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Abstract

One of the key strengths of the region connection calculus (RCC) – its generality – is also one of its most important
drawbacks for practical applications. The semantics of all the topological relations of the RCC are based on an interpre-
tation of connection between regions. Because of the manner in which the spatial relations are defined, given a particular
interpretation of connection, the RCC relations are often hard to evaluate, and their semantics difficult to grasp. Our gen-
eralization of the RCC, in which the spatial relations can be fuzzy relations, inherits this limitation of the RCC. To cope
with this, in this paper, we provide specific characterizations of the fuzzy spatial relations, corresponding to the particular
case where connection is defined in terms of closeness between fuzzy sets. These characterizations pave the way for prac-
tical applications in which the notion of connection is graded rather than black-and-white.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The region connection calculus [3] is one of the best-known and most widely used formalisms for qualitative
reasoning about space. Although only topological information can be expressed in the RCC (e.g., A is a part
of B, A overlaps with B), and not, for example, qualitative information about the size, shape, distance, or ori-
entation of spatial entities, its expressivity has proved sufficiently general for many real-world applications.
The starting point is to define topological relations between regions based on a primitive reflexive and sym-
metric (dyadic) relation C modelling connection between regions. One important feature of the RCC is that
it imposes no further restrictions on how connection should be interpreted or how regions should be repre-
sented, thus obtaining a framework appropriate for a wide array of contexts. As can be seen from Table 1,
other spatial relations can be defined in terms of C, using a first-order logic representation.
0888-613X/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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Table 1
Definition of topological relations in the RCC; a and b denote regions, i.e., elements of the universe of regions U

Name Relation Original definition Generalized definition

Disconnected from DC(a, b) :Cða; bÞ 1� Cða; bÞ
Part of P(a, b) ð8c 2 UÞðCðc; aÞ ) Cðc; bÞÞ infC2U IT ðCðc; aÞ;Cðc; bÞÞ
Proper part of PP(a, b) Pða; bÞ ^ :P ðb; aÞ minðP ða; bÞ; 1� P ðb; aÞÞ
Equal to EQ(a, b) Pða; bÞ ^ P ðb; aÞ minðP ða; bÞ; Pðb; aÞÞ
Overlaps with O(a, b) ð9c 2 UÞðP ðc; aÞ ^ Pðc; bÞÞ supC2U T ðPðc; aÞ; P ðc; bÞÞ
Discrete from DR(a, b) :Oða; bÞ 1� Oða; bÞ
Partially overlaps with PO(a, b) Oða; bÞ ^ :P ða; bÞ ^ :P ðb; aÞ minðOða; bÞ; 1� Pða; bÞ; 1� Pðb; aÞÞ
Externally connected to EC(a, b) Cða; bÞ ^ :Oða; bÞ minðCða; bÞ; 1� Oða; bÞÞ
Non-tangential part NTP(a, b) Pða; bÞ ^ :ð9c 2 UÞðECðc; aÞ ^ ECðc; bÞÞ infC2U IT ðCðc; aÞ;Oðc; bÞÞ
Tangential PP TPP(a, b) PPða; bÞ ^ :NTPða; bÞ minðPPða; bÞ; 1�NTPða; bÞÞ
Non-tangential PP NTPP(a, b) PPða; bÞ ^NTPða; bÞ minð1� Pðb; aÞ;NTPða; bÞÞ
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Note how all these qualitative relations are defined without referring to points, i.e., by taking regions,
rather than points, as primitive spatial objects. This characteristic makes the RCC essentially the spatial coun-
terpart of Allen’s well-known framework for qualitative reasoning about time [2]. However, the definitions of
RCC relations like P and O, which involve quantifiers that range over arbitrary regions, are difficult to eval-
uate. Furthermore, it is often unclear how a specific interpretation of C influences the semantics of relations
like P and O. In other words, the generality of the framework – achieved by treating regions as primitive
objects, independent of a particular representation – may actually be undesirable in practical applications.
Therefore, more intuitive characterizations of the RCC relations, corresponding to a particular interpretation
of C and certain assumptions on how regions are defined, are generally used.

In a companion paper [16], we have introduced a generalization of the RCC in which the spatial relations
are fuzzy relations, i.e., mappings from U · U to [0, 1], where U is the universe of all regions. For example, for
two regions u and v, P(u, v) expresses the degree to which u is a part of v. Such a fuzzification is useful in many
contexts, including applications involving vague geographical regions (e.g., the Alps, Downtown Chicago,
Western Europe, etc.) and applications where space is used in a metaphorical way (e.g., where C expresses
the similarity between objects). Another context where fuzzy spatial relations are more appropriate than crisp
relations, is when the abrupt transition between, for example, EC and DC, or TPP and NTPP is counterin-
tuitive. In many situations, it is impossible or undesirable to differentiate between spatial configurations where
two objects are touching each other (i.e., TPP or EC holds), and spatial configurations where the objects are
very close to each other, but not touching (i.e., NTPP or DC holds). One solution to this problem is to define
two regions u and v to be connected if at least one point of u is close to one point of v, where the notion of
closeness requires a definition of C as a fuzzy relation. The fuzzy relations obtained in [16] to generalize the
original RCC relations, are also shown in Table 1, where T is a left-continuous t-norm and IT is its residual
implicator (see Section 2). We refer to [16] for a motivation for these generalized definitions, their properties,
as well as an overview of related approaches.

