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Efficient Algorithms for Fuzzy Qualitative Temporal
Reasoning

Steven Schockaert and Martine De Cock

Abstract— Fuzzy qualitative temporal relations have been pro-
posed to reason about events whose temporal boundaries are ill–
defined. Although the corresponding reasoning tasks are in the
same complexity class as their crisp counterparts, in practice,
the scalability of fuzzy temporal reasoners may be insufficient
for applications which require a high expressivity and deal with a
large number of events. On the other hand, transitivity rules can
be used to make sound, but incomplete inferences in polynomial
time, utilizing a variant of Allen’s path–consistency algorithm.
The aim of this paper is to investigate how this polynomial time
algorithm can be improved without altering its time complexity.
To this end, we establish a characterization of 2–consistency of
fuzzy temporal relations and provide transitivity rules which are
significantly stronger than those resulting from straightforwardly
generalizing transitivity rules for crisp temporal relations. We
furthermore provide experimental evidence for the effectiveness
of our improved algorithm.

Index Terms— Fuzzy Relations, Temporal Reasoning, Qualita-
tive Reasoning

I. INTRODUCTION

WHILE it is customary to talk about events and time
periods like the Cold War, the Great Depression or

the Age of Enlightenment, identifying appropriate beginning
and ending dates for them is difficult, if not impossible. Many
real–world events have an inherently gradual onset or ending,
making it hard to pinpoint exact beginning and ending dates
(e.g., the Dotcom Bubble), while other events are ill–defined,
resulting in several possible beginning and ending dates (e.g.,
World War II). The vagueness of real–world events has been
well–recognized in literature [1], [2], [3], [4], [5] and does
not only pertain to large–scale events (e.g., when exactly does
falling down a flight of stairs begin?). Finally, vague temporal
markers are frequently used in everyday speech, e.g., late
afternoon, some weeks ago, next summer, etc. Nevertheless,
applications which employ temporal reasoning predominantly
rely on the simplifying assumption that events and time periods
can be represented by well–defined intervals of the real line.

Many applications can benefit from the use of qualita-
tive temporal information acquired from natural language
texts. Examples are multi–document summarization, where a
chronological ordering of events occurring in different doc-
uments is needed to obtain a fluent narrative, and temporal
question answering, where detailed temporal knowledge is
used to find answers to questions which satisfy a temporal
restriction imposed by the user (e.g., Which paintings did

Steven Schockaert∗ and Martine De Cock are with the Department
of Applied Mathematics and Computer Science of the Ghent University,
Krijgslaan 281 (S9), B-9000 Gent, Belgium (e-mail: {Steven.Schockaert,
Martine.DeCock}@UGent.be.)
∗Research assistant of the Research Foundation – Flanders

Salvator Dali create before his Surrealist period?). In such sce-
narios, however, assuming that all events have crisp temporal
boundaries may quickly lead to inconsistencies. For example,
while the Cold War is generally considered to have started
shortly after the end of World War II, some texts mention the
end of the Russian Revolution in 1917 as the real beginning
of the Cold War.

In [6], a framework has been introduced to represent
temporal relations between vague events as fuzzy relations.
Reasoning in this framework is NP–complete in general [7],
i.e., the time complexity of reasoning about fuzzy temporal
relations is the same as that of reasoning in Allen’s Interval
Algebra (IA) [8], which is traditionally used for (crisp) rea-
soning about qualitative temporal relations (e.g., A happened
before B, A happened during B, etc.). To support efficient
reasoning in IA, a transitivity table was introduced in [9]
conveying what temporal relations are possible between two
intervals A and C, given that there exists some interval B
such that a particular temporal relation r1 holds between A
and B and a particular temporal relation r2 holds between B
and C. If the initial knowledge base contains no disjunctive
information (like the beginning of A strictly precedes the
beginning of B OR the ending of A equals the ending of
B), using this transitivity table yields a complete reasoning
algorithm, requiring O(n3) time to complete, where n is the
number of intervals (or events) involved [8]. Motivated by
the importance of the transitivity table for crisp temporal
reasoning, a generalized transitivity table for fuzzy tempo-
ral relations was provided in [6]. However, in contrast to
crisp temporal reasoning frameworks, even in the absence of
disjunctions, reasoning with fuzzy temporal relations is NP–
complete in some cases [7], implying that any O(n3) time
algorithm is necessarily incomplete. Moreover, as will become
clear below, using only this generalized transitivity table for
fuzzy temporal reasoning leads to rather poor performance,
as in many cases, for example, inconsistencies cannot be
detected by this method. Hence, on one hand we have a
complete algorithm requiring exponential time, and on the
other hand an efficient, but incomplete algorithm for fuzzy
temporal reasoning.

The primary aim of this paper is to investigate how fuzzy
temporal reasoning with transitivity rules can be improved
such that more inconsistencies can be detected, and more
interesting conclusions can be drawn, while maintaining the
O(n3) time complexity. The paper is structured as follows. In
the next section, we review related work on fuzzy temporal
reasoning, while Section III introduces some preliminaries
about fuzzy temporal relations. Next, in Section IV, we show
how transitivity rules can be used to obtain an efficient,
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but incomplete algorithm for fuzzy temporal reasoning. In
Section V, we present a first improvement, based on the
notion of 2–consistency. Section VI discusses a second im-
provement, based on a notion of transitivity which is stronger
than the transitivity rules from the generalized transitivity
table. Subsequently, in Section VII, we demonstrate that both
improvements have a significant impact on the performance of
the fuzzy temporal reasoning algorithm. Appendix I contains
the proofs of the propositions that are introduced in this paper.
Finally, note that some of the results in Section VI appeared
earlier in [10].

II. RELATED WORK

The majority of existing approaches to fuzzy temporal
reasoning are concerned with modelling vague temporal in-
formation about crisp events. For example, a possibilistic
framework for modelling fuzzy dates (e.g., the beginning of
next week) and fuzzy temporal constraints (e.g., A took place
a few days after B) was introduced in [11]. It was later
elaborated upon, resulting in the framework of fuzzy temporal
constraint networks [12], [13], [14]. In [15], possibility theory
is adopted to represent uncertain relations between time points.
Specifically, a temporal relation between two time points t1
and t2 is represented as a triple of values between 0 and 1,
expressing the degree of possibility that t1 is before, equal
to, or after t2. Another reason why fuzzifications of temporal
reasoning formalisms have been proposed is to cope with
preferences [16], [17], [18]. The idea is to attach weights
to each temporal relation revealing what information should
be discarded if the available information turns out to be
inconsistent.

In the approaches mentioned above, fuzzy temporal rela-
tions are mainly used to encode vague information about
crisp events. In other words, while events are still assumed
to begin and end at well–defined instants of time, available
knowledge about these temporal boundaries is allowed to
be imprecise. A more relevant line of research has focused
on processing temporal information about vague events, i.e.,
events whose time span cannot accurately be represented
as an interval. Such vague time periods can, in principle,
be modelled in several ways. For example, [19] proposes
definitions of temporal relations which do not explicitly refer
to time, somewhat similar in spirit to the well–known region
connection calculus for spatial reasoning [20]. In such an
approach, however, temporal relations between vague events
are crisp relations, which may be counterintuitive in many
situations. In [21], rough sets are used to represent time spans
of events. Temporal relations are then defined by specifying
an upper bound of relations that possibly hold between two
events, and a lower bound of relations that are guaranteed
to hold. Most commonly, however, fuzzy sets are used to
represent the time span of vague events, and temporal relations
are defined as fuzzy relations [3], [4], [22]. The definitions
of these fuzzy temporal relations are typically inspired by
measures for comparing and ranking fuzzy numbers [23], [24].
In [7], a sound and complete algorithm for reasoning about
fuzzy temporal relations has been introduced. Furthermore,

the time complexity of fuzzy temporal reasoning was shown
to be NP–complete.

III. PRELIMINARIES

A. Fuzzy Time Intervals

In this paper, we represent time spans as fuzzy sets of real
numbers, satisfying some additional, natural criteria:

Definition 1: A fuzzy (time) interval is a normalised, con-
vex, upper semi–continuous fuzzy set in R with a bounded
support.
Recall that a normalised fuzzy set A in R with a bounded
support is convex and upper semi–continuous iff all α–level
sets Aα = {p|p ∈ R ∧ A(p) ≥ α} are closed intervals for
α ∈]0, 1[ and A1 is either a closed interval or a singleton. A
fuzzy set A in R is called normalised if A(p) = 1 for some p
in R; in this case, p is called a modal value of A.

Let TW , IW and SW respectively denote the Łukasiewicz
t–norm, implicator and t–conorm defined for a and b in [0, 1]
by TW (a, b) = max(0, a+b−1), IW (a, b) = min(1, 1−a+b),
SW (a, b) = min(1, a + b). For convenience, we will use ex-
pressions like TW (a, b, c) as a shorthand for TW (a, TW (b, c)).
The following well–known properties of the Łukasiewicz
connectives will be useful below.

