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Abstract

Qualitative spatial information plays a key role in many applications. While it is well-recognized that all but a few of
these applications deal with spatial information that is affected by vagueness, relatively little work has been done on mod-
elling this vagueness in such a way that spatial reasoning can still be performed. This paper presents a general approach to
represent vague topological information (e.g., A is a part of B, A is bordering on B), using the well-known region connec-
tion calculus as a starting point. The resulting framework is applicable in a wide variety of contexts, including those where
space is used in a metaphorical way. Most notably, it can be used for representing, and reasoning about, qualitative rela-
tions between regions with vague boundaries.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

There is an increasing interest in formalisms that describe properties of space in a qualitative way. Usually
such a qualitative representation takes the form of topological relations between regions [2,4] (e.g., region A is
bordering on region B), orientation and distance relations between points [8,10] (e.g., place p is located north
of place q, p is located far from q), or even information about the size and shape of objects (e.g., region A is
smaller than region B; see [22] for an overview). In the context of geographical information systems (GISs),
qualitative relations are useful to express spatial queries, while route planners and GPS systems benefit from
using qualitative descriptions as they are often easier to understand by humans than quantitative descriptions
(e.g., compare turn right immediately after the bridge with turn right in 673 meters). Another important area in
which qualitative spatial relations can play an important role is geographical information retrieval [38,40]. The
goal of a geographical information retrieval system is to pinpoint information in a large document collection
that is both relevant to a general query, and to a given geographical context (e.g., web pages about movie
0888-613X/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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theatres near Gent, Belgium). On one hand, this could be achieved by finding addresses, transforming these
addresses to geographical coordinates, and comparing these coordinates with available (structured) informa-
tion. However, there is also a lot of relevant geographical information available in the form of qualitative rela-
tions, either extracted from natural language texts, or a priori available in geo-ontologies [40].

In most existing work, qualitative relations are crisp relations, e.g., p is either far from q or not far from q,
and regions are assumed to have precisely defined boundaries. These assumptions stand in stark contrast to
the nature of real-world geographical information. For example, most non-political geographical regions, such
as Western Europe, Downtown Seattle, or the Alps, have vague boundaries [18,26,28,29]. Also the concept of
nearness of places is generally perceived as a vague property, where a proposition like p is close to q is often
considered true to some degree in a given context [3,6,19,20,27]. Hence, there is a clear need for formalisms
that describe qualitative spatial properties in a graded way.

In this paper, we will focus on topological relations. Usually, information such as A is a part of B is
formally expressed using either the Region Connection Calculus (RCC) [4] or the 9-intersection model [2].
We will focus on the former, since it is more tailored towards reasoning. In the RCC, spatial relations are
defined using a primitive dyadic relation C which expresses the notion of connection between regions. For
example, we may think of regions as sets of points, and define C such that for two regions a and b, C(a,b)
holds iff a and b have a point in common. Other topological relations are defined in terms of the relation
C, as shown in Table 1. The intuitive meaning of some of these relations is shown in Fig. 1. Throughout this
paper, we will use upper case letters like A,B,C, . . . to denote specific regions, and lower case letters like
a,b,c, . . . to denote variables that take values from the universe of regions U.

Clearly, the crisp nature of the RCC relations is a major limitation in many application domains. For exam-
ple, while the relations EC and DC are mutually exclusive, in practical applications it is often difficult, or even
undesirable, to differentiate between situations where two regions are very close to each other, but discon-
nected, and situations where two regions are connected. For example, it is commonplace to say that a cabinet
is located against a wall even if there is a gap of a few millimeters between the cabinet and the wall. When
modelling such a spatial configuration using the RCC relations, EC would hold if the cabinet is actually
located against the wall, while DC would hold as soon as there is a gap, irrespective of its size. A cognitively
more adequate approach would be to define relations like EC and DC such that EC holds to the extent that the
Table 1
Definition of topological relations in the RCC

Name Relation Definition

Disconnected from DC(a,b) :Cða; bÞ
Part of P(a,b) ("c 2 U)(C(c,a)) C(c,b))
Proper part of PP(a,b) Pða; bÞ ^ :P ðb; aÞ
Equal to EQ(a,b) P(a,b) ^ P(b,a)
Overlaps with O(a,b) ($c 2 U)(P(c,a) ^ P(c,b))
Discrete from DR(a,b) :Oða; bÞ
Partially overlaps with PO(a,b) Oða; bÞ ^ :Pða; bÞ ^ :P ðb; aÞ
Externally connected to EC(a,b) Cða; bÞ ^ :Oða; bÞ
Non-tangential part of NTP(a,b) Pða; bÞ ^ :ð9c 2 UÞðECðc; aÞ ^ ECðc; bÞÞ
Tangential proper part of TPP(a,b) PPða; bÞ ^ :NTPða; bÞ
Non-tangential proper part of NTPP(a,b) :Pðb; aÞ ^ NTPða; bÞ
a and b denote regions, i.e., elements of the universe of regions U.

Fig. 1. Intuitive meaning of some RCC relations.
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cabinet is located against, or close to the wall, and DC holds to the extent that the cabinet is not close to the
wall, where closeness is defined as a gradual, vague property. In this way, the aforementioned problem does
not occur anymore, since the transition from DC to EC becomes gradual, rather than abrupt, and we can
express knowledge like a and b are more or less externally connected, or a and b are definitely disconnected.
Moreover, in many geographical contexts, regions are not well-defined sets of points, but, ill-defined areas
with vague, gradual boundaries (e.g., London’s West End, the Ardennes, etc.). The topological relations
between such vague regions are most naturally represented as graded relations, rather than crisp relations such
as those of the RCC.

It is important to keep in mind that the RCC does not impose a particular representation of regions, nor a
particular interpretation of connection. The only restriction imposed by the RCC is that the relation C is
reflexive and symmetric. For example, in [32] the RCC relations are used to dynamically structure information
from distributed hypermedia systems such as the web. In this context, regions are represented as vectors of
attributes describing information units (e.g., paragraphs in a document), and two regions are connected if
the degree of similarity of the corresponding information units exceeds a given threshold. Again, a graded
approach may be more natural, in which two information units could be connected to the degree that they
are similar to each other. Another interpretation of connection is introduced in [42] in the context of image
processing, where regions are defined as black-and-white images and C is defined using dilations. Dilations
are morphological operators that are often used in image processing for segmentation of images, boundary
detection, etc. Using this interpretation of C, the RCC relations can be used for processing black-and-white
images. The idea of dilations has been extended to gray-scale images and even color images, using dilation
operators defined as fuzzy relations [34]. Interestingly, using these fuzzy dilation operators, it is possible to
extend the idea from [42] to gray-scale images or color images in a generalization of the RCC that can cope
with fuzzy relations. Although outside the context of the RCC, this idea has already been pursued to some
extent in [37].