The aim of this paper is to provide specific definitions of our fuzzy spatial relations corresponding to a par-
ticular interpretation of C and a particular way of representing regions. Specifically, we show how our general-
ized RCC relations can be used to define topological relations between vague regions, represented as fuzzy sets
of points, and how a notion of closeness can be incorporated to obtain a gradual transition between EC and
DC, and NTPP and TPP. As a side effect, we obtain a model in which both topological relations and (possibly
vague) distance relations between regions can be specified. The paper is structured as follows. First, in Section
2, we recall some important preliminaries from fuzzy set theory and mathematical topology. Next, in Section
3, we discuss how closeness between points can be represented as a fuzzy relation between points. In Section 4,
we show how regions can be represented as fuzzy sets, and how our model for closeness of points can be lev-
eraged to a model of closeness of regions. Finally, in Section 5, we provide a characterization of the general-
ized RCC relations for the special case where C is defined using this model of closeness between regions. Some
concluding remarks are presented in Section 6. A preliminary version of some of the results in this paper
appeared earlier in [14].
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2. Preliminaries

2.1. Fuzzy sets

A fuzzy set [1] A in a universe X is defined as a mapping from X to the unit interval [0, 1]. For x in X, A(x) is
called the membership degree of x in A. If there exists an x in X such that A(x) = 1, A is called normalized. A
fuzzy set R in X · X is called a fuzzy relation in X. R is called reflexive iff R(x, x) = 1 for all x in X, and sym-
metric iff R(x, y) = R(y, x) for all x and y in X.

A t-norm T is defined as a symmetric, associative, increasing [0, 1]2 � [0, 1] mapping satisfying the bound-
ary condition T(x, 1) = x for all x in [0, 1]. Some common t-norms are the minimum TM, the product TP and
the Łukasiewicz t-norm TW, defined by
T Mðx; yÞ ¼ minðx; yÞ
T Pðx; yÞ ¼ xy

T Wðx; yÞ ¼ maxð0; xþ y � 1Þ
The negation of an element x in [0, 1] is commonly defined by 1 � x. Finally, a [0, 1]2 � [0, 1] mapping I which
is decreasing in the first and increasing in the second argument and which satisfies I(0, 0) = I(0, 1) = I(1, 1) = 1
and I(1, 0) = 0 is called an implicator.

Let T be an arbitrary t-norm; it can be shown that the mapping IT, defined for x and y in [0, 1] by
IT ðx; yÞ ¼ supfkjk 2 ½0; 1� and T ðx; kÞ 6 yg ð1Þ
is an implicator, which is called the residual implicator of T. For example, the residual implicator correspond-
ing to TW is given by
IT W
ðx; yÞ ¼ minð1; 1� xþ yÞ
for all x and y in [0, 1]. For convenience, we will write IW instead of IT W
in the remainder of this paper. If T is a

left-continuous t-norm (i.e., a t-norm whose partial mappings are left-continuous such as TM, TP, and TW), it
can be shown that for all x, y, z and u in [0, 1], J an arbitrary index set and (xj)j2J and (yj)j2J families in [0, 1], it
holds that (see, e.g. [8])
T ðx; yÞ 6 z() x 6 IT ðy; zÞ ð2Þ
x 6 y () IT ðx; yÞ ¼ 1 ð3Þ
T ðIT ðx; yÞ; zÞ 6 IT ðx; T ðy; zÞÞ ð4Þ
IT ðT ðx; yÞ; zÞ ¼ IT ðx; IT ðy; zÞÞ ð5Þ
T ðIT ðx; yÞ; IT ðy; zÞÞ 6 IT ðx; zÞ ð6Þ
T ðIT ðx; yÞ; IT ðz; uÞÞ 6 IT ðT ðx; zÞ; T ðy; uÞÞ ð7Þ

T sup
j2J

xj; y
� �

¼ sup
j2J

T ðxj; yÞ ð8Þ

IT sup
j2J

xj; y
� �

¼ inf
j2J

IT ðxj; yÞ ð9Þ

IT ðx; inf
j2J

yjÞ ¼ inf
j2J

IT ðx; yjÞ ð10Þ

T inf
j2J

xj; y
� �

6 inf
j2J

T ðxj; yÞ ð11Þ

IT ðx; sup
j2J

yjÞP sup
j2J

IT ðx; yjÞ ð12Þ
Moreover, it is easy to see that for an arbitrary t-norm T it holds that
IT ð1; xÞ ¼ x ð13Þ
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Note that for any implicator I, it holds that I(x, 1) P I(0, 1) = 1, for every x in [0, 1]. Throughout this paper,
we will always assume that T is a left-continuous t-norm.
2.2. Topological interpretations of the RCC

