= d . imp(d) > imp(d′) ∨ in1(d′) (6)

∨ (imp(d) = imp(d′) ∧ ¬in2(d′)))
...

ink(d) = (∀d′ 6= d . imp(d) > imp(d′) ∨ in1(d′) ∨ ... ∨ ink−1(d′) (7)
∨ (imp(d) = imp(d′) ∧ ¬ink(d′)))

Intuitively, d should be the ith ranked document if all documents which are more
important are ranked higher, i.e. for every other document d′ we should either
have one of in1(d′), ..., ini−1(d′) (in which case d′ is indeed ranked higher), or
imp(d) ≥ imp(d′) (in which case d is at least as important as d′). Due to the last
disjunct in (5)–(7), ties are broken arbitrarily.
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To complete the specification of a diversification strategy, we introduce a
number of equalities to define the predicate imp, which together with the equal-
ities (4)–(7) form a theory E, whose models define the optimal choices for S. As
a first strategy, we may define imp as follows:

redundant(d) = (∃d′ 6= d . in(d′) ∧ sim(d, d′)) (8)
imp(d) = rel(d)⊗ ¬redundant(d) (9)

Note that (9) clearly reveals the intuition of the underlying diversification mech-
anism: it is important to include d in the set S if (i) d is relevant and (ii) no
other document in S is similar to it. To conjunctively combine both aspects, the
 Lukasiewicz conjunction is used, which, together with the use of negation boils
down to a bounded difference, i.e. imp(d) = max(0, rel(d)− redundant(d)). The
linear combination of relevance scores with redundancy scores presupposes some
form of commensurability. In practice, this means that the relevance scores and
similarity scores we have at our disposal may have to be manipulated somehow.
Such a manipulation would moreover allow us to tweak the trade-off between
relevance and similarity. Also note that (9) specifies a cyclic definition: the value
of the predicate imp depends on the predicate in, which in turn depends on imp.
The models of E thus correspond to some form of equilibria or fixpoints of these
equations, an observation which can be made more explicit via the theory of
fuzzy answer set programming [5]. The underlying intuition is also reminiscent
of Nash equilibria, in the sense that S is defined as a set (cfr. a global strat-
egy) which cannot be improved by replacing a single document (cfr. in which no
player can improve his utility without cooperation).

Let us now reconsider the three scenarios from Section 3. In Scenario A, (9)
ensures that d1 and d2 cannot both be included in S, as then both imp(d1) and
imp(d2) would be (close to) 0. In Scenario B, assuming m < k, we find that at
least one document from each partition block will be included in S, although the
remaining documents may be chosen somewhat arbitrarily. Finally, in Scenario
C, we find that d1 would typically be included in S. Hence, in all three scenarios,
more or less desirable results are found. The main problem seems to be that when
selecting two highly similar documents is unavoidable, as in Scenario B, some
of the remaining documents may not be selected in an optimal way. This is due
to the fact that the value of redundant(d) depends on the occurrence of a single
document d′ in S. In this respect, using (9) resembles the optimization criterion
(2). As an alternative to (8)–(9), we may consider

disparate(d) = avg{¬sim(d, d′) | d 6= d′, in(d′)} (10)
imp(d) = rel(d)⊗ disparate(d) (11)

which encodes the intuition that a document d is important if, on average, the
other documents in S are dissimilar to it. Using (10)–(11) in Scenario B, ap-
proximately the same number of documents will be selected from each partition
block, similar as when using (1) or (3). However, in contrast to (8)–(9), using
(10)–(11) does not always lead to the desired result in Scenario A. One way to
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ensure optimal behavior both in Scenarios A and B would be to combine the
intuitions of (9) and (11) as follows (λ ∈ [0, 1]):

imp(d) = rel(d)⊗
(
λ · (¬redundant(d))⊕ (1− λ) · disparate(d)

)
(12)

where we assume that · takes priority over ⊕. If λ is sufficiently high, using (12)
will avoid that both d1 and d2 are included in S in Scenario A. Moreover, in
Scenario B, typically redundant(d) will be close to 1 for all documents, in which
case (12) behaves qualitatively similar to (11).

As already mentioned in the introduction, when ranking reviews or opin-
ions, it is important that the set S accurately reflects whether most reviews are
positive or negative, and even which type of complaints most people have (e.g.
about a given product). This means that it may be beneficial to include several
documents in S which express the same opinion, and are in this sense similar.
To some extent, this requirement is at odds with the idea of diversifying search
results, or at least, it can be seen as a tempering factor. This latter intuition of
adding a tempering factor can be translated as follows:

prevalent(d) = avgd′∈Dsim(d, d′) (13)

imp(d) = rel(d)⊗
(
λ · (¬redundant(d))⊕ (1− λ) · prevalent(d)

)
(14)

which translates the intuition that d should be included if it is relevant, and it is
either different from the other documents in S or it conveys a prevalent opinion.
For large values of λ, (13)–(14) behave similarly as (9), while for small values of
λ, diversity will only play a minimal role. To the best of our knowledge, such a
trade-off has not yet been considered in existing methods.

5 Discussion

The language that was introduced in Section 2 offers the flexibility to encode
a wide array of diversification strategies. In addition to the illustrations that
were provided in Section 4, it is also possible to simulate existing strategies such
as (1)–(3), as well as various greedy algorithms that decide which documents
to add one at a time (e.g. [1]). One of the main advantages of our approach is
that degrees between 0 and 1 can be treated both as numerical values (when
using averaging or scaling operations), or as logical truth degrees (when using
generalizations of logical connectives), which allows us to encode diversification
strategies in such a way that the syntactic structure of the formulas immediately
reveals the underlying intuitions.

The examples that were given correspond to basic mechanisms for diversify-
ing search results. In practice, more structured information may be available, in
which case the flexibility offered by our framework would play an even bigger
role. For instance, our strategy for diversifying product reviews, i.e. (14), may
be further refined when information is available about which ratings have been
given by the users, or classification information about the type of complaints
that are conveyed. Similarly, we may think of diversification mechanisms that
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take user profiles into account, ensuring that reviews are displayed from a diverse
set of users (e.g. regarding age or geographic location).

Given the observation that different applications involve different subtleties,
we advocate a declarative approach, in the sense that the specification of a
particular strategy should be decoupled from its implementation. One possibility
for implementing the strategies encoded as constraints on fuzzy logic formulas is
to translate these constraints to mixed integer programs, for which various highly
efficient solvers exist. This approach has the advantage that an additional global
(linear) optimization criterion can be specified to make an informed decision
when there are multiple solutions. Another implementation method would be
to use more heuristic techniques, e.g. taking advantage of the cyclic nature of
the examples in Section 4. One idea would be to guess an arbitrary set S, i.e.
a particular solution to (4)–(7), and then incrementally improve this guess by
repeatedly evaluating the values of imp(d), and adapting the set S accordingly.
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