The aim of this paper is to introduce such a generalization of the RCC, based on an arbitrary reflexive
and symmetric fuzzy relation C. In the spirit of the RCC, we do not impose any constraints on how regions
are represented, or how connection should be interpreted. Therefore, our fuzzy relations can be used in con-
texts where space is used in a metaphorical way (e.g., regions as information units or images), as well as in,
for example, geographical applications. Moreover, in the special case where C is a crisp relation, our defi-
nitions coincide with the original definitions of the RCC relations. In the next section, we recall some basic
notions from fuzzy set theory, while Section 3 reviews related work on the modelling of vague regions and
imprecise topological relations. Next, in Section 4, we introduce the definitions of our generalized RCC rela-
tions. Since there are many ways to generalize the original definitions, we show a number of interesting prop-
erties of our generalized definitions to justify the choices we made. Many of these properties are also useful
in practice; most notably, the transitivity properties of our generalized definitions support spatial reasoning
(i.e., the inference of new information from given spatial relations). Finally, some conclusions are presented
in Section 5.

In a follow-up paper [46], we focus on the specific case where regions are represented as fuzzy sets of points
and two regions are called connected to the degree that they are close. We provide a characterization of the
generalized RCC relations under this interpretation, revealing their semantics, and providing a way to evalu-
ate the fuzzy spatial relations in applications. A preliminary version of the results in this paper and [46]
appeared in [39].

2. Preliminaries from fuzzy set theory

A fuzzy set [1] A in a universe X is defined as a mapping from X to the unit interval [0, 1]. For x in X, A(x) is
called the membership degree of x in A. For a in [0,1], the set Aa = {xjx 2 X and A(x) P a} is called the a-level
set of A.

A fuzzy set R in X · X is called a fuzzy relation in X. R is called reflexive iff R(x,x) = 1 for all x in X, and
irreflexive iff R(x,x) = 0 for all x in X. It is symmetric iff R(x,y) = R(y,x) for all x and y in X. The inverse of a
fuzzy relation R in X is the fuzzy relation R�1 in X defined for all x and y in X by R�1(y,x) = R(x,y); the com-
plement co R of R is defined as (co R)(x,y) = 1 � R(x,y) for all x and y in X.
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A t-norm T is defined as a symmetric, associative, increasing [0,1]2 � [0,1] mapping satisfying the boundary
condition T(x, 1) = x for all x in [0, 1]. Some common t-norms are the minimum TM, the product TP and the
Łukasiewicz t-norm TW, defined by:
T Mðx; yÞ ¼ minðx; yÞ
T P ðx; yÞ ¼ x � y
T W ðx; yÞ ¼ maxð0; xþ y � 1Þ
for all x and y in [0, 1]. It is possible to define an ordering relation 6 for t-norms as follows. If T1 and T2 are
two t-norms, then
T 1 6 T 2 () ð8x; y 2 ½0; 1�ÞðT 1ðx; yÞ 6 T 2ðx; yÞÞ ð1Þ

For example, it is easy to verify that TW 6 TP 6 TM.

Similarly, a t-conorm is defined as a symmetric, associative, increasing [0,1]2 � [0,1] mapping S satisfying
S(0, x) = x for all x in [0, 1]. Common t-conorms are the maximum SM, the probabilistic sum SP, and the
Łukasiewicz t-conorm SW, defined by
SMðx; yÞ ¼ maxðx; yÞ
SP ðx; yÞ ¼ xþ y � x � y
SW ðx; yÞ ¼ minð1; xþ yÞ
for all x and y in [0,1]. The negation of an element x in [0, 1] is commonly defined by 1 � x. Finally, a
[0,1]2 � [0,1] mapping I which is decreasing in the first and increasing in the second argument and which sat-
isfies I(0,0) = I(0,1) = I(1, 1) = 1 and I(1, 0) = 0 is called an implicator. For an arbitrary t-conorm S, the map-
ping IS, defined for x and y in [0, 1] by
ISðx; yÞ ¼ Sð1� x; yÞ ð2Þ

is called the strong implicator of S. For example, the strong implicator corresponding to SM is defined by
ISM ðx; yÞ ¼ maxð1� x; yÞ ð3Þ

for all x and y in [0, 1]. Let T be an arbitrary t-norm; the mapping IT, defined for x and y in [0,1] by
IT ðx; yÞ ¼ supfkjk 2 ½0; 1� and T ðx; kÞ 6 yg ð4Þ

is called the residual implicator of T. For example, the residual implicators corresponding to TM, TP, and TW

are defined by:
IT M ðx; yÞ ¼
1 if x 6 y

y otherwise

�

IT P ðx; yÞ ¼
1 if x 6 y
y
x otherwise

�

IT W ðx; yÞ ¼ minð1; 1� xþ yÞ

for all x and y in [0, 1]. We will mainly use residual implicators in this paper. For convenience, we will some-
times write IM, IP, and IW instead of IT M , IT P , and IT W . If T is a left-continuous t-norm (i.e., a t-norm whose
partial mappings are left-continuous), it can be shown that for all x, y and z in [0, 1], J an arbitrary index set,
and (xj)j2J and (yj)j2J families in [0,1], it holds that (see e.g., [17])
IT ðx; yÞ ¼ 1() x 6 y ð5Þ
T ðx; IT ðx; yÞÞ 6 y ð6Þ
IT ðT ðx; yÞ; zÞ ¼ IT ðx; IT ðy; zÞÞ ð7Þ

IT x; inf
j2J

yj

� �
¼ inf

j2J
IT ðx; yjÞ ð8Þ

T inf
j2J

xj; y
� �

6 inf
j2J

T ðxj; yÞ ð9Þ
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Moreover, it is easy to see that for an arbitrary t-norm T it holds that
IT ð1; xÞ ¼ x ð10Þ

Note that for any implicator I, it holds that I(x, 1) = 1, for every x in [0,1].

3. Related work

It has been widely recognized that in the real world, geographical regions tend to be vague (e.g.,
[11,18,26,28,29]). Several formalisms to represent such vague regions have already been proposed, including
supervaluation semantics [23,26,28], pairs of crisp sets [7,9,29], and fuzzy sets [14,16].

Most definitions of topological relations between vague regions extend either the RCC or the 9-intersection
model by treating a vague region a as a pair of two crisp regions: one region a which consists of the points that
definitely belong to the vague region, and one region �a whose complement consists of the points that definitely
do not belong to the vague region. The region defined by �a n a (provided a is a proper part of �a) consists of the
points for which it is hard to tell whether they are in the vague region or not. A well-known example is the egg-
yolk calculus [7], which is based on the RCC. In [9], a similar approach, based on the notion of a thick bound-
ary, is proposed as an extension of the 9-intersection model. Both models cause a significant increase in the
number of possible relations: 46 and 44 relations, respectively. For example, instead of specifying that two
regions a and b overlap, we may specify that �a and b overlap (but not a and b), or that �a and �b overlap, or
that a and b overlap, etc. where a and �a (respectively, b and �b) represent the yolk and the egg of a (respectively,
b). In [43], spatial relations between such vague regions are represented as 4-tuples of classical topological rela-
tions, facilitating the study of, for instance, transitivity rules. Another possibility, which is adopted in [24], is to
stay with the spatial relations of the RCC, but to use three-valued relations instead of classical two-valued
relations.