The standard semantics of C are specified in terms of mathematical topology. Therefore, we briefly recall
some basic notions from classical (point-set) topology. Let X be a non-empty set and s a subset of the power
set 2X of X. The set s is called a topology on X iff

(1) ; 2 s and X 2 s;
(2) A 2 s ^ B 2 s) A \ B 2 s;
(3) ("i 2 I)(Ai 2 s)) ¨i2IAi 2 s.

A subset A of X is called open iff A 2 s and closed if its complement XnA is open. The interior i(A) of A is
the largest open set that is contained in A, while the closure cl(A) of A is the smallest closed set that contains A.
Finally, A is called regular open iff i(cl(A)) = A and regular closed iff cl(i(A)) = A.

Usually, in the RCC, regions are assumed to be regular closed sets, and two regions are said to be connected
if they share at least one point [6]. In this interpretation, P corresponds to the subset relation, while O holds
between two regions if their interiors share at least one point. Another possibility is to define regions as regular
open sets, and to define two regions to be connected if their closures share at least one point. In this case, for
example, O holds between two regions if they share at least one point.
3. Modelling closeness between points

A natural way to model closeness between points is to use models for approximate equality. In particular,
fuzzy T-equivalence relations seem to be an appropriate candidate, at first glance. Recall that a fuzzy T-equiv-
alence relation (w.r.t. a t-norm T) in a universe X is a reflexive, symmetric fuzzy relation R in X that satisfies T-
transitivity, that is
T ðRðx; yÞ;Rðy; zÞÞ 6 Rðx; zÞ

for all x, y, and z in X. However, using fuzzy T-equivalence relations imposes rather strict limitations on the
interpretation of approximate equality, and therefore closeness. Problems occur in situations where we want
to define two points to be close to degree 1, even if their distance is strictly positive. For example, consider a
two-dimensional Euclidean space, and assume that, whenever the distance between two points is less than or
equal to 0.1, we call these points close to degree 1. If we have three points a, b, and c such that d(a, b) = 0.1,
d(b, c) = 0.1 and d(a, c) = 0.2 (i.e., a, b, and c are on a line), then a and b are close to degree 1, b and c are close
to degree 1, by definition. If we impose T-transitivity on the closeness relation, a and c have to be close to
degree 1 as well. Since it is natural to define closeness (in a given context) only in terms of the distance between
two points, this means that any two points whose distance is less than 0.2, are close to degree 1. Repeating this
argument, we obtain that any two points whose distance is less than 0.4, 0.8, 1.6, etc. are close to degree 1.

To avoid such problems, we will use the more general notion of a resemblance relation [11,12]. Recall that a
mapping d from X2 to [0, +1[ is called a pseudometric on X iff d(x, x) = 0, d(x, y) = d(y, x) and
d(x, y) + d(y, z) P d(x, z) for all x, y and z in X. A fuzzy relation R in X is called a resemblance relation
w.r.t. a pseudometric d on X iff for all x, y, z and u in X
Rðx; xÞ ¼ 1 ð14Þ
dðx; yÞ 6 dðz; uÞ ) Rðx; yÞP Rðz; uÞ ð15Þ
Note that (15) implies that any resemblance relation is also symmetric. However, the third property of fuzzy T-
equivalence relations, T-transitivity, does not hold anymore in general.

For example, let a P 0, b P 0, and let d be a pseudometric on X. The fuzzy relation R(a,b) in X defined for
all x and y in X as
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Rða;bÞðx; yÞ ¼
1 if dðx; yÞ 6 a

0 if dðx; yÞ > aþ b
aþb�dðx;yÞ

b otherwise

8><
>: ð16Þ
is a resemblance relation w.r.t. d. Fig. 1 illustrates the definition of this fuzzy relation in terms of the distance
between x and y. Note how the parameter b defines how smooth the transition is from close to not close, while
a defines how close two points should be located from each other to be considered definitely close, i.e., close to
degree 1. The fact that R(a,b) satisfies (15) can be seen from the fact that this graph is decreasing. If a > 0, R(a,b)

is not T-transitive for any t-norm T. To see this, let a, b, and c be collinear points such that d(a, b) = d(b, c) = a
and d(a, c) = 2a. It holds that T(R(a,b)(a, b),R(a,b)(b, c)) = T(1, 1) = 1, while R(a,b)(a, c) < 1.

The following lemma will be useful to derive specific definitions of the generalized RCC relations in Appen-
dix A.