TW (a, b) ≤ c ⇔ a ≤ IW (b, c) (1)
max(IW (a, c), IW (b, c)) = IW (min(a, b), c) (2)

IW (a, b) = SW (1− a, b) (3)
1− TW (a, b) = SW (1− a, 1− b) (4)

TW (a, IW (a, b)) = min(a, b) (5)
IW (a, b) = IW (1− b, 1− a) (6)

B. Fuzzy Temporal Relations

For crisp intervals, qualitative temporal relations are usually
defined as constraints on the boundary points of these intervals.
For example, it holds that [a−, a+] is during [b−, b+] iff b− <
a− and a+ < b+. Because beginnings and endings of fuzzy
time intervals are gradual, a different approach is required
when defining fuzzy temporal relations. Our definitions are
inspired by the fact that the constraints on the boundary points
can equivalently be expressed using a first–order formulation
which does not explicitly refer to these boundary points. For
example, let A = [a−, a+] and B = [b−, b+]. It holds that

a− < b− ⇔ (∃p)(p ∈ A ∧ (∀q)(q ∈ B ⇒ p < q)) (7)

The right–hand side of (7) can straightforwardly be general-
ized using the Łukasiewicz connectives, i.e., we define the
degree bb�(A,B) to which the beginning of a fuzzy time
interval A is strictly before the beginning of a fuzzy time
interval B as

bb�(A,B) = sup
p∈R

TW (A(p), inf
q∈R

IW (B(q), L�(p, q)))

where L�(p, q) = 1 if p < q and L�(p, q) = 0 otherwise.
In the same way, we define the degree ee�(A,B) to which
the ending of A is strictly before the ending of B, the degree
be�(A,B) to which the beginning of A is strictly before the
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ending of B, the degree eb�(A,B) to which the ending of A
is strictly before the beginning of B, the degree bb4(A,B) to
which the beginning of A is before or equal to the beginning
of B, the degree ee4(A,B) to which the ending of A is before
or equal to the ending of B, the degree be4(A,B) to which
the beginning of A is before or equal to the ending of B and
the degree eb4(A,B) to which the ending of A is before or
equal to the beginning of B as shown in Table I; L4 is defined
as L4(p, q) = 1−L�(q, p) for all p and q in R. Note that the
definitions of our fuzzy temporal relations coincide with the
corresponding classical definitions when A and B are crisp
intervals. This stands in contrast to the definitions in [4], for
example, where temporal relations between two crisp intervals
can be still be satisfied to a degree between 0 and 1, e.g., to
model the degree to which most of interval A is before the
beginning of interval B.

Our commitment to the Łukasiewicz connectives is moti-
vated by various reasons. One example is the following lemma,
which is of paramount importance for the discussions through-
out this paper and which would not hold if the minimum
or product, together with their residual implicator, were used
instead of the Łukasiewicz t–norm. Intuitively, the lemma
states that the degree to which the beginning of A is strictly
before the beginning of B is equal to the degree to which the
beginning of B is not before or equal to the beginning of A,
and similar for ee�(A,B), be�(A,B) and eb�(A,B).

Lemma 1: [6] Let A and B be fuzzy time intervals. It holds
that

bb�(A,B) = 1− bb4(B,A) ee�(A,B) = 1− ee4(B,A)

be�(A,B) = 1− eb4(B,A) eb�(A,B) = 1− be4(B,A)
Not all possible constraints between the boundary points of

crisp intervals A = [a−, a+] and B = [b−, b+] are independent
of each other. For example, if a− < b− then also a− < b+,
a− ≤ b− and a− ≤ b+. The following lemma presents a
generalization of this.

Lemma 2: [6] Let A and B be fuzzy time intervals. It holds
that

bb�(A,B) ≤ bb4(A,B)

ee�(A,B) ≤ ee4(A,B)

be�(A,B) ≤ be4(A,B)

eb�(A,B) ≤ eb4(A,B)

eb4(A,B) ≤ bb4(A,B) ≤ be4(A,B)

eb4(A,B) ≤ ee4(A,B) ≤ be4(A,B)
eb�(A,B) ≤ bb�(A,B) ≤ be�(A,B)
eb�(A,B) ≤ ee�(A,B) ≤ be�(A,B)

Crisp temporal relations exhibit a lot of interesting transi-
tivity properties, which form the basis for temporal reasoning
algorithms. For example, if the beginning of A is strictly
before the ending of B and the ending of B is before or equal
to the beginning of C, we know that the beginning of A is
strictly before the beginning of C. The fuzzy temporal rela-
tions bb�, bb4, . . . , eb4 exhibit a similar transitive behaviour.

Lemma 3: [6] The fuzzy temporal relations satisfy the
transitivity rules that are summarized in Table II. Specifically,

if R(A,C) is the entry in this table on the row corresponding
to S(A,B) and the column corresponding to Q(B,C), it holds
that TW (S(A,B), Q(B,C)) ≤ R(A,C).

IV. FUZZY TEMPORAL REASONING

Let X be a finite set of variables. The reasoning task which
we consider in this paper consists of deciding whether a set
of formulas Θ of the form bb�(x, y) ≤ 0.6, eb4(x, y) ≥
0.9, . . . is consistent, i.e., whether we can assign a fuzzy time
interval to each of the variables in X such that all lower and
upper bounds on fuzzy temporal relations in Θ are satisfied.

Example 1: Let X = {x, y, z} and let Θ = {bb�(x, y) ≥
0.7, be4(y, z) ≥ 0.6, eb4(z, x) ≥ 0.8} then Θ is not consis-
tent. Indeed, by Lemma 3, we know that

be�(x, z) ≥ TW (bb�(x, y), be4(y, z)) ≥ TW (0.7, 0.6) = 0.3

and by Lemma 1 we know that eb4(z, x) = 1− be�(x, z) ≤
1−0.3 = 0.7. Hence eb4(z, x) ≥ 0.8 cannot be satisfied when
the other two formulas from Θ are satisfied.
Most other interesting reasoning tasks for fuzzy time intervals
can be reduced to this problem [7], hence it is of prime
importance to have an efficient algorithm for consistency
checking at our disposal. Unfortunately this problem is NP–
complete in general [7]. However, it is possible to derive
polynomial–time algorithms which are sound, but incomplete,
i.e., which will detect some, but not all inconsistencies. Despite
the incompleteness of such an algorithm, we can still hope that
it would only fail to detect inconsistencies in some patho-
logical cases. In many applications, such as multi–document
summarization and temporal question answering, this would
be sufficient, as long as most inconsistencies can be detected.

In the following, let C(x, y) denote the set of for-
mulas from Θ involving the variables x and y, and let
X = {x1, x2, . . . , xn}. Due to Lemma 1, we can as-
sume that Θ only contains lower bounds; e.g., an upper
bound like eb4(xi, xj) ≤ 0.7 can be replaced by the
equivalent formula be�(xj , xi) ≥ 0.3. Moreover, without
loss of generality, we can assume that Θ contains exactly
one lower bound for each of the fuzzy temporal relations
bb�, bb4, ee�, ee4, be�, be4, eb�, eb4 and each pair of vari-
ables (x, y) from X2. Typically, many of these lower bounds
will be 0, which means that we have no information at all
about the corresponding fuzzy temporal relation for the cor-
responding pair of variables. Note that C(x, y) is completely
specified by 16 values from [0, 1], corresponding to 8 lower
bounds for the fuzzy temporal relations applied to (x, y) and
8 lower bounds for the fuzzy temporal relations applied to
(y, x). For the ease of presentation, we will therefore represent
C(x, y) as two lists of 8 values. Specifically, we write

C(x, y) = 〈[α1, β1, γ1, δ1, α
′
1, β

′
1, γ

′
1, δ

′
1], (8)

[α2, β2, γ2, δ2, α
′
2, β

′
2, γ

′
2, δ

′
2]〉 (9)
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TABLE I
DEFINITION OF THE QUALITATIVE TEMPORAL RELATIONS BETWEEN FUZZY TIME INTERVALS A AND B, AND THEIR CORRESPONDENCE WITH THE

CLASSICAL DEFINITIONS WHEN A = [a−, a+] AND B = [b−, b+] ARE CRISP INTERVALS.

Crisp intervals Fuzzy time intervals
a− < b− ⇔ (∃p)(p ∈ A ∧ (∀q)(q ∈ B ⇒ p < q)) bb�(A, B) = supp TW (A(p), infq IW (B(q), L�(p, q)))

a− ≤ b− ⇔ (∀q)(q ∈ B ⇒ (∃x)(p ∈ A ∧ p ≤ q)) bb4(A, B) = infq IW (B(q), supp TW (A(p), L4(p, q)))
a+ < b+ ⇔ (∃q)(q ∈ B ∧ (∀p)(p ∈ A⇒ p < q)) ee�(A, B) = supq TW (B(q), infp IW (A(p), L�(p, q)))

a+ ≤ b+ ⇔ (∀p)(p ∈ A⇒ (∃q)(q ∈ B ∧ p ≤ q)) ee4(A, B) = infp IW (A(p), supq TW (B(q), L4(p, q)))
a− < b+ ⇔ (∃p)(∃q)(p ∈ A ∧ q ∈ B ∧ p < q) be�(A, B) = supp TW (A(p), supq TW (B(q), L�(p, q)))

a− ≤ b+ ⇔ (∃x)(∃q)(p ∈ A ∧ q ∈ B ∧ p ≤ q) be4(A, B) = supp TW (A(p), supq TW (B(q), L4(p, q)))
a+ < b− ⇔ (∀p)(∀q)(p ∈ A ∧ q ∈ B ⇒ p < q) eb�(A, B) = infp IW (A(p), infq IW (B(q), L�(p, q)))
a+ ≤ b− ⇔ (∀p)(∀q)(p ∈ A ∧ q ∈ B ⇒ p ≤ q) eb4(A, B) = infp IW (A(p), infq IW (B(q), L4(p, q)))

TABLE II
TRANSITIVITY TABLE FOR FUZZY TEMPORAL RELATIONS.