Other approaches have been concerned with defining (fuzzy) spatial relations between vague regions rep-
resented as fuzzy sets. For example, in [15,25], generalizations of the 9-intersection model based on a-levels
of fuzzy sets are suggested. In [31], a generalization of the 9-intersection model is introduced using concepts
from fuzzy topology, yielding a set of 44 crisp spatial relations. Another generalization of the 9-intersection
model, using similar fuzzy topological concepts, is proposed in [41], again obtaining 44 relations between fuzzy
sets. On the other hand, [33] uses the RCC as a starting point to define crisp spatial relations between fuzzy
sets. However, this approach can only be used when the membership values of the fuzzy sets are taken from a
finite universe. The total number of relations is dependent on the cardinality of the finite set of membership
values. In [30], degrees of appropriateness are assigned to RCC relations, modelling possibilistic uncertainty.
These degrees could be interpreted as encoding, for instance, preferences or possibilistic uncertainty. Finally,
[35,36] discuss fuzzy topological relations with the goal of modelling position uncertainty of region
boundaries.

Approaches based on supervaluation semantics, like [11], mainly deal with a different kind of vagueness. A
typical example is the definition of a forest [28]: should a forest be self-connected or can it consist of several
disjoint parts; are roads and paths going through a forest parts of the forest? Approaches based on fuzzy sets,
on the other hand, are more concerned with indeterminacy resulting from the fact that the transition from
satisfying a certain condition to not satisfying is gradual. Typical examples from geography are concepts like
mountains, or regions like Western Europe, downtown Seattle, or the Alps.

All the aforementioned approaches have in common that certain assumptions are made on how vague
regions are represented. Moreover, they are mainly applicable to geographical contexts, and can usually
not be used in situations where, for example, RCC relations are used in a metaphorical way. The generality
and much of the elegance of the RCC is lost in this way. A different possibility, which we adopt in this paper, is
to generalize the RCC relations directly, without making any assumptions on how regions should be repre-
sented. This idea has already been pursued, to some extent, in [12], where the starting point is to define con-
nection as an arbitrary symmetric fuzzy relation C in the universe U of regions, satisfying a weak reflexivity
property, namely C(a,a) > 0.5 for every region a in U. The fuzzy relation P (part of), for example, is defined by
P ða; bÞ ¼ inf
z2U

ISM ðCðz; aÞ;Cðz; bÞÞ ð11Þ
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where a and b are regions in U. However, many properties of the original RCC relations are lost in this ap-
proach. For example, in correspondence with the reflexivity of P in the RCC, it would be desirable that
P(a,a) = 1 for any region a in U. Unfortunately, this is in general not the case when (11) is used to define
P, due to the choice of ISM to generalize logical implication. Similarly, many interesting transitivity properties
are also lost, which makes the fuzzy relations unsuitable for spatial reasoning.

Finally, note that apart from generalizing topological relations to deal with vagueness, it is also possible to
extend classical formalisms with the aim of modelling (probabilistic) uncertainty. For example, in [21], a prob-
abilistic extension of the 9-intersection model is introduced to deal with uncertainty arising from imprecise
measurements of region boundaries.

4. Fuzzy spatial relations

4.1. Definition

Henceforth, let T denote a left-continuous t-norm and IT its residual implicator. Let C be a reflexive and
symmetric fuzzy relation, where for two regions a and b, C(a,b) expresses the degree to which a and b are con-
nected. Table 2 proposes our generalization of the spatial relations of the RCC, expressing the degree P(a,b) to
which a is a part of b, the degree O(a,b) to which a overlaps with b, etc.

Most of these expressions are straightforward generalizations of the definitions in Table 1, where logical
operators are generalized using their corresponding fuzzy logic operators, and universal and existential quan-
tification is generalized using the infimum and supremum, respectively. Note, however, that logical conjunc-
tion ‘^’ is sometimes modelled by min (e.g., in EQ(a,b)) and sometimes by T (e.g., in O(a,b)). This is because
in the former case, the joint satisfaction of two independent constraints is evaluated, hence idempotency is
desirable (recall that min is the only idempotent t-norm). However, in the latter case, this idempotency is
not required, and other choices of T than the minimum should not be excluded a priori.

It is well-known that fuzzifying two formulas that are equivalent in binary logic, does not necessarily
yield two equivalent formulas in fuzzy logic. Hence, it may be desirable to generalize formulas that are
equivalent to the original definitions of some of the RCC relations, rather than the original definitions them-
selves. This is the case for NTP, where our definitions are simpler to manipulate than the definitions resulting
from a straightforward generalization, and, moreover, yield a generalization that satisfies more interesting
properties.

When C is a crisp relation, our definitions coincide with the original definitions of the RCC. To see why this
is also true for NTP, we consider the following lemma.

Lemma 1
Table
Genera

Relatio

DC(a,
P(a,b)
PP(a,b

EQ(a,b

O(a,b)
DR(a,
PO(a,b

EC(a,b

NTP(a
TPP(a
NTPP

U is th
P ða; bÞ ^ :ð9c 2 UÞðECðc; aÞ ^ ECðc; bÞÞ � ð8c 2 UÞðCðc; aÞ ) Oðc; bÞÞ ð12Þ
2
lized definitions of the spatial relations of the RCC

n Definition

b) 1 � C(a,b)
infc2UIT(C(c,a),C(c,b))

) min(P(a,b),1 � P(b,a))
) min(P(a,b),P(b,a))

supc2UT(P(c,a),P(c,b))
b) 1 � O(a,b)
) min(O(a,b), 1 � P(a,b),1 � P(b,a))
) min(C(a,b), 1 � O(a,b))
,b) infc2UIT(C(c,a),O(c,b))
,b) min(PP(a,b), 1 � NTP(a,b))
(a,b) min(1 � P(b,a),NTP(a,b))

e universe of all regions, while a and b are variables denoting arbitrary elements of U, i.e., regions.
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Proof. First, we prove
P ða; bÞ ^ :ð9c 2 UÞðECðc; aÞ ^ ECðc; bÞÞ ) ð8c 2 UÞðCðc; aÞ ) Oðc; bÞÞ
or, equivalently,
P ða; bÞ ) ð:ð9c 2 UÞðECðc; aÞ ^ ECðc; bÞÞ ) ð8c 2 UÞðCðc; aÞ ) Oðc; bÞÞÞ

Assuming P(a,b), i.e., C(c,a)) C(c,b) for all u in U, we obtain
:ð9c 2 UÞðECðc; aÞ ^ ECðc; bÞÞ � ð8c 2 UÞð:ECðc; aÞ _ :ECðc; bÞÞ
� ð8c 2 UÞð:Cðc; aÞ _ Oðc; aÞ _ :Cðc; bÞ _ Oðc; bÞÞ
From C(c,a)) C(c,b), we obtain :Cðc; aÞ _ :Cðc; bÞ � :Cðc; aÞ. Moreover, we can show that, under the
assumption that P(a,b), it holds that O(c,a)) O(c,b), and hence O(c,a) _ O(c,b) � O(c,b). Thus we find
ð8c 2 UÞð:Cðc; aÞ _ Oðc; aÞ _ :Cðc; bÞ _ Oðc; bÞÞ
� ð8c 2 UÞð:Cðc; aÞ _ Oðc; bÞÞ � ð8c 2 UÞðCðc; aÞ ) Oðc; bÞÞ
Conversely, we immediately have that ("c 2 U) (C(c,a)) O(c,b))) P(a,b), since O(u,v)) C(u,v) for all u

and v in U. Finally, we show that also ð8c 2 UÞðCðc; aÞ ) Oðc; bÞÞ ) :ð9c 2 UÞðECðc; aÞ ^ ECðc; bÞÞ