Lemma 1. Let ðX ; k:kÞ be a normed vector space, d the induced metric (i.e., dðx; yÞ ¼ ky � xk for all x and y in X),

and R a resemblance relation w.r.t. d. It holds that the fuzzy relation E in X defined for all x and z in X by
Eðx; zÞ ¼ inf
y2X

IT ðRðx; yÞ;Rðy; zÞÞ ð17Þ
is a fuzzy T-equivalence relation in U.

Proof. The reflexivity of E follows immediately from the symmetry of R and (3). To show the symmetry of E,
we use the fact that, since R satisfies (15), there must exist a function f from [0, +1[ to [0, 1] such that
R(x, y) = f(d(x, y)) for every x and y in X. We obtain
Eðx; zÞ ¼ inf
y2X

IT ðRðx; yÞ;Rðy; zÞÞ ¼ inf
y02X

IT ðRðx; xþ z� y0Þ;Rðxþ z� y0; zÞÞ

¼ inf
y02X

IT ðf ðdðx; xþ z� y0ÞÞ; f ðdðxþ z� y0; zÞÞÞ

¼ inf
y02X

IT ðf ðkxþ z� y0 � xkÞ; f ðkz� ðxþ z� y0ÞkÞÞ ¼ inf
y02X

IT ðf ðkz� y0kÞ; f ðky0 � xkÞÞ

¼ inf
y02X

IT ðf ðdðz; y0ÞÞ; f ðdðy0; xÞÞÞ ¼ inf
y02X

IT ðRðz; y0Þ;Rðy0; xÞÞ ¼ Eðz; xÞ
Finally, the T-transitivity of E follows from (11), the symmetry of R, and (6):
T ðEða; bÞ;Eðb; cÞÞ ¼ T inf
y2X

IT ðRða; yÞ;Rðy; bÞÞ; inf
y2X

IT ðRðb; yÞ;Rðy; cÞÞ
� �

6 inf
y2X

T ðIT ðRða; yÞ;Rðy; bÞÞ; inf
y02X

IT ðRðb; y0Þ;Rðy0; cÞÞÞ

6 inf
y2X

T ðIT ðRða; yÞ;Rðy; bÞÞ; IT ðRðb; yÞ;Rðy; cÞÞÞ

¼ inf
y2X

T ðIT ðRða; yÞ;Rðy; bÞÞ; IT ðRðy; bÞ;Rðy; cÞÞÞ 6 inf
y2X

IT ðRða; yÞ;Rðy; cÞÞ ¼ Eða; cÞ �
Fig. 1. Resemblance relation R.
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Corollary 1. For x, y, and z in X, it holds that
IT ðRðx; yÞ;Rðy; zÞÞP Eðx; zÞ ð18Þ
T ðEðx; yÞ;Rðy; zÞÞ 6 Rðx; zÞ ð19Þ
IT ðEðx; zÞ;Rðy; zÞÞP Rðx; yÞ ð20Þ
where we used (2) to obtain (19) and (20).

The previous lemma does not hold in general for an arbitrary reflexive and symmetric fuzzy relation R, as is
illustrated by the following counterexample.

Example 1. Assume that R is defined as
Rðx; yÞ ¼
0 ifðx ¼ b ^ y 6¼ b ^ y 6¼ aÞ or ðx 6¼ b ^ x 6¼ a ^ y ¼ bÞ
1 otherwise

�

where a,b 2 X, and a 5 b. Obviously, R is reflexive and symmetric. However,
Eða; bÞ ¼ inf
y2X

IT ðRða; yÞ;Rðy; bÞÞ 6 IT ðRða; cÞ;Rðc; bÞÞ ¼ IT ð1; 0Þ ¼ 0
where c5a and c5b, while
Eðb; aÞ ¼ inf
y2X

IT ðRðb; yÞ;Rðy; aÞÞ ¼ min inf
y 6¼a;b

IT ðRðb; yÞ;Rðy; aÞÞ; IT ðRðb; bÞ;Rðb; aÞÞ; IT ðRðb; aÞ;Rða; aÞÞ
� �

¼ min inf
y 6¼a;b

IT ð0;Rðy; aÞÞ; IT ð1; 1Þ; IT ð1; 1Þ
� �

¼ 1
hence E is not symmetric, in general, when R does not satisfy (15).

Note that while T-transitivity is not required, and not even desirable, for R(a,b), the T-transitivity of the
fuzzy relation E defined in (17) will be needed to derive our characterization of the generalized RCC relations.
This is the reason why we only consider resemblance relations to model closeness between points, rather than
arbitrary symmetric and reflexive fuzzy relations.
4. Modelling regions as fuzzy sets

In the following, regions are defined as normalized fuzzy sets in the universe X. Henceforth, we will always
assume that X is equipped with a norm k:k, that d is the induced metric, and that R is a resemblance relation
w.r.t. d.