be4(B, C) bb4(B, C) ee4(B, C) eb4(B, C) be�(B, C) bb�(B, C) ee�(B, C) eb�(B, C)

be4(A, B) 1 1 be4(A, C) bb4(A, C) 1 1 be�(A, C) bb�(A, C)
bb4(A, B) be4(A, C) bb4(A, C) be4(A, C) bb4(A, C) be�(A, C) bb�(A, C) be�(A, C) bb�(A, C)
ee4(A, B) 1 1 ee4(A, C) eb4(A, C) 1 1 ee�(A, C) eb�(A, C)
eb4(A, B) ee4(A, C) eb4(A, C) ee4(A, C) eb4(A, C) ee�(A, C) eb�(A, C) ee�(A, C) eb�(A, C)
be�(A, B) 1 1 be�(A, C) bb�(A, C) 1 1 be�(A, C) bb�(A, C)
bb�(A, B) be�(A, C) bb�(A, C) be�(A, C) bb�(A, C) be�(A, C) bb�(A, C) be�(A, C) bb�(A, C)
ee�(A, B) 1 1 ee�(A, C) eb�(A, C) 1 1 ee�(A, C) eb�(A, C)
eb�(A, B) ee�(A, C) eb�(A, C) ee�(A, C) eb�(A, C) ee�(A, C) eb�(A, C) ee�(A, C) eb�(A, C)

to denote the following set of lower bounds

be4(x, y) ≥ α1 be�(x, y) ≥ α′1

bb4(x, y) ≥ β1 bb�(x, y) ≥ β′1

ee4(x, y) ≥ γ1 ee�(x, y) ≥ γ′1

eb4(x, y) ≥ δ1 eb�(x, y) ≥ δ′1

be4(y, x) ≥ α2 be�(y, x) ≥ α′2

bb4(y, x) ≥ β2 bb�(y, x) ≥ β′2

ee4(y, x) ≥ γ2 ee�(y, x) ≥ γ′2

eb4(y, x) ≥ δ2 eb�(y, x) ≥ δ′2

We will furthermore write C1(x, y) (resp. C2(x, y)) to denote
the subset of C(x, y) containing the lower bounds for the
fuzzy temporal relations applied to (x, y) (resp. (y, x)). Both
C1(x, y) and C2(x, y) can be represented by a list of 8 values;
for the set C(x, y) defined in (8), we write

C1(x, y) = [α1, β1, γ1, δ1, α
′
1, β

′
1, γ

′
1, δ

′
1]

C2(x, y) = [α2, β2, γ2, δ2, α
′
2, β

′
2, γ

′
2, δ

′
2]

Note that C1(x, y) = C2(y, x) and C2(x, y) = C1(y, x).
For (x, y) in X2, C(x, y) acts as a constraint on the

possible values of x and y. The idea of our algorithm is to
incrementally refine these constraints, i.e., increase some of
the corresponding lower bounds, based on known properties of
the fuzzy temporal relations. A first way to do this is by using
Lemma 2. For example, if α1 = 0.4 and β1 = 0.6, we could
change the value of α1 to 0.6 since whenever bb4(x, y) ≥ 0.6,
we also have that be4(x, y) ≥ 0.6. Procedure Normalise
shows how the dependencies from Lemma 2 can be used for
updating the various lower bounds conveyed by C(x, y).

Procedure Normalise
Data: C(x, y) =

〈[α1, β1, γ1, δ1, α′1, β′1, γ′1, δ′1], [α2, β2, γ2, δ2, α′2, β′2, γ′2, δ′2]〉
Result: If possible, the lower bounds in C(x, y) are increased by using

the dependencies from Lemma 2.
for i in {1, 2} do

β′i ← max(β′i, δ
′
i)

γ′i ← max(γ′i, δ
′
i)

α′i ← max(α′i, β
′
i, γ

′
i)

δi ← max(δ′i, δi)
βi ← max(β′i, βi, δi)
γi ← max(γ′i, γi, δi)
αi ← max(α′i, αi, βi, γi)

Example 2: Let C(x, y) be given by

C(x, y) = 〈[0.3, 0.6, 0.2, 0.3, 0.6, 0.3, 0.5, 0.4],
[0.7, 0.5, 0.4, 0.3, 0.5, 0.1, 0.6, 0.2]〉

Applying Normalise to C(x, y) yields

C(x, y) = 〈[0.6, 0.6, 0.5, 0.4, 0.6, 0.4, 0.5, 0.4],
[0.7, 0.5, 0.6, 0.3, 0.6, 0.2, 0.6, 0.2]〉

If C(x, y) does not change by applying Normalise, C(x, y)
is called normalised. Note that after applying Normalise
once, C(x, y) is always normalised.

Another way of deriving stronger lower bounds is by using
the transitivity rules from Table II, i.e., given C1(x, y) and
C1(y, z), we can draw some conclusions concerning the lower
bounds in C1(x, z). Function Compose takes as input the lists
of lower bounds C1(x, y) and C1(y, z) and returns a list S
of lower bounds for be4(x, z), bb4(x, z), . . . , eb�(x, z). We
can then refine the lower bounds in C1(x, z) by including all
constraints from S. Let C1(x, y) be defined as before and let
S be defined as

S = [α, β, γ, δ, α′, β′, γ′, δ′]
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We write C1(x, y)∪S to denote the union of the lower bounds
in C1(x, y) and S, i.e.,

C1(x, y) ∪ S

= [max(α1, α),max(β1, β),max(γ1, γ),max(δ1, δ),
max(α′1, α

′),max(β′1, β
′),max(γ′1, γ

′),max(δ′1, δ
′)]
(10)

Finally, we need a way to detect inconsistent constraints.

Function Compose
Input: C1(x, y) = [α1, β1, γ1, δ1, α′1, β′1, γ′1, δ′1],

C1(y, z) = [α2, β2, γ2, δ2, α′2, β′2, γ′2, δ′2]
Output: A set S of lower bounds for be4(x, z), bb4(x, z), . . . ,

eb�(x, z); S = [α, β, γ, δ, α′, β′, γ′, δ′]
α← max(TW (α1, γ2), TW (β1, α2))
β ← max(TW (α1, δ2), TW (β1, β2))
γ ← max(TW (γ1, γ2), TW (δ1, α2))
δ ← max(TW (γ1, δ2), TW (δ1, β2))
α′ ← max(TW (α′1, γ2), TW (β′1, α2), TW (α1, γ′2), TW (β1, α′2))
β′ ← max(TW (α′1, δ2), TW (β′1, β2), TW (α1, δ′2), TW (β1, β′2))
γ′ ← max(TW (γ′1, γ2), TW (δ′1, α2), TW (γ1, γ′2), TW (δ1, α′2))
δ′ ← max(TW (γ′1, δ2), TW (δ′1, β2), TW (γ1, δ′2), TW (δ1, β′2))

Function Consistent finds inconsistencies by checking
whether the dependencies from Lemma 1 are violated. For
example, regardless of the fuzzy time interval that is assigned
to x and y, it holds that be4(x, y) = 1−eb�(y, x). Hence, for
C(x, y) defined in (8), if α1 > 1−δ′2, this constraint can never
be satisfied. Procedure Closure is the resulting procedure

Function Consistent
Input: C(x, y) =

〈[α1, β1, γ1, δ1, α′1, β′1, γ′1, δ′1], [α2, β2, γ2, δ2, α′2, β′2, γ′2, δ′2]〉
Output: false if it is known that the formulas in C(x, y) cannot be

satisfied by assigning a fuzzy time interval to x and y; true
otherwise.

if α1 > 1− δ′2 ∨ β1 > 1− β′2 ∨ γ1 > 1− γ′2 ∨ δ1 > 1− α′2
∨α′1 > 1− δ2 ∨ β′1 > 1− β2 ∨ γ′1 > 1− γ2 ∨ δ′1 > 1− α2 then

return false
else

return false

Procedure Closure
for i← 1 to n do1

for j ← i + 1 to n do2
Normalise(C(xi, xj))3
if ¬Consistent(C(xi, xj)) then4

return inconsistency found5
todo← {(i, j, k)|1 ≤ i, j, k ≤ n ∧ i 6= j 6= k}6
while todo 6= ∅ do7

Select and remove a triplet (i0, j0, k0) from todo8
S ← C1(xi0 , xk0 )∪Compose(C1(xi0 , xj0 ), C1(xj0 , xk0 ))9
if C1(xi0 , xk0 ) ⊂ S then10

C1(xi0 , xk0 )← S11
Normalise(C(xi0 , xk0 ))12
if Consistent(S) then13

todo← todo14
∪ {(i0, k0, l)|1 ≤ l ≤ n ∧ l 6= i0 6= k0}15
∪ {(l, i0, k0)|1 ≤ l ≤ n ∧ l 6= i0 6= k0}16

else17
return inconsistency found18

for finding inconsistencies, similar in spirit to Allen’s path
consistency algorithm [9]. Lines 1–5 ensure that all constraints

are initially normalised, and that no inconsistencies can be
detected. Subsequently, constraints are composed using the
function Compose until no lower bounds can be strength-
ened anymore. Each time a lower bound is increased, the
consistency of the corresponding constraint is checked. Note
that C1(xi0 , xk0) ⊂ S iff C1(xi0 , xk0) ∪ S 6= C1(xi0 , xk0),
where C1(xi0 , xk0)∪S is defined as in (10). If the constraint
C1(xi0 , xk0) is changed, some triplets need to be reconsidered.
Therefore, on line 14 the set todo is updated.

Note that in the discussion above, for simplicity and ease
of presentation, we have assumed that Θ does not contain
disjunctive formulas such as bb�(x, y) ≥ 0.7 ∨ eb4(y, x) ≥
0.8. As a consequence, some (generalizations of) relations
from the Interval Algebra cannot be represented, in particular
non-convex relations like “either A is completely before B
or B is completely before A”. However, if needed, the
present framework can easily be extended to cope with such
disjunctive relations by considering disjunctions of constraints
of the form (8). Procedures to normalise, compose and check
the consistency of such constraints follow straightforwardly
from those discussed in this paper.