ð8c 2 UÞðCðc; aÞ ) Oðc; bÞÞ � ð8c 2 UÞð:Cðc; aÞ _ Oðc; bÞÞ

) ð8c 2 UÞð:Cðc; aÞ _ Oðc; aÞ _ :Cðc; bÞ _ Oðc; bÞÞ
� ð8c 2 UÞð:ECðc; aÞ _ :ECðc; bÞÞ
� :ð9c 2 UÞðECðc; aÞ ^ ECðc; bÞÞ �
Note that the right-hand side of (12) is the alternative definition of NTP which we have used for our
generalization.
4.2. Properties

Next, we show some properties of our generalized RCC relations which are desirable in practice. They also
serve as a justification of some of the decisions we made regarding the definitions of the fuzzy spatial relations,
e.g., the use of residual implicators, and the somewhat peculiar definitions of TPP and NTPP. The first prop-
osition shows that the (ir)reflexivity of the original RCC relations carries over to our generalizations.

Proposition 1. The fuzzy relations P, O and EQ are reflexive, while the fuzzy relations DC, PP, DR, PO, EC,

TPP and NTPP are irreflexive.

Proof. Using (5), we find
P ða; aÞ ¼ inf
z2U

IT ðCðz; aÞ;Cðz; aÞÞ ¼ inf
z2U

1 ¼ 1
For the fuzzy relation O, we obtain
Oða; aÞ ¼ sup
z2U

T ðPðz; aÞ; P ðz; aÞÞP T ðP ða; aÞ; Pða; aÞÞ ¼ T ð1; 1Þ ¼ 1
The reflexivity of EQ immediately follows from the reflexivity of P, while the irreflexivity of DC follows from
the reflexivity of C. The irreflexivity of PP, PO, TPP, and NTPP follows from the reflexivity of P, and the
irreflexivity of DR and EC follows from the reflexivity of O. h

The relations of the RCC are not independent of each other. For example, if TPP(a,b) holds, then also
PP(a,b). The following proposition generalizes such dependencies.
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Proposition 2
1: POða; bÞ 6 Oða; bÞ 6: TPPða; bÞ 6 PP ða; bÞ
2: NTPPða; bÞ 6 PP ða; bÞ 7: PPða; bÞ 6 P ða; bÞ
3: EQða; bÞ 6 P ða; bÞ 8: P ða; bÞ 6 Oða; bÞ
4: Oða; bÞ 6 Cða; bÞ 9: ECða; bÞ 6 Cða; bÞ
5: ECða; bÞ 6 DRða; bÞ 10: DCða; bÞ 6 DRða; bÞ
Proof. First, we show that O(a,b) 6 C(a,b):
Oða; bÞ ¼ sup
z2U

T ðP ðz; aÞ; P ðz; bÞÞ ¼ sup
z2U

T ðinf
u2U

IT ðCðu; zÞ;Cðu; aÞÞ; inf
u2U

IT ðCðu; zÞ;Cðu; bÞÞÞ

6 sup
z2U

T ðIT ðCðz; zÞ;Cðz; aÞÞ; IT ðCða; zÞ;Cða; bÞÞÞ ¼ sup
z2U

T ðIT ð1;Cðz; aÞÞ; IT ðCða; zÞ;Cða; bÞÞÞ
By (10), the symmetry of C, and (6), we obtain
¼ sup
z2U

T ðCðz; aÞ; IT ðCða; zÞ;Cða; bÞÞÞ ¼ sup
z2U

T ðCðz; aÞ; IT ðCðz; aÞ;Cða; bÞÞÞ 6 Cða; bÞ
As a corollary, we also have DC(a,b) 6 DR(a,b) and NTPP(a,b) 6 PP(a,b).
Next, we show that P(a,b) 6 O(a,b):
Oða; bÞ ¼ sup
z2U

T ðP ðz; aÞ; P ðz; bÞÞP T ðPða; aÞ; P ða; bÞÞ ¼ T ð1; P ða; bÞÞ ¼ P ða; bÞ
where we made use of the reflexivity of P. The remaining inequalities follow straightforwardly from the def-
inition of the minimum. h

Lemma 2 [44]. Let x, y, z 2 [0,1]. It holds that
SW ðminðx; yÞ;minðx; zÞÞP minðx; SW ðy; zÞÞ

In the original RCC, if PP(a,b) holds, then we know that either TPP(a,b) or NTPP(a,b). The following

proposition presents a generalization of this observation.

Proposition 3
SW ðTPPða; bÞ;NTPP ða; bÞÞP PP ða; bÞ ð13Þ
SW ðPPða; bÞ;EQða; bÞÞP P ða; bÞ ð14Þ

SW ðPOða; bÞ; P ða; bÞ; PP�1ða; bÞÞP Oða; bÞ ð15Þ
SW ðOða; bÞ;ECða; bÞÞP Cða; bÞ ð16Þ
SW ðECða; bÞ;DCða; bÞÞP DRða; bÞ ð17Þ
SW ðCða; bÞ;DCða; bÞÞ ¼ 1 ð18Þ
SW ðOða; bÞ;DRða; bÞÞ ¼ 1
Proof. As an example, we show (13). We obtain
SW ðTPPða; bÞ;NTPP ða; bÞÞ ¼ SW ðminðPP ða; bÞ; 1� NTP ða; bÞÞ;minð1� Pðb; aÞ;NTP ða; bÞÞÞ
P SW ðminðPPða; bÞ; 1� NTP ða; bÞÞ;minð1� P ðb; aÞ; Pða; bÞ;NTP ða; bÞÞÞ
¼ SW ðminðPP ða; bÞ; 1� NTP ða; bÞÞ;minðPPða; bÞ;NTP ða; bÞÞÞ
By Lemma 2, and the fact that SW(x,1 � x) = 1 for every x in [0, 1], we obtain
P minðPP ða; bÞ; SW ðNTP ða; bÞ; 1� NTP ða; bÞÞÞ ¼ minðPPða; bÞ; 1Þ ¼ PP ða; bÞ �
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Note that the Łukasiewicz t-conorm is used in the previous proposition, regardless of the choice for T in the
definitions of the fuzzy spatial relations. t-Conorms such as SM or SP cannot be used since they do not satisfy
the law of the excluded middle, i.e., for a in [0,1], it does not hold that SM(1 � a,a) = 1 or SP(1 � a,a) = 1 in
general.

Most applications use only a subset of the RCC relations. Two subsets of RCC relations, called the
RCC-8 relations and the RCC-5 relations, are particularly popular. The set of RCC-8 relations consists
of the relations DC, EQ, EC, PO, TPP, NTPP, TPP�1 and NTPP�1, while the RCC-5 relations are
DR, EQ, PO, PP and PP�1. In other words, when using the RCC-5 relations, DC and EC are taken
together (DR), as well as TPP and NTPP (PP) and their inverses. These two subsets of RCC relations have
the important property that they are jointly exhaustive and pairwise disjoint (JEPD), i.e., for any two
regions, exactly one of the RCC-8 relations holds, and exactly one of the RCC-5 relations. In the following
propositions, we show that a generalization of this property remains valid for our definitions. Again the
Łukasiewicz connectives are used in these properties to express the joint exhaustivity and the mutual
exclusiveness.