First, we recall some important constructs from fuzzy relational calculus. The direct image R"A and the
superdirect image R#A of a fuzzy set A in X under a fuzzy relation R in X are the fuzzy sets in X defined
by [4]
ðR " AÞðyÞ ¼ sup
x2X

T ðRðx; yÞ;AðxÞÞ ð21Þ

ðR # AÞðyÞ ¼ inf
x2X

IT ðRðx; yÞ;AðxÞÞ ð22Þ
for all y in X. For notational convenience, we introduce the following abbreviations:
R "" A ¼ R " ðR " AÞ
R ## A ¼ R # ðR # AÞ
R "# A ¼ R " ðR # AÞ
R #" A ¼ R # ðR " AÞ
We will also refer to fuzzy sets like R""#A, which are defined analogously. In [10], it is shown that R#"A and
R"#A bear close similarity to the concepts of closure and interior from classical topology. A fuzzy set A is
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called R-closed iff R#"A = A and R-open iff R"#A = A [10]. The fuzzy set R#"A is sometimes called the R-clo-
sure of A.

Direct and superdirect images under a fuzzy relation (not necessarily involving a resemblance relation) have
proven useful in many contexts. When R is a resemblance relation, however, we can give a specific interpre-
tation to R"A, R#A, R#"A, and R"#A. This is illustrated in Fig. 2 for a normalized fuzzy set A in R, and
R = R(a,b) the resemblance relation defined in (16). Note that we use R for the ease of depicting the member-
ship functions, while in practice, of course, fuzzy sets in R2 and R3 are more commonly used to represent
regions. Intuitively, R"A is a fuzzy set that contains all the points that are close to some point of the region
A (w.r.t. R), while R#A contains the points that are located in A, but not close to the boundary of A, i.e., the
points that are located in the heart of the region. The membership functions of R"#A and R#"A are more sim-
ilar to the membership function of A than those of R"A and R#A. In fact, R#"A and R"#A only differ from A

in that steep parts of the membership function of A have become more gentle (depending on the parameter b).
For R#"A and R"#A this causes an increase and a decrease in membership degrees, respectively.

The degree of overlap and the degree of inclusion are frequently used measures to compare two fuzzy sets.
The degree of overlap overl(A, B) between two fuzzy sets A and B in X is defined as [4]
overlðA;BÞ ¼ sup
x2X

T ðAðxÞ;BðxÞÞ ð23Þ
expressing the degree to which there exists an element of X that is contained both in A and in B. In the same
way, the degree of inclusion incl(A, B) of A in B is defined as [4]
inclðA;BÞ ¼ inf
x2X

IT ðAðxÞ;BðxÞÞ ð24Þ
Fig. 2. Effect of taking the direct and superdirect image of a fuzzy set A under a resemblance relation R = R(a,b).
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expressing the degree to which all elements of X that are contained in A, are also contained in B. The degree
of overlap and the degree of inclusion both express some graded relationship between two fuzzy sets. Relat-
edness measures [13] are a more general notion which have (23) and (24) as special cases. In this paper we
will use
A � R � B ¼ sup
x2X

T ðAðxÞ; sup
y2X

T ðRðx; yÞ;BðyÞÞÞ ð25Þ
where A and B are fuzzy sets in X and R is a fuzzy relation in X. In particular when R is a resemblance relation,
(25) expresses the degree to which there is an element of A that is located close to an element of B (w.r.t. R). In
other words, (25) leverages the closeness of points, defined by the resemblance relation R, to closeness of
regions.

5. Characterization of the generalized RCC relations

We define connection of two regions as closeness w.r.t. a resemblance relation R.

Definition 1. For normalized fuzzy sets A and B in X, we define the degree C(A, B) to which A and B are
connected as
CðA;BÞ ¼ A � R � B ð26Þ

Depending on the context, there may be (at least) two different reasons for introducing closeness in the

definition of C. First, we may want to express that small distances should be ignored. Intuitively, C expresses
the degree to which A and B have a point in common. However, if A and B have no point in common, but
some point of A is very close to some point of B, we still want to have that A is connected to B (to some
degree). In other words, the resemblance relation in the definition of C is used to model indiscernibility of
locations in this case. The second reason is that we may want to express (vague) distance information. For
example, two city neighbourhoods are called connected if they are within walking distance of each other, or
within a 3 km radius, etc. Note that concepts like within walking distance can be modelled using the resem-
blance relation R(a,b) by providing suitable values for a and b. To obtain such values, data-driven approaches
can be used [15].