To analyse the time complexity of Procedure Closure,
we assume that all lower bounds are initially taken from
a finite set M = {0,∆, 2∆, . . . , 1}. As long as all lower
bounds are finitely representable, this assumption can always
be met. It is easy to see that the lower bounds returned
by Function Compose and the lower bounds resulting from
Procedure Normalise are then contained in M as well.
As a consequence, each constraint C(x, y) can at most be
changed O(|M |) times. As, moreover, there are O(n2) such
constraints, and each change adds O(n) elements to the set
todo, Procedure Closure takes O(|M |n3) time to complete.

In addition to the polynomial time approximation discussed
above, we also have a complete exponential time algorithm at
our disposal. For a detailed discussion about this algorithm, we
refer to [7]. The main idea is that the problem of consistency
checking for fuzzy time intervals can be reduced to consistency
checking in a point algebra with disjunction [25]. Solving
this last problem involves backtracking over disjunctive con-
straints between time points. We implemented two variants
of this algorithm. The first variant, which we will refer to
as Complete, is a standard backtracking implementation,
which uses forward checking to detect inconsistencies as soon
as possible, but uses no further optimizations. The second
variant, which we will refer to as Complete-optimized,
implements three optimizations that were proposed in [26]
for temporal reasoning with disjunctive constraints: conflict–
directed backjumping, removal of subsumed variables and
semantic branching.

V. 2–CONSISTENCY

Let Θ, X , C(x, y), C1(x, y) and C2(x, y) be defined as
in Section IV. If for every pair of variables (x, y) from X2,
C(x, y) is a consistent constraint, then Θ is called 2–consistent
or arc–consistent. Clearly, if Θ is not 2–consistent, Θ cannot
be consistent, hence we can sometimes detect inconsistencies
by only checking 2–consistency. In particular, we would like to
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improve Function Consistent such that it returns only true
if the input is indeed a consistent constraint C(x, y). First we
establish a number of dependencies between fuzzy temporal
relations, and, subsequently, we show that the consistency of
C(x, y) can always be decided by checking whether these
dependencies, as well as the dependencies discussed in Section
III-B, are violated. At the same time, these new dependencies
will allow us to improve Procedure Normalise.

Lemma 4: Let A and B be fuzzy time intervals. It holds
that

be�(A,B) ≥ TW (be4(A,B),min(bb4(A,B), ee4(A,B)),

1− eb4(A,B)) (11)
Using Lemma 1, we obtain the following corollary.

Corollary 1: Let A and B be fuzzy time intervals. It holds
that

be�(A,B) ≤ SW (1− eb4(A,B), eb�(A,B),
max(bb�(A,B), ee�(A,B)))

Lemma 5: Let A and B be fuzzy time intervals. It holds
that

bb�(A,B) ≤ TW (bb4(A,B),

max(be�(A,B), 1− eb4(A,B))) (12)

ee�(A,B) ≤ TW (ee4(A,B),

max(be�(A,B), 1− eb4(A,B))) (13)
For crisp intervals A = [a−, a+] and B = [b−, b+], (12)
corresponds to the trivial observation that if a− < b− then
a− ≤ b− and (a− < b+ or b− < a+).

Lemma 6: Let A and B be fuzzy time intervals. It holds
that

eb�(A,B) > 0 ⇒ be�(A,B) = 1 (14)
Lemma 6 becomes trivial when A and B are crisp intervals:
a+ < b− ⇒ a− < b+. Using Lemma 1, we obtain the
following corollary.

Corollary 2: Let A and B be fuzzy time intervals. It holds
that

eb4(A,B) > 0 ⇒ be4(A,B) = 1 (15)
The following proposition states that the dependencies intro-
duced in this section, in addition to the dependencies from
Lemma 2, are sufficient for checking the consistency of
C(x, y). Note that this implies that we have discovered all
dependencies, i.e., every other dependency between the fuzzy
temporal relations applied to the same variables x and y will
be entailed by the aforementioned dependencies.

Proposition 1: Let α, β, γ, δ, α′, β′, γ′, δ′ ∈ [0, 1]. There
exist fuzzy time intervals A and B such that be4(A,B) =
α, bb4(A,B) = β, ee4(A,B) = γ, eb4(A,B) = δ,
be�(A,B) = α′, bb�(A,B) = β′, ee�(A,B) = γ′ and
eb�(A,B) = δ′ iff

α ≥ β ≥ δ (16)
α ≥ γ ≥ δ (17)
α ≥ α′ (18)
γ ≥ γ′ (19)

α′ ≥ TW (α, min(β, γ), 1− δ) (20)

β′ ≤ TW (β, max(α′, 1− δ)) (21)
α′ = 1 ∨ δ′ = 0 (22)
α′ ≥ β′ ≥ δ′ (23)
α′ ≥ γ′ ≥ δ′ (24)
β ≥ β′ (25)
δ ≥ δ′ (26)

α′ ≤ SW (1− δ, δ′,max(β′, γ′)) (27)
γ′ ≤ TW (γ, max(α′, 1− δ)) (28)
α = 1 ∨ δ = 0 (29)

Given the lower bounds in C(x, y), Proposition 1 can be
used to specify a system of (disjunctions of) linear inequalities
Σ which has a solution iff C(x, y) is consistent. Function
Consistent-revised shows how this can be done. The
variables a, b, . . . , d′ correspond to the unknown values of
be4(x, y), bb4(x, y), . . . , eb�(x, y). The inequalities on lines
1–4 ensure that any solution of Σ satisfies the lower bounds in
C(x, y). Note that the lower bounds in C2(x, y) are converted
into upper bounds using Lemma 1. The dependencies from
Lemma 2 (i.e., (16)–(19) and (23)–(26)) are imposed by the
inequalities on lines 5–6. Lines 7–8 corresponds to (20) and
(27). To see this, consider for example (20):

α′ ≥ TW (α, min(β, γ), 1− δ)
⇔ α′ ≥ max(0, α + TW (min(β, γ), 1− δ)− 1)
⇔ α′ ≥ max(0, α + max(0,min(β, γ)− δ)− 1)
⇔ α′ ≥ 0 ∧ α′ ≥ α− 1 ∧ α′ ≥ α + min(β, γ)− δ − 1

As α′ ≥ 0 and α′ ≥ α − 1 are trivially satisfied, the last
expression is equivalent to α′ ≥ α + min(β, γ) − δ − 1. In
the same way, lines 9–11 corresponds to (21)–(22) and (28)–
(29). Checking whether a system of linear inequalities has
a solution can be done using a linear programming solver.
Since the number of variables and inequalities in Σ is constant,
checking whether Σ has a solution can be done in constant
time. Note that, as Σ contains disjunctions, more than one
system of linear inequalities may need to be checked.

Function Consistent-revised
Input: C(x, y) =

〈[α1, β1, γ1, δ1, α′1, β′1, γ′1, δ′1], [α2, β2, γ2, δ2, α′2, β′2, γ′2, δ′2]〉
Output: false if C(x, y) cannot be satisfied by assigning a fuzzy time

interval to x and y; true otherwise
Σ← {α1 ≤ a ≤ 1− δ′2, β1 ≤ b ≤ 1− β′2,1

γ1 ≤ c ≤ 1− γ′2, δ1 ≤ d ≤ 1− α′2,2
α′1 ≤ a′ ≤ 1− δ2, β′1 ≤ b′ ≤ 1− β2,3
γ′1 ≤ c′ ≤ 1− γ2, δ′1 ≤ d′ ≤ 1− α2,4
a ≥ b ≥ d, a ≥ c ≥ d, a′ ≥ b′ ≥ d′, a′ ≥ c′ ≥ d′,5
a ≥ a′, b ≥ b′, c ≥ c′, d ≥ d′,6
(a′ ≥ a + b− d− 1 ∨ a′ ≥ a + c− d− 1),7
(a′ ≤ 1− d + d′ + b′ ∨ a′ ≤ 1− d + d′ + c′),8
(b′ ≤ b + a′ − 1 ∨ b′ ≤ b− d),9
(c′ ≤ c + a′ − 1 ∨ c′ ≤ c− d),10
(a ≥ 1 ∨ d ≤ 0), (a′ ≥ 1 ∨ d′ ≤ 0)}11

if Σ has a solution then12
return true13

else14
return false15

The same dependencies can also be used to improve
Normalise, yielding Procedure Normalise-revised.
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Consider, for example, the dependency from Lemma 4. Using
Lemma 1 we establish

be�(A,B) ≥ TW (be4(A,B), 1− eb4(A,B),

min(bb4(A,B), ee4(A,B)))

⇔ be�(A,B) ≥ TW (be4(A,B), be�(B,A),

min(bb4(A,B), ee4(A,B)))

which gives rise to line 8 in Normalise-revised. Hence,
given the lower bounds for be4(A,B), bb4(A,B), ee4(A,B)
and be�(B,A), we can infer a lower bound for be�(A,B).
Furthermore, by applying (1), (6) and Lemma 1 we find

be�(A,B) ≥ TW (be4(A,B), be�(B,A),

min(bb4(A,B), ee4(A,B)))
⇔ IW (be�(B,A), be�(A,B))

≥ TW (be4(A,B),min(bb4(A,B), ee4(A,B)))
⇔ IW (1− be�(A,B), 1− be�(B,A))

≥ TW (be4(A,B),min(bb4(A,B), ee4(A,B)))

⇔ 1− be�(B,A) ≥ TW (be4(A,B), 1− be�(A,B),

min(bb4(A,B), ee4(A,B)))

⇔ eb4(A,B) ≥ TW (be4(A,B), eb4(B,A),

min(bb4(A,B), ee4(A,B)))

which may allow to find a stronger lower bound for
eb4(A,B), as expressed in line 9. Similarly, we obtain

eb4(A,B) ≥ TW (be4(A,B), eb4(B,A),

min(bb4(A,B), ee4(A,B)))

⇔ eb�(B,A) ≥ TW (be�(B,A), eb4(B,A),

min(bb4(A,B), ee4(A,B)))

corresponding to line 10 in Normalise-revised. In the
same way, lines 11–12 are valid updates due to Lemma 5.
Finally, note that lines 4–5 correspond to Lemma 6 and lines
6–7 correspond to Corollary 2.