Proposition 4. Let R and Q be two of the fuzzy relations DC, EQ, EC, PO, TPP, NTPP, TPP�1 and NTPP�1.

If R5Q, it holds that
T W ðRða; bÞ;Qða; bÞÞ ¼ 0
Proof. As an example, we show that TW(EC(a,b), DC(a,b)) = 0:
T W ðECða; bÞ;DCða; bÞÞ ¼ T W ðminð1� Oða; bÞ;Cða; bÞÞ; 1� Cða; bÞÞ 6 T W ðCða; bÞ; 1� Cða; bÞÞ ¼ 0
where we used the fact that TW(x,1 � x) = 0 for every x in [0,1]. h

Note that Proposition 4 does not hold in general for t-norms such as TM and TP. For example, let a, b and c

be regions for which NTP(a,b) = 0.6, P(a,b) = 0.8 and P(b,a) = 0. It holds that
NTPPða; bÞ ¼ minð1� 0; 0:6Þ ¼ 0:6

TPPða; bÞ ¼ minð0:8; 1� 0; 1� 0:6Þ ¼ 0:4
Hence we find
T MðNTPPða; bÞ; TPP ða; bÞÞ ¼ 0:4 > 0

T P ðNTPP ða; bÞ; TPP ða; bÞÞ ¼ 0:24 > 0
Proposition 5
SW ðDCða; bÞ;EQða; bÞ;ECða; bÞ; POða; bÞ; TPPða; bÞ;NTPP ða; bÞ; TPP�1ða; bÞ;NTPP�1ða; bÞÞ ¼ 1
Proof
SW ðDCða; bÞ;EQða; bÞ;ECða; bÞ; POða; bÞ; TPPða; bÞ;NTPP ða; bÞ; TPP�1ða; bÞ;NTPP�1ða; bÞÞ
P SW ðDCða; bÞ;EQða; bÞ;ECða; bÞ; POða; bÞ; PP ða; bÞ; PP�1ða; bÞÞ
P SW ðDCða; bÞ;ECða; bÞ; POða; bÞ; P ða; bÞ; PP�1ða; bÞÞP SW ðDCða; bÞ;ECða; bÞ;Oða; bÞÞ
P SW ðDCða; bÞ;Cða; bÞÞ ¼ SW ð1� Cða; bÞ;Cða; bÞÞ ¼ 1
Where we used (13)–(16), the definition of DC, and the fact that SW(1 � x,x) = 1 for all x in [0, 1]. h

Analogously, we can show the following two propositions about the generalized RCC-5 relations.

Proposition 6. Let R and Q be two of the fuzzy relations DR, EQ, PO, PP and PP�1. If R5Q, it holds that
T W ðRða; bÞ;Qða; bÞÞ ¼ 0
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Proposition 7
Table
Origin

DC

EC

PO

TPP

NTPP

TPP�1

NTPP

Table
relatio
SW ðDRða; bÞ;EQða; bÞ; POða; bÞ; PPða; bÞ; PP�1ða; bÞÞ ¼ 1
4.3. Transitivity

To facilitate spatial reasoning with the RCC-8 relations, a composition table (or transitivity table) has been
introduced in [5]. The purpose of such a table is to specify, for each pair R, S of RCC-8 relations, the union of
all RCC-8 relations F for which F \ (R�S)5;, where the composition R�S is defined for a and c in U as
ðR � SÞða; cÞ � ð9b 2 UÞðRða; bÞ ^ Sðb; cÞÞ

In other words, the composition table specifies which RCC-8 relations may hold between the regions a and c,
given that R(a,b) and S(b,c) for some region b in U.

For example, as can be seen from Table 3, when DC(a,b) and EC(b,c) holds, either DC(a,c), EC(a,c),
PO(a,c), TPP(a,c), or NTPP(a,c) must hold. Therefore, the RCC-8 composition table contains {DC,EC,
PO,TPP,NTPP} in the entry on the row corresponding to DC and the column corresponding to EC. How-
ever, from the fact that the RCC-8 relations are JEPD, we easily obtain that the relations DC, EC, PO, TPP,
NTPP and P�1 are also JEPD; hence we have that
DC [ EC [ PO [ TPP [ NTPP ¼ coP�1
Therefore, the entry in the composition table could equivalently be :P�1 instead of {DC,EC,
PO,TPP,NTPP}. Similarly, all unions of RCC relations in the RCC-8 composition table can equivalently
be formulated as intersections of C, P, P�1, O, NTP, NTP�1, DC, :P , :P�1, DR, :NTP , and :NTP�1. A sim-
ilar observation was made in [13]. The resulting composition table is shown in Table 4.

To show that Table 4 is indeed equivalent to Table 3, we need the following lemma.

Lemma 3
ð9z 2 UÞðECðz; bÞÞ ) ðNTP ða; bÞ � NTPP ða; bÞÞ
3
al RCC-8 composition table (where EQ is omitted) [5]

DC EC PO TPP NTPP TPP�1 NTPP�1

1 DC, EC, PO,
TPP, NTPP

DC, EC, PO,
TPP, NTPP

DC, EC, PO,
TPP, NTPP

DC, EC, PO, TPP,
NTPP

DC DC

DC, EC, PO,
TPP�1,
NTPP�1

DC, EC, PO,
TPP, TPP�1,
EQ

DC, EC, PO,
TPP, NTPP

EC, PO,
TPP, NTPP

PO, TPP, NTPP DC, EC DC

DC, EC, PO,
TPP�1,
NTPP�1

DC, EC, PO,
TPP�1,
NTPP�1

1 PO, TPP,
NTPP

PO, TPP, NTPP DC, EC, PO,
TPP�1,
NTPP�1

DC, EC, PO,
TPP�1,
NTPP�1

DC DC, EC DC, EC, PO,
TPP, NTPP

TPP, NTPP NTPP DC, EC, PO,
TPP, TPP�1,
EQ

DC, EC, PO,
TPP�1,
NTPP�1

DC DC DC, EC, PO,
TPP, NTPP

NTPP NTPP DC, EC, PO,
TPP, NTPP

1

DC, EC, PO,
TPP�1,
NTPP�1

EC, PO,
TPP�1,
NTPP�1

PO, TPP�1,
NTPP�1

PO, EQ,
TPP, TPP�1

PO, TPP, NTPP TPP�1,
NTPP�1

NTPP�1

�1 DC, EC, PO,
TPP�1,
NTPP�1

PO, TPP�1,
NTPP�1

PO, TPP�1,
NTPP�1

PO, TPP�1,
NTPP�1

PO, TPP�1, TPP,
NTPP, NTPP�1,
EQ

NTPP�1 NTPP�1

entries that contain more than one RCC-8 relation correspond to the union of the given relations; 1 denotes the union of all RCC-8
ns, i.e., the universal relation in the universe of regions U.