When connection between fuzzy sets in X is interpreted as in (26), the definitions in the rightmost column of
Table 1 can be used to obtain a corresponding interpretation of the other generalized RCC relations. How-
ever, the interpretations of P, O and NTP involve infima and suprema that range over arbitrary regions,
i.e., arbitrary normalized fuzzy sets in X. This makes it hard to evaluate, and grasp the meaning of these fuzzy
relations under a specific interpretation of C. However, as the following proposition shows, when C is defined
as above, the interpretations of P, O and NTP can be characterized in terms of degrees of inclusion and over-
lap of fuzzy sets. Using these characterizations, the generalized RCC relations can be evaluated much easier,
and, moreover, their semantics becomes immediately clear.

Proposition 1. Let U be the set of all normalized fuzzy sets in X, and let C be defined by (26). It holds that
P ðA;BÞ ¼ inclðR #" A;R #" BÞ ð27Þ
OðA;BÞ ¼ overlðR #" A;R #" BÞ ð28Þ
NTPðA;BÞ ¼ inclðR " A;R #" BÞ ð29Þ
For the proof of this proposition, we refer to Appendix A.

Note that P and O correspond to the usual degree of inclusion and the degree of overlap between the R-
closures of the fuzzy sets, while NTP(A, B) is the degree to which every point that is close to a point from A, is
contained in the R-closure of B. In other words, NTP(A, B) is the degree to which A is a part of B that is not
located close to the boundary of B. When R = R(a,b) is used to model closeness, the parameter a can be used to
specify, for example, how close two regions should be to be considered connected. This is illustrated in the
following example.
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Example 2. Consider the normalized fuzzy sets A, B, and D in R2, defined for (x, y) in R2 as
Aðx; yÞ ¼ min 1;max 0;
5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
3

 ! !

Bðx; yÞ ¼ min 1;max 0;
5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 7Þ2 þ y2

q
3

0
@

1
A

0
@

1
A

Dðx; yÞ ¼ min 1;max 0;
8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
4

 ! !
These fuzzy sets are shown in Fig. 3. Using R(1,0) to model closeness and the Łukasiewicz connectives TW and
IW in the definition of C, it can be shown that
OðA;BÞ ¼ T WðAð3:5; 0Þ;Bð3:5; 0ÞÞ ¼ T Wð0:5; 0:5Þ ¼ 0

OðD;BÞ ¼ T WðDð5; 0Þ;Bð5; 0ÞÞ ¼ T W

3

4
; 1

� �
¼ 3

4

CðA;BÞ ¼ T WðAð4; 0Þ;Bð5; 0ÞÞ ¼ T W

1

3
; 1

� �
¼ 1

3

NTPðA;DÞ ¼ IWðAð2; 0Þ;Dð3; 0ÞÞ ¼ IWð1; 1Þ ¼ 1
It can indeed be seen from Fig. 3 that there is quite some overlap between D and B. On the other hand, the
degree of overlap between A and B is too small for O(A, B) > 0 to hold. While O(A, B) and O(D, B) are inde-
pendent of the parameter a, we can obtain different values for C(A, B) and NTP(A, D) by changing a. For
example, choosing a = 2 yields
CðA;BÞ ¼ T WðAð3; 0Þ;Bð5; 0ÞÞ ¼ T W

2

3
; 1

� �
¼ 2

3

NTPðA;DÞ ¼ IWðAð2; 0Þ;Dð4; 0ÞÞ ¼ IWð1; 1Þ ¼ 1
while a = 3 leads to
CðA;BÞ ¼ T WðAð2; 0Þ;Bð5; 0ÞÞ ¼ T Wð1; 1Þ ¼ 1

NTPðA;DÞ ¼ IWðAð2; 0Þ;Dð5; 0ÞÞ ¼ IW 1;
3

4

� �
¼ 3

4

Note how increasing the value of a makes the fuzzy relation C more tolerant, and the fuzzy relation NTP less
tolerant. For example, A is located somewhat away from the boundary of D, hence NTP(A, D) = 1 when a is
sufficiently small (a 6 2). However, when a becomes too large (e.g., a = 3), A is considered to be too close to
the boundary of D for NTP(A, D) = 1 to hold. Furthermore, the values of NTP(A, D), C(A, B) and O(D, B)
are not independent of each other. In [16] we have provided a transitivity table, which captures such depen-
dencies and can thus be used for fuzzy spatial reasoning. In particular, we have the following transitivity rule:
Fig. 3. Normalised fuzzy sets A, B, and C in R2, representing regions.



Fig. 4

S. Schockaert et al. / Internat. J. Approx. Reason. 48 (2008) 332–347 341
T WðNTP�1ðD;AÞ;CðA;BÞÞ 6 OðD;BÞ

For a = 3 we have that T WðNTP�1ðD;AÞ;CðA;BÞÞ ¼ T Wð34 ; 1Þ ¼ 3

4
, from which we can conclude that

OðD;BÞP 3
4
.

The next example illustrates how appropriate values of the parameter b in R(a,b) lead to a gradual transition
between generalized RCC relations like PO and TPP.