Procedure Normalise-revised
Data: C(x, y) =

〈[α1, β1, γ1, δ1, α′1, β′1, γ′1, α′1], [α2, β2, γ2, δ2, α′2, β′2, γ′2, α′2]〉
Result: If possible, the lower bounds in C(x, y) are increased.
Normalise(C(x, y))1
while changes occur do2

for i in {1, 2} do3
if δi > 0 then4

αi = 15
if δ′i > 0 then6

α′i = 17
α′i ← max(α′i, TW (αi, min(βi, γi), α

′
1−i))8

δi ← max(δi, TW (αi, min(βi, γi), δ1−i))9
δ′1−i ← max(δ′1−i, TW (α′1−i, min(βi, γi), δ1−i))10
βi ← max(βi, SW (β′i, min(δi, δ1−i)))11
γi ← max(γi, SW (γ′i, min(δi, δ1−i)))12

VI. TRANSITIVITY OF FUZZY TEMPORAL RELATIONS

To further improve on Procedure Closure, in this section
we investigate some transitivity properties which are stronger
than those from Table II. To keep the problem manageable,

we omit the fuzzy temporal relations be�, bb�, ee� and eb�

from the following discussion. Note that these fuzzy temporal
relations are somewhat less useful for applications like multi–
document summarization or temporal question answering, as
a natural language statement expressing that the end of A
occurred before B, for example, does not always mean that
the end of A is strictly before the beginning of B, i.e., it may
still be possible that the end of A coincides with the beginning
of B.

We want to derive the strongest lower bounds possible for
be4(x, z), bb4(x, z), ee4(x, z) and eb4(x, z) given only the
lower bounds for be4(x, y), bb4(x, y), ee4(x, y), eb4(x, y),
be4(y, z), bb4(y, z), ee4(y, z) and eb4(y, z) for some vari-
able y. First, in the following three lemmas, we investi-
gate some transitivity properties which may sometimes yield
stronger conclusions than the transitivity rules from Table II.

Lemma 7: Let A, B and C be fuzzy time intervals. It holds
that

bb4(A,C) ≥ min(be4(A,B) + TW (ee4(A,B), eb4(B,C)),

eb4(B,C),

bb4(A,B) + TW (eb4(B,C), be4(A,B)))
(30)

ee4(A,C) ≥ min(TW (eb4(A,B), bb4(B,C)) + be4(B,C),

eb4(A,B),

TW (eb4(A,B), be4(B,C)) + ee4(B,C))
(31)

Lemma 8: Let A, B and C be fuzzy time intervals. It holds
that

TW (be4(A,B), eb4(B,C)) > 0 ⇒ be4(A,C) ≥ be4(A,B)
(32)

TW (be4(B,C), eb4(A,B)) > 0 ⇒ be4(A,C) ≥ be4(B,C)
(33)

If TW (be4(A,B), eb4(B,C)) > 0 then be4(B,C) = 1 by
Corollary 2, hence

be4(A,B) = min(be4(A,B), be4(B,C)) (34)

Similarly, (34) holds when TW (be4(B,C), eb4(A,B)) > 0.
This leads to the following corollary:

Corollary 3: Let A, B and C be fuzzy time intervals. It
holds that

TW (be4(A,B), eb4(B,C)) > 0

∨ TW (be4(B,C), eb4(A,B)) > 0

⇒ be4(A,C) ≥ min(be4(A,B), be4(B,C))
Lemma 9: Let A, B and C be fuzzy time intervals. It holds

that

eb4(A,C) ≥ min(eb4(A,B), eb4(B,C))
Note that if A, B and C are crisp intervals, the three previous
lemmas become trivial.

The next proposition shows that the transitivity rules from
Lemma 7–9, together with those from Table II, are the
strongest transitivity rules possible given only a lower bound
for be4(x, y), bb4(x, y), ee4(x, y), eb4(x, y), be4(y, z),
bb4(y, z), ee4(y, z) and eb4(y, z) for some variable y. In
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particular, this proposition states that if one of the lower
bounds on be4(x, z), bb4(x, z), ee4(x, z) and eb4(x, z) that
are obtained from applying these transitivity rules would be
further increased, there always exist fuzzy sets A, B and C
corresponding to the variables x, y and z such that this lower
bound is violated.

Proposition 2: Let α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ [0, 1]
such that

α1 ≥ β1 ≥ δ1 α1 ≥ γ1 ≥ δ1 (35)
α2 ≥ β2 ≥ δ2 α2 ≥ γ2 ≥ δ2 (36)
α1 = 1 ∨ δ1 = 0 α2 = 1 ∨ δ2 = 0 (37)

In other words, α1, α2, β1, β2, γ1, γ2, δ1, δ2 satisfy the condi-
tions from Proposition 1 involving only these values.

Let β3, γ3 and δ3 be defined as

β3 = max(TW (β1, β2),
min(α1 + TW (δ2, γ1), δ2, β1 + TW (δ2, α1)))

γ3 = max(TW (γ1, γ2),
min(α2 + TW (δ1, β2), δ1, γ2 + TW (δ1, α2)))

δ3 = max(TW (δ1, β2), TW (γ1, δ2),min(δ1, δ2))

Furthermore, let α3 be defined such that

α3 = 1

if TW (γ1, δ2) > 0 or TW (δ1, β2) > 0,

α3 = min(α1, α2)

if TW (γ1, δ2) = TW (δ1, β2) = 0 and (TW (α1, δ2) > 0 or
TW (δ1, α2) > 0), and

α3 = max(TW (β1, α2), TW (α1, γ2))

otherwise.
There exist fuzzy time intervals A, B and C satisfying

be4(A,C) = α3 and

be4(A,B) ≥ α1 (38)

bb4(A,B) ≥ β1 (39)

ee4(A,B) ≥ γ1 (40)

eb4(A,B) ≥ δ1 (41)

be4(B,C) ≥ α2 (42)

bb4(B,C) ≥ β2 (43)

ee4(B,C) ≥ γ2 (44)

eb4(B,C) ≥ δ2 (45)
Similarly, there exist fuzzy time intervals A, B and C
satisfying bb4(A,C) = β3 and (38)–(45). Furthermore,
there exist fuzzy time intervals A, B and C satisfying
ee4(A,C) = γ3 and (38)–(45). Finally, there exist fuzzy
time intervals A, B and C satisfying eb4(A,C) = δ3 and
(38)–(45).
When A, B and C satisfy (38)–(45), we already know that they
satisfy be4(A,C) ≥ α3, bb4(A,C) ≥ β3, ee4(A,C) ≥ γ3

and eb4(A,C) ≥ δ3 from Lemma 7–9 and the transitivity
rules from Table II. The fact that be4(A,C) = 1 when

TW (γ1, δ2) > 0 or TW (δ1, β2) > 0 follows from the fact
that eb4(A,C) > 0 in this case, using Corollary 2.

Based on Proposition 2 we can improve Function Compose
to Function Compose-revised.

Function Compose-revised
Input: C1(x, y) = [α1, β1, γ1, δ1, α′1, β′1, γ′1, δ′1],

C1(y, z) = [α2, β2, γ2, δ2, α′2, β′2, γ′2, δ′2]
Output: A set S of lower bounds for be4(x, z), bb4(x, z), . . . ,

eb�(x, z); S = [α, β, γ, δ, α′, β′, γ′, δ′]
if TW (γ1, δ2) > 0 ∨ TW (δ1, β2) > 0 then

α← 1
else if TW (α1, δ2) > 0 ∨ TW (δ1, α2) > 0 then

α← min(α1, α2)
else

α← max(TW (β1, α2), TW (α1, γ2))
β ← max(TW (β1, β2), min(α1+TW (δ2, γ1), δ2, β1+TW (δ2, α1)))
γ ← max(TW (γ1, γ2), min(α2+TW (δ1, β2), δ1, γ2+TW (δ1, α2)))
δ ← max(TW (δ1, β2), TW (γ1, δ2), min(δ1, δ2))
α′ ← max(TW (α′1, γ2), TW (β′1, α2), TW (α1, γ′2), TW (β1, α′2))
β′ ← max(TW (α′1, δ2), TW (β′1, β2), TW (α1, δ′2), TW (β1, β′2))
γ′ ← max(TW (γ′1, γ2), TW (δ′1, α2), TW (γ1, γ′2), TW (δ1, α′2))
δ′ ← max(TW (γ′1, δ2), TW (δ′1, β2), TW (γ1, δ′2), TW (δ1, β′2))

VII. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proce-
dures Closure, Complete and Complete-optimized,
which were described in Section IV, as well as the following
variants on Closure:

1) Proc. Closure-rev1 uses Normalise-revised
and Consistent-revised instead of Normalise
and Consistent.

2) Proc. Closure-rev2 uses Compose-revised in-
stead of Compose.

3) Proc. Closure-rev3 uses Normalise-revised,
Consistent-revised and Compose-revised in-
stead of Normalise, Consistent and Compose.