Table 4
Alternative formulation of the RCC-8 composition table (where EQ is omitted)

DC EC PO TPP NTPP TPP�1 NTPP�1

DC 1 coP�1 coP�1 coP�1 coP�1 DC DC

EC coP coNTP, coNTP�1 coP�1 C, coP�1 O, coP�1 DR DC

PO coP coP 1 O, coP�1 O, coP�1 coP coP

TPP DC DR coP�1 P, coP�1 NTP, coP�1 coNTP, coNTP�1 coP

NTPP DC DC coP�1 NTP, coP�1 NTP, coP�1 coP�1 1
TPP�1 coP C, coP O, coP O, coNTP, coNTP�1 O, coP�1 P�1, coP NTP�1, coP

NTPP�1 coP O, coP O, coP O, coP O NTP�1, coP NTP�1, coP

Table entries containing more than one relation correspond to the intersection of the given relations; 1 denotes the universal relation in the
universe of regions U.
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Proof. Assume that for some z it holds that EC(z,b), i.e., C(z,b) and :Oðz; bÞ. To show that, under this
assumption, NTP(a,b) � NTPP(a,b), we only need to show that NTPða; bÞ ) :P ðb; aÞ. To this end, we show
that :P ðb; aÞ holds under the assumption NTP(a,b)
:P ðb; aÞ � :ð8c 2 UÞðCðc; bÞ ) Cðc; aÞÞ � ð9c 2 UÞðCðc; bÞ ^ :Cðc; aÞÞ
Using our alternative definition of NTP(a,b), we find that C(c,a)) O(c,b) holds, and hence also
:Oðc; bÞ ) :Cðc; aÞ. We obtain
( ð9c 2 UÞðCðc; bÞ ^ :Oðc; bÞÞ
( ðCðz; bÞ ^ :Oðz; bÞÞ
The latter right hand side corresponds to our initial assumption EC(z,b). h

Proposition 8. The unions of the RCC-8 relations in the entries of Table 3 are equal to the corresponding inter-

sections of the RCC relations in Table 4.

Proof. Above we have already shown that coP�1 = DC [ EC [ PO [ TPP [ NTPP. Most equalities can
analogously be obtained using the fact that, beside the RCC-8 and RCC-5 relations, the following sets of
RCC relations are also JEPD (which easily follows from the fact that the RCC-8 and RCC-5 relations are
JEPD):
fDC;EC; PO; TPP ;NTPP ; P�1g
fDC;EC; PO; TPP�1;NTPP�1; Pg
fDR; PO; TPP ;NTPP ; P�1g
fDR; PO; TPP�1;NTPP�1; Pg
fDR; PO; TPP ;NTPP ; TPP�1;NTPP�1;EQg
To show the equality corresponding to the entry on the second row, second column, we need to show that
ðECða; bÞ ^ ECðb; cÞ ) ðDC [ EC [ PO [ TPP [ TPP�1 [ EQÞða; cÞÞ
� ðECða; bÞ ^ ECðb; cÞ
) :NTP ða; cÞ ^ :NTP�1ða; cÞÞ
or, equivalently, using the fact that the RCC-8 relations are JEPD
ðECða; bÞ ^ ECðb; cÞ ) :NTPP ða; cÞ ^ :NTPP�1ða; cÞÞ
� ðECða; bÞ ^ ECðb; cÞ
) :NTP ða; cÞ ^ :NTP�1ða; cÞÞ
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which is equivalent to showing
ðNTPP ða; cÞ ^ :NTPP�1ða; cÞÞ � ð:NTP ða; cÞ ^ :NTP�1ða; cÞÞ

under the assumption that EC(a,b) and EC(b,c) hold. This assumption implies that ($z 2 U)(EC(z,a)) and
($z 2 U)(EC(z,c)). Using Lemma 3, we conclude from this that
NTP ðc; aÞ � NTPP ðc; aÞ
NTP ða; cÞ � NTPP ða; cÞ
Finally, the equivalences corresponding to the entry on the fourth row, sixth column and the entry on the sixth
row, fourth column, can be proven entirely analogously. h

Generalizations of Tables 4 and 3, using our generalized RCC relations, are not equivalent anymore. How-
ever, we still have
1� P�1ða; cÞ 6 SW ðDCða; cÞ;ECða; cÞ; POða; cÞ; TPP ða; cÞ;NTPP ða; cÞÞ ð19Þ

Indeed, using Proposition 3 and the symmetry of DR and PO, we find
SW ðDCða; cÞ;ECða; cÞ; POða; cÞ; TPP ða; cÞ;NTPPða; cÞ; P�1ða; cÞÞ
P SW ðDRða; cÞ; POða; cÞ; PPða; cÞ; P�1ða; cÞÞP SW ðDRða; cÞ;Oða; cÞÞ ¼ 1
which is equivalent to (19).
Transitivity properties of fuzzy relations generally take the form of inequalities of the form

T(R(a,b),S(b,c)) 6 Q(a,c) where R, S and Q are fuzzy relations in a suitable universe. As a consequence of
(19),
T ðDCða; bÞ;ECðb; cÞÞ 6 1� P�1ða; cÞ

is a stronger statement than
T ðDCða; bÞ;ECðb; cÞÞ 6 SW ðDCða; cÞ;ECða; cÞ; POða; cÞ; TPPða; cÞ;NTPP ða; cÞÞ

Therefore, our aim is to generalize Table 4 rather than Table 3. However, as the entries of this table are for-
mulated in terms of C, DC, O, DR, etc. we will provide a generalized transitivity table (shown in Table 5)
where rows and columns correspond to fuzzy relations such as C, DC, O, or DR, rather than generalized
RCC-8 relations. Below, we will introduce a spatial reasoning algorithm which can, among others, be used
to reason about generalized RCC-8 relations using the generalized transitivity rules from Table 5. As we will
show, a direct generalization of Table 4 can easily be obtained using this spatial reasoning algorithm.

Proposition 9. Let R and S be two generalized RCC-8 relations, and let Q be the fuzzy relation in the entry of

Table 5 on the row corresponding to R and the column corresponding to S. Furthermore, assume that the t-norm T

used in the generalized definitions of the RCC relations satisfies TW 6 T. For every region a, b, and c, it holds that
T W ðRða; bÞ; Sðb; cÞÞ 6 Qða; cÞ ð20Þ

For example, the entry on the second row, first column should be interpreted as
T W ðDCða; bÞ;Cðb; cÞÞ 6 ðcoP�1Þða; cÞ ð21Þ
Proof. See Appendix A. h

Recall that TM and TP are greater than TW, i.e., the generalized transitivity rules hold when TW, TP, or TW

is used in the definition of the generalized RCC relations. Note that when the Łukasiewicz t-norm in (20) is
replaced by TM or TP, the corresponding proposition is not valid anymore, even when TM or TP is used in the
definition of the generalized RCC relations. To see this, consider the following counterexample.