Example 3. Consider the regions A, B, and D shown in Fig. 4, corresponding to the crisp intervals [a1, a2],
[b1, b2], and [d1, d2], respectively. Using the original RCC relations, we have that PO(A, B), :TPPðB;AÞ,
TPP(D, A), and :POðA;DÞ. Nonetheless, the situations depicted in Fig. 4a and b are very similar, as the
distance between a1 and b1 is very small. In many application domains it would be desirable that the spatial
relations behave similarly in similar situations. Using our fuzzy relations, this can be achieved because the
transition between TPP and PO is gradual for b > 0. Assume, for example, that R = R(a,b) is used, where
a = 5(a1 � b1), and b = 2(a1 � b1). It holds that
TPPðB;AÞ ¼ minðPPðB;AÞ; 1�NTPðB;AÞÞ
¼ minðinclðR #" B;R #" AÞ; 1� inclðR #" A;R #" BÞ;

1� inclðR " B;R #" AÞÞ
When, for example, the Łukasiewicz connectives TW and IW are used, we can show that
inclðR #" B;R #" AÞ ¼ 0:5

inclðR #" A;R #" BÞ ¼ 0

inclðR " B;R #" AÞ ¼ 0
Hence, we obtain TPP(B, A) = 0.5. In the same way, we can establish that PO(A, B) = 0.5, TPP(D, A) = 1,
and PO(A, D) = 0. In this way, we express that although A and B partially overlap to some extent, we could
still consider B to be a non-tangential proper part of A as well. Higher values of b correspond to a higher (re-
sp. lower) value of TPP(B, A) (resp. PO(A, B)) and vice versa, i.e., the higher the value of b, the more similar
the situation in Fig. 4a is considered to be to the situation in Fig. 4b. For example, when b = 3(a1 � b1) we
have that TPP(B, A) = 0.66 and PO(A, B) = 0.33. When b 6 a1 � b1 we have that TPP(B, A) = 0 and
PO(A, B) = 1. In other words, the parameter b can be used to control how smooth the transition between,
for example, PO and TPP should be.

Finally, we provide two special cases of Proposition 1, corresponding to situations where the fuzzy sets
involved are R-closed, and situations where the resemblance relation R is T-transitive. When A and B are
R-closed (i.e., when the membership functions of A and B contain no steep parts or discontinuities), we imme-
diately obtain
. In the usual RCC semantics we have the counterintuitive fact that PO(A, B) and :TPPðB;AÞ, while TPP(D, A) and :POðA;DÞ.
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P ðA;BÞ ¼ inclðA;BÞ ð30Þ
OðA;BÞ ¼ overlðA;BÞ ð31Þ
NTPðA;BÞ ¼ inclðR " A;BÞ ð32Þ
If the resemblance relation R is T-transitive, then some of the RCC relations cannot be distinguished anymore.
To show this result, we need the following lemma.

Lemma 2 [10]. If R is a fuzzy T-equivalence relation in X, it holds for any fuzzy set A in X that
R #" A ¼ R " A
Proposition 2. If R is T-transitive (i.e., R is a fuzzy T-equivalence relation), it holds that
CðA;BÞ ¼ OðA;BÞ
Proof. Using Proposition 1 and Lemma 2, we obtain
OðA;BÞ ¼ overlðR #" A;R #" BÞ ¼ overlðR " A;R " BÞ

¼ sup
x2X

T sup
y2X

T ðRðy; xÞ;AðyÞÞ; sup
y2X

T ðRðy; xÞ;BðyÞÞ
� �
Using the associativity and symmetry of T, (8), and the symmetry of R, we find
¼ sup
x2X

sup
y2X

sup
y02X

T ðT ðRðy; xÞ;AðyÞÞ; T ðRðy 0; xÞ;Bðy0ÞÞÞ ¼ sup
x2X

sup
y2X

sup
y02X

T ðAðyÞ; T ðT ðRðy; xÞ;Rðx; y0ÞÞ;Bðy 0ÞÞÞ

¼ sup
y2X

T ðAðyÞ; sup
y02X

T sup
x2X

T ðRðy; xÞ;Rðx; y0ÞÞ;Bðy 0Þ
� �

Þ

and finally, using the T-transitivity of R
6 sup
y2X

T ðAðyÞ; sup
y02X

T sup
x2X

Rðy; y0Þ;Bðy0Þ
� �

Þ ¼ sup
y2X

T ðAðyÞ; sup
y02X

T ðRðy; y 0Þ;Bðy 0ÞÞÞ ¼ A � R � B ¼ CðA;BÞ
Conversely, we find, using the reflexivity of R
CðA;BÞ ¼ sup
y2X