Given particular values of the parameters n and ∆, repre-
senting the number of variables and the precision which is used
to encode the various lower bounds as before, and a constant p
in ]0, 1], we randomly generate sets of constraints as follows.
At most, 8n(n−1) lower bounds can be specified to constrain
the possible fuzzy time spans corresponding to each of the n
variables. When randomly generating constraints, we need to
ensure that none of these sets are trivially inconsistent, e.g.,
if be4(x, y) ≥ 0.8 is imposed, the lower bound for eb�(y, x)
should be at most 0.2. Therefore, we do not choose the lower
bounds of be4(x, y) and eb�(y, x) independent of each other.
In particular, for each i and j in {0, 1, . . . , n} such that i 6= j,
we randomly select two values r1 and r2 from M (using a
uniform distribution). With a probability p we add the formula
be4(x, y) ≥ min(r1, r2), and with probability 1−p we specify
no lower bound for be4(x, y) at all. Similarly, with probability
p we add the formula eb�(y, x) ≥ 1−max(r1, r2) and with
probability 1 − p we specify no lower bound for eb�(y, x).
For the other fuzzy temporal relations, we proceed in the
same manner. Thus we obtain a set Θ in which approximately
8n(n− 1)p lower bounds are specified.

In a first experiment, we keep n = 5 and p = 0.1 fixed,
and analyse the behaviour of both algorithms for varying
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TABLE III
NUMBER OF INCONSISTENCIES DETECTED FOR n = 5, p = 0.1 AND VARYING VALUES OF ∆

1
∆

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Complete 219 275 289 319 328 357 399 401 419 417 438 398 422 427 444 455 448
Closure 171 187 181 219 193 196 230 221 227 229 251 221 257 241 252 232 229

Closure-rev1 209 260 275 295 299 319 369 359 382 378 397 372 372 395 402 414 407
Closure-rev2 198 211 208 222 224 232 274 257 285 279 302 258 309 277 303 285 276
Closure-rev3 217 275 289 317 326 352 396 398 419 415 436 397 420 422 443 453 442

values of ∆. For each ∆ in { 1
18 , 1

17 , 1
16 , . . . , 1

2}, we gen-
erated 1000 sets of constraints using the method described
above. Table III shows how many of these sets are found
to be inconsistent for each of the reasoning procedures.
Recall that Complete and Complete-optimized will
both identify every inconsistent set. Therefore, the results
for Complete-optimized are omitted from this table.
Table III reveals that many inconsistencies are not detected by
Procedure Closure, especially for small values of ∆; e.g.,
for ∆ = 1

18 , only 51% of the inconsistent sets are identified.
Both Closure-rev1 and Closure-rev2 improve on
Closure significantly. Procedure Closure-rev3, which
combines the improvements used in Closure-rev1 and
Closure-rev2, provides even better results: inconsistencies
are detected in all but a few cases.

Fig. 1. Average execution time needed to detect inconsistencies for n = 5,
p = 0.1 and varying values of ∆.

Figure 1 depicts the execution time needed on average for
each of the 1000 sets of constraints, while Figure 2 depicts the
maximal execution time that was needed to check the consis-

Fig. 2. Maximal execution time needed to detect inconsistencies for n = 5,
p = 0.1 and varying values of ∆.

tency of a set of constraints1. From these figures, it becomes
clear that the execution time of Closure, Closure-rev1,
Closure-rev2, and Closure-rev3 is, in practice,
largely independent of the value of ∆, whereas the exectution
time of Complete and Complete-optimized depends
heavily on this value. These results furthermore suggest that
Complete-optimized may be useful in practice, as long
as the size of M is relatively small (e.g., ∆ = 1

3 or ∆ = 1
4 ).

For smaller values of ∆ (i.e., when M is larger), the execution
time of Closure and its variants is significantly less than
that of Complete-optimized. Note that the maximal
execution time of Complete-optimized is significantly
lower than that of Complete.

Table IV displays the number of inconsistencies that are
found for various values of n when p = 0.1 and ∆ = 0.1 are
fixed. Similarly, Table V shows the number of inconsistencies
for ∆ = 0.1 and n = 5 fixed, and a varying value of p. Again,

1All algorithms were implemented in Java and executed on a 2.80 GHz
Pentium 4 system running Windows XP, SP2. The JVM was allowed to use
400 MB of internal memory.
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TABLE IV
NUMBER OF INCONSISTENCIES DETECTED FOR p = 0.1, ∆ = 0.1 AND A VARYING NUMBER OF VARIABLES n

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Complete 120 243 419 588 759 865 932 979 992 998 1000 1000 1000 1000 1000 1000 1000
Closure 78 130 237 334 476 523 651 748 828 882 926 945 965 988 993 996 998

Closure-rev1 118 225 382 542 698 804 888 945 980 990 996 1000 1000 1000 1000 1000 1000
Closure-rev2 82 145 285 412 573 675 811 912 940 981 998 996 1000 1000 1000 1000 1000
Closure-rev3 120 241 419 586 756 860 927 976 991 997 1000 1000 1000 1000 1000 1000 1000

TABLE V
NUMBER OF INCONSISTENCIES DETECTED FOR n = 5, ∆ = 0.1 AND A VARYING VALUE OF p

p 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.34 0.36 0.40 0.44 0.48 0.52 0.56 0.60
Complete 44 290 534 753 882 951 984 989 999 1000 1000 1000 1000 1000 1000 1000
Closure 21 170 303 495 633 755 844 909 954 974 989 991 993 997 999 1000

Closure-rev1 40 260 488 691 847 925 972 983 997 998 999 1000 1000 999 1000 1000
Closure-rev2 25 198 375 580 721 839 922 957 978 994 996 998 998 999 1000 1000
Closure-rev3 44 287 531 747 881 949 981 988 999 1000 1000 1000 1000 1000 1000 1000

1000 sets of constraints were generated for each combination
of the parameters. Both the results in Table IV and Table V
confirm our observations from Table III. In Figure 3, the av-
erage execution time for Complete-optimized is shown.
It becomes clear from this figure that the computation time
needed for detecting inconsistencies follows an easy–hard–
easy pattern, where under–constrained and over–constrained
problems, i.e., problems corresponding to very high or very
low values of p and/or n, are easy to solve, and in between
there is a class of problems which are computationally very
hard. This is further illustrated in Figure 4(a), which shows
the effect of changing both the values of p and n.

Procedure Closure-rev3 is much more efficient than
Complete-optimized, as can be seen in Figure 4(b).
When considering maximal execution time, this difference is
even more pronounced: for the sets of constraints that were
used for the results in Figure 3, the maximal execution time
for Closure-optimized was over 448 seconds (p = 0.04,
n = 14), while for Closure-rev3 this was less than
10 seconds (p = 0.08, n = 12). Hence, Closure-rev3
seems to be a good compromise between completeness and
scalability. However, although most inconsistencies can be
detected using Closure-rev3, there will always be incon-
sistent sets of constraints for which this procedure fails. One
example involving only three variables is Θ = {ee4(y, z) ≥
0.2, eb4(x, z) ≥ 0.1, eb�(x, y) ≥ 0.3, ee�(z, x) ≥ 0.8}.

VIII. CONCLUDING REMARKS

In this paper, we have introduced a novel algorithm for
fuzzy temporal reasoning which is efficient and, although
incomplete, detects inconsistencies in all but a few cases. Thus
it forms the first practical approach to fuzzy temporal rea-
soning as previous algorithms are either too time consuming
— complete algorithms may require exponential time — or
too weak to derive interesting conclusions. The groundwork
for this algorithm is laid by two important properties of
fuzzy temporal relations. First, we have proven a number of
dependencies between fuzzy temporal relations and shown
how these can be used to decide the 2–consistency of a
set of constraints, defined as upper and lower bounds of

Fig. 3. Average execution time needed to detect inconsistencies for (a)
p = 0.1, ∆ = 0.1 and a varying value of n, and for (b) ∆ = 0.1, n = 5
and a varying value of p.

fuzzy temporal relations. Second, we have provided transitivity
rules and shown that these are the strongest transitivity rules
possible using only lower bounds on the fuzzy temporal
relations be4, bb4, ee4 and eb4, which would allow to detect
even more inconsistencies.

Besides their practical value, the properties shown in this
paper are also important from a theoretical point of view.
In particular, they reveal that fuzzy temporal relations satisfy
properties that are far more subtle than those resulting from a
straightforward generalization of their crisp counterparts. The
restriction that fuzzy time intervals need to be normalised
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(a) Complete-optimized

(b) Closure-rev3

Fig. 4. Average execution time needed to detect inconsistencies for ∆ = 0.1
and a varying value of p and n.

seems to play a pivotal role in this. One possible direction
for future work is to derive transitivity rules involving also
the fuzzy temporal relations be�, bb�, ee� and eb�.

In [10], it was shown that the fuzzy temporal reasoning task
discussed in this paper is useful in the context of question
answering systems to deal with temporal constraints involving
historical events. Future work will also focus on applying
this model in other information retrieval tasks, such as multi-
document summarization (e.g., generating overview timelines)
or image retrieval (e.g., retrieving images of a given event).

APPENDIX I
PROOFS

In the proofs below, fuzzy time intervals whose member-
ship function is a step function will sometimes be used. In
particular, we will use expressions like

{[p1, p2[/λ1, . . . , pk/1, ]pk, pk+1]/λk, . . . , ]pn−1, pn]/λn}

to denote the fuzzy time interval A defined as

A(p) =



λ1 if p ∈ [p1, p2[
. . .
1 if p = pk

λk if p ∈]pk, pk+1]
. . .
λn if p ∈]pn−1, pn]
0 otherwise

for all p in R, where λ1 ≤ λ2 · · · ≤ λk−1, λk ≥ · · · ≥ λn+1 ≥
λn. For such fuzzy time intervals, the fuzzy temporal relations
can be evaluated in a very convenient way.