Example 1. Let U = {a,b,c}, i.e., U only consists of three regions. Using the reflexivity of C, (5) and (10), we
obtain



Table 5
Transitivity table for the generalized RCC relations

C DC P P�1 coP coP�1 O DR NTP NTP�1 coNTP coNTP�1

C 1 coP C 1 1 1 1 coNTP O 1 1 1
DC coP�1 1 coP�1 DC 1 1 coP�1 1 coP�1 DC 1 1
P 1 DC P 1 1 coP�1 1 DR NTP 1 1 coNTP�1

P�1 C coP O P�1 coP 1 O coP O NTP�1 coNTP 1
coP 1 1 1 coP 1 1 1 1 1 coP 1 1
coP�1 1 1 coP�1 1 1 1 1 1 coP�1 1 1 1
O 1 coP O 1 1 1 1 coP O 1 1 1
DR coNTP�1 1 coP�1 DR 1 1 coP�1 1 coP�1 DC 1 1
NTP 1 DC NTP 1 1 coP�1 1 DC NTP 1 1 coP�1

NTP�1 O coP O NTP�1 coP 1 O coP O NTP�1 coP 1
coNTP 1 1 1 coNTP 1 1 1 1 1 coP 1 1
coNTP�1 1 1 coNTP�1 1 1 1 1 1 coP�1 1 1 1

Note that the transitivity rules summarized in this table only hold when the t-norm T in the definition of the fuzzy relations satisfies
TW 6 T.
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P ðc; aÞ ¼ minðIT ðCða; cÞ;Cða; aÞÞ; IT ðCðb; cÞ;Cðb; aÞÞ; IT ðCðc; cÞ;Cðc; aÞÞÞ
¼ minðIT ðCða; cÞ; 1Þ; IT ðCðb; cÞ;Cðb; aÞÞ; IT ð1;Cðc; aÞÞÞ ¼ minð1; IT ðCðb; cÞ;Cðb; aÞÞ;Cðc; aÞÞ
¼ minðIT ðCðb; cÞ;Cðb; aÞÞ;Cðc; aÞÞ
Furthermore, assume that C satisfies C(c,a) = 0.9, C(b,c) = 0.2, and C(b,a) = 0.4. When TM and IM are used
in the definition of the generalized RCC relations, we obtain (using the symmetry of C):
ðcoP�1Þða; cÞ ¼ 1� P ðc; aÞ ¼ 1�minð1; 0:9Þ ¼ 1� 0:9 ¼ 0:1

T MðDCða; bÞ;Cðb; cÞÞ ¼ minð1� Cða; bÞ;Cðb; cÞÞ ¼ minð0:6; 0:2Þ ¼ 0:2
Hence
T MðDCða; bÞ;Cðb; cÞÞ > ðcoP�1Þða; cÞ

Similarly, when TP and IP are used in the definition of the generalized RCC relations, we have
ðcoP�1Þða; cÞ ¼ 1� P ðc; aÞ ¼ 1�minð1; 0:9Þ ¼ 1� 0:9 ¼ 0:1

T P ðDCða; bÞ;Cðb; cÞÞ ¼ ð1� Cða; bÞÞCðb; cÞ ¼ 0:6 � 0:2 ¼ 0:12
and thus
T P ðDCða; bÞ;Cðb; cÞÞ > ðcoP�1Þða; cÞ

Many of the generalized RCC relations from Table 2 are defined as the minimum of some of the fuzzy rela-
tions from Table 5. To derive transitivity rules for these fuzzy relations, based on the transitivity rules from
Table 5, we can use the fact that (x, y, and z in [0,1])
T W ðminðx; yÞ; zÞ 6 minðT W ðx; zÞ; T W ðy; zÞÞ ð22Þ

which tells us how the minimum from the definition of the generalized RCC-8 relations interacts with the
Łukasiewicz t-norm from the transitivity rules. Note that (22) is a special case of (9).

For example, using (22) we obtain, for regions a,b and c in U,
T W ðDCða; bÞ;ECðb; cÞÞ ¼ T W ðDCða; bÞ;minðCðb; cÞ;DRðb; cÞÞÞ
6 minðT W ðDCða; bÞ;Cðb; cÞÞ; T W ðDCða; bÞ;DRðb; cÞÞÞ
From Table 5 we have
6 minððcoP�1Þða; cÞ; 1Þ ¼ ðcoP�1Þða; cÞ

This corresponds to the RCC-8 transitivity rule that from DC(a,b) and EC(b,c), it follows that coP�1(a,c) (see
Table 4). In general, we can apply the following algorithm:
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(1) Assume two fuzzy spatial relations R and Q are given that can be written as
R ¼ minðr1; . . . ; rnÞ
Q ¼ minðq1; . . . ; qmÞ

where ri and qj (1 6 i 6 n, 1 6 j 6 m) are C, DC, P, P�1, coP, coP�1, O, DR, NTP, NTP�1, coNTP, or
coNTP�1. This applies, among others, to all RCC-8 and RCC-5 relations.
(2) Repeatedly applying (22) yields
T W ðRða; bÞ;Qðb; cÞÞ ¼ T W min
n

i¼1
riða; bÞ;min

m

j¼1
qjðb; cÞ

� �
6 min

n

i¼1
min

m

j¼1
T W ðriða; bÞ; qjðb; cÞÞ
(3) For each i and each j, use Table 5 to obtain a conclusion of the form
T W ðriða; bÞ; qjðb; cÞÞ 6 tijða; cÞ ð23Þ

Hence we obtain

T W ðRða; bÞ;Qðb; cÞÞ 6 min
n

i¼1
min

m

j¼1
tijða; cÞ ð24Þ
(4) Use Proposition 2 to obtain a minimal subset A of {tijj1 6 i 6 n, 1 6 j 6 m} for which it holds that
min
n

i¼1
min

m

j¼1
tijða; cÞ ¼ min

t2A
tða; cÞ ð25Þ
(5) We conclude
T W ðRða; bÞ;Qðb; cÞÞ 6 min
t2A

tða; cÞ ð26Þ
Finally we show that applying this algorithm is a sound generalization of applying RCC-8 transitivity rules.
Proposition 10. If C is a crisp relation, the deductions made for the RCC-8 relations using the spatial reasoning

algorithm above are equivalent to the deductions made using the composition table introduced in [5] (i.e., Table 3).

Proof. Each entry of the RCC-8 composition table (Table 3) corresponds to a transitivity rule of the form
R(a,b) ^ S(b,c)) Q(a,c), where R and S are RCC-8 relations and Q is the union of some RCC-8 relations.
We need to show that a conclusion equivalent to Q(a,c) is obtained by our algorithm when R(a,b) and S(b,c)
are known to hold. As an example, we show this for the entry on the second row, second column. Applying
our spatial reasoning algorithm, we obtain
T W ðECða; bÞ;ECðb; cÞÞ ¼ T W ðminðCða; bÞ; 1� Oða; bÞÞ;minðCðb; cÞ; 1� Oðb; cÞÞÞ
¼ T W ðminðCða; bÞ;DRða; bÞÞ;minðCðb; cÞ;DRðb; cÞÞÞ
6 minðT W ðCða; bÞ;Cðb; cÞÞ; T W ðCða; bÞ;DRðb; cÞÞ;

T W ðDRða; bÞ;Cðb; cÞÞ; T W ðDRða; bÞ;DRðb; cÞÞÞ
6 minð1; 1� NTP ða; cÞ; 1� NTP�1ða; cÞ; 1Þ
¼ minð1� NTP ða; cÞ; 1� NTP�1ða; cÞÞ
If C is a crisp relation, then EC and NTP are crisp relations as well. Hence, we have established that from
EC(a,b) and EC(b,c) it follows that :NTP ða; cÞ and :NTP�1ða; cÞ, which is equivalent to DC(a,c) _
EC(a,c) _ PO(a,c) _ TPP(a,c) _ TPP�1(a,c) _ EQ(a,c) by Proposition 8. h

Note how in the proof of Proposition 10, a generalization is obtained of the transitivity rule
ECða; bÞ ^ ECðb; cÞ ) :NTP ða; cÞ ^ :NTP�1ða; cÞ, which corresponds to the entry on the second row, second
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column of Table 4. In general, we can show that applying the algorithm above to generalized RCC-8 relations
is always equivalent to a generalization of the corresponding transitivity rule from Table 4.