Lemma 10: Let A and B be fuzzy time intervals which
are constant over ]p1, p2[, ]p2, p3[, . . . ]pn−1, pn[. Assume,
moreover, that the support of A and B is contained in [p1, pn],
and that pa and pb are modal values of A and B respectively
(1 ≤ a, b ≤ n). It holds that

be4(A,B) = max
i∈{1,2,...,a}

TW (A(pi), B(max(pi, pb))) (46)

bb4(A,B) = min
i∈{1,...,min(a,b)}

IW (B(pi), A(pi)) (47)

ee4(A,B) = min
i∈{max(a,b),...,n}

IW (A(pi), B(pi)) (48)

eb4(A,B) = min
i∈{a,...,n}

(1− TW (A(pi), B(min(pi−1, pb))))

(49)
be�(A,B) = max

i∈{b,b+1,...,n}
TW (B(pi), A(min(pi−1, pa)))

(50)
bb�(A,B) = max

i∈{1,...,min(a,b)}
TW (A(pi), 1−B(pi)) (51)

ee�(A,B) = max
i∈{max(a,b),...,n}

TW (B(pi), 1−A(pi)) (52)

eb�(A,B) = min
i∈{1,...,b}

(1− TW (B(pi), A(max(pi, pa))))

(53)

where p0 < p1 ≤ p2 ≤ · · · ≤ pn such that A(p0) = B(p0) =
0.

Proof: As an example, we show (46). The proof of (47)–
(49) is analogous. Note that (50)–(53) follow straightforwardly
from (46)–(49) by Lemma 1 and (3)–(4).

Let the R− R mappings l and r be defined as

l(p) =

{
p if p < p1

max{pi|i ∈ {1, 2, . . . , n} ∧ pi ≤ p} otherwise

r(p) =

{
p if p > pn

min{pi|i ∈ {1, 2, . . . , n} ∧ pi ≥ p} otherwise

for all p in R. Since A (resp. B) is increasing for values
smaller than pa (resp. pb) and decreasing for values greater
than pa (resp. pb), we have

be4(A,B) = sup
p∈R

TW (A(p), sup
q∈R

TW (B(q), L4(p, q)))

= sup
p≤ma

TW (A(p), sup
q≥mb

TW (B(q), L4(p, q)))

= sup
p≤ma

TW (A(p), sup
q≥mb,p≤q

B(q))

= sup
p≤ma

sup
q≥mb,p≤q

TW (A(p), B(q))

By definition of a fuzzy time interval, if p ≤ ma, A(l(p)) =
A(p), and if p ≥ mb, B(r(p)) = B(p). Based in this
observation, we obtain

sup
p≤ma

sup
q≥mb,p≤q

TW (A(p), B(q))

= sup
p≤ma

sup
q≥mb,p≤q

TW (A(l(p)), B(r(q)))

= max
i∈{1,2,...,a}

max
j∈{b,b+1,...,n}

i≤j

TW (A(pi), B(pj))
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As B is decreasing for values greater than pb, the maximum
for j is attained by the smallest value in {b, b + 1, . . . , n}
satisfying i ≤ j, i.e., max(b, i).

A. Proof of Proposition 1

From Lemma 2, Lemma 4, Corollary 1, Lemma 5, Lemma
6 and Corollary 2, we already know that when A and B
exist, all constraints on α, β, γ, δ, α′, β′, γ′, δ′ will be satisfied.
Conversely, we will provide a constructive proof, showing that
whenever these constraints are satisfied, corresponding fuzzy
time intervals A and B can be found. The proof proceeds by
case analysis.

First assume that δ > 0, δ′ > 0 and γ′ ≥ β′. Let p1 <
p2 < p3 < p4 < p5 < p6 be real numbers, and let A and B
be defined as

A = {[p2, p3[/IW (β, β′), p3/1, ]p3, p4]/IW (δ, δ′),
]p4, p5]/1− γ′, ]p5, p6]/1− γ}

B = {[p1, p3[/1− β, [p3, p5[/1− δ′, p5/1}

First, we verify that A and B are indeed fuzzy time inter-
vals. In particular, it has to hold that IW (β, β′) ≤ 1, 1− γ ≤
1−γ′ ≤ IW (δ, δ′) ≤ 1 and 1−β ≤ 1− δ′ ≤ 1. Most of these
inequalities are trivial or follow straightforwardly from (16)–
(19) and (23)–(26). To see why 1− γ′ ≤ IW (δ, δ′), first note
that α′ = 1 due to our assumption that δ′ > 0 and (22). From
(27) we therefore find that 1 ≤ SW (1−δ, δ′,max(β′, γ′)) and
hence 1 ≤ 1 − δ + δ′ + max(β′, γ′). Using our assumption
that γ′ ≥ β′ yields 1 − γ′ ≤ 1 − δ + δ′ from which we find
1− γ′ ≤ IW (δ, δ′).

Next, we show that the fuzzy temporal relations evaluate to
the required values α, β, . . . , δ′ for A and B. Using Lemma
10, we find

be�(A,B) = max(TW (A(p3), B(p5)), TW (A(p3), B(p6)))
= max(TW (1, 1), TW (1, 0))
= 1

Recall that α′ = 1 because of (22) and our assumption that
δ′ > 0. Using Lemma 2, we immediately find

be4(A,B) ≥ be�(A,B) = 1

Note that α = 1 because of (29) and our assumption that
δ > 0.

bb4(A,B)
= min(IW (B(p1), A(p1)), IW (B(p2), A(p2)),

IW (B(p3), A(p3)))
= min(IW (1− β, 0), IW (1− β, IW (β, β′)), IW (1− δ′, 1))
= min(IW (1− β, 0), IW (1− β, IW (β, β′)))
= IW (1− β, 0)
= β

Using (5), (25) and (23), we find (still using Lemma 10)

bb�(A,B)
= max(TW (A(p1), 1−B(p1)), TW (A(p2), 1−B(p2)),

TW (A(p3), 1−B(p3)))
= max(TW (0, β), TW (IW (β, β′), β), TW (1, δ′))
= max(TW (IW (β, β′), β), δ′)
= max(min(β, β′), δ′)
= β′

ee4(A,B) = min(IW (A(p5), B(p5)), IW (A(p6), B(p6)))
= min(IW (1− γ′, 1), IW (1− γ, 0))
= min(1, γ)
= γ

ee�(A,B)
= max(TW (B(p5), 1−A(p5)), TW (B(p6), 1−A(p6)))
= max(TW (1, γ′), TW (0, γ))
= max(γ′, 0)
= γ′

Using (26), (16) and (17) and the fact that 1 − γ′ ≤
IW (δ, δ′), we find

eb4(A,B)
= min(1− TW (A(p3), B(p2)), 1− TW (A(p4), B(p3)),

1− TW (A(p5), B(p4)), 1− TW (A(p6), B(p5)))
= min(1− TW (1, 1− β), 1− TW (IW (δ, δ′), 1− δ′),

1− TW (1− γ′, 1− δ′), 1− TW (1− γ, 1))
= min(β, 1− TW (IW (δ, δ′), 1− δ′), γ)

and by (6) and (5)

= min(β, 1− TW (IW (1− δ′, 1− δ), 1− δ′), γ)
= min(β, 1−min(1− δ′, 1− δ), γ)
= min(β, δ, γ)
= δ

Finally, by (23) and (24), we establish

eb�(A,B)
= min(1− TW (A(p3), B(p1)), 1− TW (A(p3), B(p2)),

1− TW (A(p3), B(p3)), 1− TW (A(p4), B(p4)),
1− TW (A(p5), B(p5)))

= min(1− TW (1, 1− β), 1− TW (1, 1− δ′),
1− TW (IW (δ, δ′), 1− δ′), 1− TW (1− γ′, 1))

= min(β, δ′, γ′)
= δ′

There are eight more cases to consider, whose proofs are
similar to that of the first case. Therefore, we only provide
the definitions of A and B in these remaining cases and omit
further details.
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1) If δ > 0, δ′ > 0 and β′ > γ′, A and B are defined as

A = {p2/1, ]p2, p4]/1− δ′, ]p4, p6]/1− γ}
B = {[p1, p2[/1− β, [p2, p3[/1− β′, [p3, p4[/IW (δ, δ′),

p4/1, ]p4, p5]/IW (γ, γ′)}

2) If δ = 0 and β < γ, A and B are defined as

A = {[p1, p2[/β′, [p2, p3[/β, [p3, p4[/IW (α, α′),
p4/1, ]p4, p5]/IW (γ, γ′)}

B = {p2/1, ]p2, p4]/α, ]p4, p6]/γ′}

3) If δ = 0 and β ≥ γ, A and B are defined as

A = {[p1, p3[/β′, [p3, p5[/α, p5/1}
B = {[p2, p3[/IW (β, β′), p3/1, ]p3, p4]/IW (α, α′),

]p4, p5]/γ, ]p5, p6]/γ′}

4) If δ > 0, δ′ = 0, α′ ≥ 1− δ and α′ > SW (1− δ, β′), A
and B are defined as

A = {[p2, p3[/IW (δ, β′), p3/1, ]p3, p5]/TW (α′, 1− γ′)}
B = {[p1, p2[/1− β, [p2, p3[/1− δ, p3/1, ]p3, p4]/α′,

]p4, p5]/TW (γ, 1− γ′, α′)}

5) If δ > 0, δ′ = 0, α′ ≥ 1− δ and α′ > SW (1− δ, γ′), A
and B are defined as

A = {[p1, p2[/TW (β, 1− β′, α′), [p2, p3[/α′, p3/1,

]p3, p4]/1− δ, ]p4, p5]/1− γ}
B = {[p1, p3[/TW (α′, 1− β′), p3/1, ]p3, p4]/IW (δ, γ′)}

6) If δ > 0, δ′ = 0, α′ ≥ 1 − δ and α′ ≤ SW (1 −
δ,min(β′, γ′)), A and B are defined as

A = {[p2, p3[/IW (β, β′), [p3, p4[/α′, p4/1,

]p4, p6]/1− γ}
B = {[p1, p3[/1− β, [p3, p4[/1− δ, p4/1,

]p4, p5]/IW (γ, γ′)}

7) If δ > 0, δ′ = 0, α′ < 1 − δ and β ≤ γ, A and B are
defined as

A = {[p1, p2[/β′, [p2, p3[/TW (β, 1− δ), [p3, p4[/α′,

p4/1, ]p4, p5]/IW (γ, γ′)}
B = {[p2, p4[/1− δ, p4/1, ]p4, p6]/γ′}

8) If δ > 0, δ′ = 0, α′ < 1 − δ and β > γ, A and B are
defined as

A = {[p1, p3[/β′, p3/1, ]p3, p5]/1− δ}
B = {[p2, p3[/IW (β, β′), p3/1, ]p3, p4]/α′,

]p4, p5]/TW (γ, 1− δ), ]p5, p6]/γ′}

B. Proof of Proposition 2

The proof proceeds by a case analysis on the values of δ1

(δ1 = 0 or δ1 > 0) and δ2 (δ2 = 0 or δ2 > 0). First assume
that δ1 = δ2 = 0. Let A, B and C be defined as follows

A = {[p1, p4[/TW (β1, α2), [p4, p7[/β1, p7/1}
B = {[p2, p5[/α2, p5/1, ]p5, p8]/α1}
C = {p3/1, ]p3, p6]/γ2, ]p6, p9]/TW (α1, γ2)}

where p1 < p2 < · · · < p9 are real numbers. Clearly, A, B
and C are fuzzy time intervals. First, we verify that (38)–(45)
are satisfied. Using Lemma 10, we find

be4(A,B)
= max(TW (TW (β1, α2), 1), TW (β1, 1), TW (1, α1))
= max(TW (β1, α2), β1, α1)
= α1

(39)–(45) are shown in completely the same way. Next, we
show that A and C satisfy the restrictions for be4(A,C) and
eb4(A,C). By Lemma 10 and Lemma 2, we have

be4(A,C)
= max(TW (TW (β1, α2), 1), TW (β1, γ2), TW (1, TW (α1, γ2)))
= max(TW (β1, α2), TW (β1, γ2), TW (α1, γ2))
= max(TW (β1, α2), TW (α1, γ2))

which equals α∗ since TW (α1, δ2) = TW (α1, 0) = 0 and
TW (δ1, α2) = TW (0, α2) = 0. Using Lemma 10, we obtain

eb4(A,C) ≤ 1− TW (A(p7), C(p3)) = 0

To show that the restrictions for bb4(A,C) and ee4(A,C)
can be satisfied as well, we define A, B and C as follows

A = {[p1, p4[/TW (β1, β2), [p4, p8[/β1, [p8, p10[/α1,

[p10, p12]/1}
B = {[p2, p6[/β2, [p6, p9]/1, ]p9, p13]/γ1}
C = {[p3, p5]/1, ]p5, p7]/α2, ]p7, p11]/γ2,

]p11, p14]/TW (γ1, γ2)}

where p1 < p2 < · · · < p14 are real numbers. As before, we
can verify that (38)–(45) are satisfied. Moreover, using Lemma
10, we obtain

bb4(A,C)
= min(IW (0, TW (β1, β2)), IW (1, TW (β1, β2)))
= TW (β1, β2)
= max(TW (β1, β2),min(α1 + TW (δ2, γ1), 0,

β1 + TW (δ2, α1)))
= max(TW (β1, β2),min(α1 + TW (δ2, γ1), δ2,

β1 + TW (δ2, α1)))
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and

ee4(A,C)
= min(IW (1, TW (γ1, γ2)), IW (0, TW (γ1, γ2)))
= TW (γ1, γ2)
= max(TW (γ1, γ2),min(α2 + TW (δ1, β2), δ1,

γ2 + TW (δ1, α2)))

Calculations for the remaining cases are rather similar. There-
fore, we only provide the definitions of the fuzzy time intervals
in each case, and omit the details.

1) Assume δ1 = 0, δ2 > 0. If 1− δ2 ≥ α1, the restriction
for be4(A,C) is satisfied by

A = {[p1, p6[/β1, p6/1}
B = {p2/1, ]p2, p4]/1− δ2, ]p4, p7]/α1}
C = {p3/1, ]p3, p5]/γ2, ]p5, p8]/TW (α1, γ2)}

If 1 − δ2 < α1 and 1 − δ2 < γ1, it holds that α∗ = 1,
since 1 − δ2 < γ1 implies TW (γ1, δ2) > 0, and the
restriction for be4(A,C) thus becomes trivial.
If 1 − δ2 < α1 and 1 − δ2 ≥ γ1, the restriction for
be4(A,C) is satisfied by

A = {[p1, p4[/α1, p4/1}
B = {p2/1, ]p2, p5]/γ1}
C = {p3/1, ]p3, p5]/TW (γ1, γ2)}

If β1 + TW (α1, δ2) ≥ α1 + TW (γ1, δ2), the restrictions
for bb4(A,C) and ee4(A,C) are satisfied by

A = {[p1, p3[/TW (β1, β2, 1− δ2), [p3, p5[/α1, p5/1,

]p5, p7]/1− TW (γ1, γ2)}
B = {[p1, p3[/TW (β2, 1− δ2), p3/1, ]p3, p5]/γ1,

]p5, p7]/ min(γ1, 1− γ2)}
C = {[p2, p4[/1− δ2, [p4, p6[/1− TW (δ2, γ1), p6/1}

If β1 + TW (α1, δ2) < α1 + TW (γ1, δ2), the restrictions
for bb4(A,C) and ee4(A,C) are satisfied by

A = {[p1, p3[/TW (β1, β2, 1− δ2), [p3, p5[/β1, p5/1,

]p5, p7]/1− TW (γ1, γ2)}
B = {[p1, p3[/TW (β2, 1− δ2), p3/1, ]p3, p5]/α1,

]p5, p7]/ min(γ1, 1− γ2)}
C = {[p2, p4[/1− δ2, [p4, p6[/1− TW (δ2, α1), p6/1}

Finally, the restriction for eb4(A,C) is satisfied by

A = {[p1, p3[/β1, [p3, p5[/α1, p5/1}
B = {[p1, p3[/β2, p3/1, ]p3, p6]/γ1}
C = {[p2, p4[/1− δ2, [p4, p7[/1− TW (γ1, δ2), p7/1}

2) Assume δ1 > 0, δ2 = 0. If 1− δ1 ≥ α2, the restriction
for be4(A,C) is satisfied by

A = {[p1, p3[/TW (β1, α2), [p3, p5[/β1, p5/1}
B = {[p1, p4[/α2, [p4, p6[/1− δ1, p6/1}
C = {p2/1, ]p2, p7]/γ2}

If 1 − δ1 < α1 and 1 − δ1 < β2, it holds that α∗ = 1,
and the restriction for be4(A,C) thus becomes trivial.
If 1 − δ1 < α1 and 1 − δ1 ≥ β2, the restriction for
be4(A,C) is satisfied by

A = {[p1, p3[/TW (β1, β2), p3/1}
B = {[p1, p4[/β2, p4/1}
C = {p2/1, ]p2, p5]/α2}

If α2 + TW (δ1, β2) ≥ γ2 + TW (δ1, α2), the restrictions
for bb4(A,C) and ee4(A,C) are satisfied by

A = {p2/1, ]p2, p4]/1− TW (δ1, α2), ]p4, p7]/1− δ1}
B = {[p1, p3[/ min(1− β1, β2), [p3, p5[/α2, p5/1,

]p5, p8]/TW (γ1, 1− δ1)}
C = {[p1, p3[/1− TW (β1, β2), p3/1, ]p3, p6]/γ2,

]p6, p8]/TW (γ1, γ2, 1− δ1)}

If α2 + TW (δ1, β2) < γ2 + TW (δ1, α2), the restrictions
for bb4(A,C) and ee4(A,C) are satisfied by

A = {p2/1, ]p2, p4]/1− TW (δ1, β2), ]p4, p7]/1− δ1}
B = {[p1, p3[/ min(1− β1, β2), [p3, p4[/β2, p4/1,

]p4, p8]/TW (γ1, 1− δ1)}
C = {[p1, p3[/1− TW (β1, β2), p3/1, ]p3, p4]/α2,

]p4, p6]/γ2, ]p6, p8]/TW (γ1, γ2, 1− δ1)}

Finally, the restriction for eb4(A,C) is satisfied by

A = {p1/1, ]p1, p4]/1− TW (δ1, β2), ]p4, p6]/1− δ1}
B = {[p2, p5[/β2, p5/1, ]p5, p7]/γ1}
C = {p3/1, ]p3, p5]/α2, ]p5, p7]/γ2}

3) Assume δ1 > 0, δ2 > 0. The restrictions on bb4(A,C)
and ee4(A,C) are satisfied by

A = {p2/1, ]p2, p5]/1−max(δ1, TW (γ1, γ2))}
B = {[p1, p3[/1− β1, p3/1, ]p3, p5]/1− γ2}
C = {[p1, p4[/1−max(δ2, TW (β1, β2)), p4/1}

Finally, the restrictions on be4(A,C) and eb4(A,C) are
satisfied by

A = {[p1, p3]/1, ]p3, p6]/1−max(δ1, TW (γ1, δ2))}
B = {[p1, p4[/ min(1− δ1, β2), p4/1,

]p4, p7]/ min(1− δ2, γ1)}
C = {[p2, p5[/1−max(δ2, TW (δ1, β2)), [p5, p7]/1}
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