Proposition 10 demonstrates that the transitivity rules from Table 5 behave intuitively when applied to crisp
spatial information. It furthermore provides a means to deduce new information from given assertions about
fuzzy topological relations. However, it does not provide any guarantees on the completeness of the inferences
made. While it is possible to derive complete fuzzy spatial reasoning algorithms based on the transitivity rules
from Table 5, a detailed discussion of this is outside the scope of this paper. We refer to [45] for more details.

5. Conclusions

We have introduced a generalization of the region connection calculus. The key idea is that the primitive
relation C from the RCC is replaced by a fuzzy relation. The definitions of the other RCC relations are gen-
eralized accordingly, using fuzzy logic connectives instead of the original first-order logic formulation. As we
make no assumptions on how regions are represented, and only require of C that it is reflexive and symmetric,
the resulting framework can be used in a wide variety of contexts, including contexts where space is used in a
metaphorical way. We have shown a number of interesting properties of our generalized RCC relations that
demonstrate the potential of our approach. In particular, we have introduced a transitivity table revealing that
generalizations of all the transitivity properties of the original RCC are valid for our definitions. These tran-
sitivity rules are important for applications, as they can be used as a basis to perform spatial reasoning.
Appendix A. Proof of the generalized RCC transitivity table

To prove the transitivity rules summarized in Table 5, the following characterizations are very useful.

Lemma 4. Let a and b be arbitrary regions from U. It holds that
P ða; bÞ ¼ inf
z2U

IT ðP ðz; aÞ; Pðz; bÞÞ ðA:1Þ

P ða; bÞ 6 inf
z2U

IT ðOðz; aÞ;Oðz; bÞÞ ðA:2Þ

P ða; bÞ ¼ inf
z2U

IT ðP ðb; zÞ; Pða; zÞÞ ðA:3Þ

P ða; bÞ ¼ inf
z2U

IT ðNTPðz; aÞ;NTP ðz; bÞÞ ðA:4Þ

P ða; bÞ ¼ inf
z2U

IT ðNTPðb; zÞ;NTP ða; zÞÞ ðA:5Þ

NTPða; bÞ ¼ inf
z2U

IT ðPðz; aÞ;NTP ðz; bÞÞ ðA:6Þ

NTPða; bÞ ¼ inf
z2U

IT ðPðb; zÞ;NTP ða; zÞÞ ðA:7Þ

Oða; bÞ ¼ inf
z2U

IT ðP ða; zÞ;Oðb; zÞÞ ðA:8Þ
Proof. As an example, we show (A.1). Using (8), we find
inf
z2U

IT ðP ðz; aÞ; P ðz; bÞÞ ¼ inf
z2U

IT inf
u2U

IT ðCðu; zÞ;Cðu; aÞÞ; inf
u2U

IT ðCðu; zÞ;Cðu; bÞÞ
� �

¼ inf
z2U

inf
u2U

IT inf
u02U

IT ðCðu0; zÞ;Cðu0; aÞÞ; IT ðCðu; zÞ;Cðu; bÞÞ
� �

P inf
z2U

inf
u2U

IT ðIT ðCðu; zÞ;Cðu; aÞÞ; IT ðCðu; zÞ;Cðu; bÞÞÞ
and by (7) and (6)
¼ inf
z2U

inf
u2U

IT ðT ðCðu; zÞ; IT ðCðu; zÞ;Cðu; aÞÞÞ;Cðu; bÞÞP inf
z2U

inf
u2U

IT ðCðu; aÞ;Cðu; bÞÞ

¼ inf
u2U

IT ðCðu; aÞ;Cðu; bÞÞ ¼ P ða; bÞ



S. Schockaert et al. / Internat. J. Approx. Reason. 48 (2008) 314–331 329
which already shows that P(a,b) 6 infz2U IT(P(z,a),P(z,b)). Conversely we find, using the reflexivity of P, and
(10)
inf
z2U

IT ðP ðz; aÞ; P ðz; bÞÞ 6 IT ðP ða; aÞ; P ða; bÞÞ ¼ IT ð1; Pða; bÞÞ ¼ P ða; bÞ �
The following lemma relates the ordering of t-norms, as defined in (1), to an ordering of their corresponding
residual implicators.

Lemma 5. Let T1 and T2 be two t-norms satisfying T1 6 T2. For every x and y in [0,1], it holds that
IT 1
ðx; yÞP IT 2

ðx; yÞ ðA:9Þ
Proof. Let x and y be elements of [0, 1]. Because T1 6 T2, we have that for any k 2 [0,1], it holds that
T 2ðx; kÞ 6 y ) T 1ðx; kÞ 6 y
Hence
fkjk 2 ½0; 1� and T 2ðx; kÞ 6 yg � fkjk 2 ½0; 1� and T 1ðx; kÞ 6 yg
From the monotonicity of the supremum, we conclude
supfkjk 2 ½0; 1� and T 2ðx; kÞ 6 yg 6 supfkjk 2 ½0; 1� and T 1ðx; kÞ 6 yg
which is equivalent to (A.9) by the definition (4) of residual implicator. h

Table 5 summarizes a number of transitivity rules that should be interpreted as explained in Proposition 9.
As an example, we show how to prove that
T W ððcoP�1Þða; bÞ; P ðb; cÞÞ 6 ðcoP�1Þða; cÞ
Using (A.3), we find
T W ððcoP�1Þða; bÞ; P ðb; cÞÞ ¼ T W ð1� P ðb; aÞ; P ðb; cÞÞ ¼ T W ð1� P ðb; aÞ; inf
z2U

IT ðP ðc; zÞ; P ðb; zÞÞÞ

6 T W ð1� P ðb; aÞ; IT ðP ðc; aÞ; P ðb; aÞÞÞ
Using the fact that TW 6 T and Lemma 5, we obtain
6 T W ð1� P ðb; aÞ; IW ðP ðc; aÞ; P ðb; aÞÞÞ ¼ T W ð1� P ðb; aÞ;minð1; 1� P ðc; aÞ þ P ðb; aÞÞÞ
¼ T W ð1� P ðb; aÞ;minð1; 1� ð1� Pðb; aÞÞ þ ð1� P ðc; aÞÞÞÞ
¼ T W ð1� P ðb; aÞ; IW ð1� P ðb; aÞ; 1� Pðc; aÞÞÞ
And by (6)
6 1� P ðc; aÞ ¼ ðcoP�1Þða; cÞ
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