T ðAðyÞ; sup
y02X

T ðRðy; y 0Þ;Bðy 0ÞÞÞ ¼ sup
y2X

T ðAðyÞ; sup
y02X

T ðT ðRðy; y 0Þ;Rðy0; y0ÞÞ;Bðy 0ÞÞÞ

6 sup
y2X

T ðAðyÞ; sup
y02X

T sup
x2X

T ðRðy; xÞ;Rðx; y0ÞÞ;Bðy0Þ
� �

Þ ¼ OðA;BÞ �
This again shows that fuzzy T-equivalence relations are not appropriate to model closeness in this context.
6. Concluding remarks

In practical applications, the semantics of the original RCC relations – and therefore of our generalized
RCC relations – corresponding to a particular interpretation of C, are sometimes difficult to grasp. To cope
with this, we provided a characterization of the generalized RCC relations for the particular case where C is
defined in terms of closeness between fuzzy sets in a suitable universe. This characterization paves the way for
many applications, and shows that our framework is capable of tackling many of the limitations of the ori-
ginal RCC. Properties of the generalized RCC relations, such as the transitivity rules shown in [16], carry over
to the specific interpretation discussed in this paper, yielding a sound (but incomplete) algorithm for spatial
reasoning.

For the original RCC, alternative encodings using modal logic [5,7] and topological interpretations [9]
have been used to obtain a better understanding of the meaning of the RCC relations. Apart from increasing
the applicability of the RCC, such alternative encodings, and topological interpretations, have also led to
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important theoretical results about the RCC. This was possible because of the identification of particular
canonical models of the RCC [9], i.e., structures in which interpretations of a set of regions a, b, c, . . ., satis-
fying a consistent set of constraints like NTPP(a, b) _ PO(a, b), can always be found. An interesting question
which we will study in future work is whether the interpretation we provided in this paper yields a canonical
model of our fuzzy spatial relations. In other words, given a consistent set of constraints like
P(a, b) P 0.6 _ O(b, c) 6 0.3, do there exist normalized fuzzy sets A, B, C, . . ., (in a suitable universe X) for
each of the variables a, b, c, . . . in the set of constraints, such that all constraints are satisfied?
Appendix A. Proof of the characterization of the generalized RCC relations

In this appendix, we give a proof of the characterizations of the fuzzy relations P, O, and NTP that cor-
respond to the definition of C given in (26). Recall that R is a resemblance relation, and T a left-continuous
t-norm. First, we show a number of lemmas, related to the direct and superdirect image.

Lemma 3. [10]
R "#" A ¼ R " A ðA:1Þ
R #"# A ¼ R # A ðA:2Þ
Lemma 4. [10] For any x in X, it holds that
ðR "# AÞðxÞ 6 AðxÞ 6 ðR #" AÞðxÞ ðA:3Þ
Lemma 5. Let E be defined as in Lemma 1, and let A be a fuzzy set in X. It holds that
E " ðR " AÞ ¼ E # ðR " AÞ ¼ R " A

E " ðR # AÞ ¼ E # ðR # AÞ ¼ R # A
Proof. As an example, we show that E#(R"A) = R"A. We obtain, due to the reflexivity of E and (13),
ðE # ðR " AÞÞðxÞ ¼ inf
y2X

IT ðEðy; xÞ; sup
z2X

T ðRðz; yÞ;AðzÞÞÞ 6 IT ðEðx; xÞ; sup
z2X

T ðRðz; xÞ;AðzÞÞÞ

¼ sup
z2X

T ðRðz; xÞ;AðzÞÞ ¼ ðR " AÞðxÞ
Conversely, using (12),(4), the symmetry of E and R, and (20), we find for x in X
ðE # ðR " AÞÞðxÞ ¼ inf
y2X

IT ðEðy; xÞ; sup
z2X

T ðRðz; yÞ;AðzÞÞÞP inf
y2X

sup
z2X

IT ðEðy; xÞ; T ðRðz; yÞ;AðzÞÞÞ

P inf
y2X

sup
z2X

T ðIT ðEðy; xÞ;Rðz; yÞÞ;AðzÞÞP inf
y2X

sup
z2X

T ðRðz; xÞ;AðzÞÞ ¼ sup
z2X

T ðRðz; xÞ;AðzÞÞ

¼ ðR " AÞðxÞ �
Lemma 6. Let A and B be fuzzy sets in X. It holds that
inclðR " A;BÞ ¼ inclðA;R # BÞ ðA:4Þ
inclðR " A;R " BÞ ¼ inclðR #" A;R #" BÞ ðA:5Þ
Proof. First, note that (A.5) follows immediately from (A.1) and (A.4). Therefore, we only need to show
(A.4):
inclðR " A;BÞ ¼ inf
x2X

IT sup
y2X

T ðRðy; xÞ;AðyÞÞ;BðxÞ
� �
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By (9) and (5), we obtain
¼ inf
x2X

inf
y2X

IT ðT ðRðy; xÞ;AðyÞÞ;BðxÞÞ ¼ inf
x2X

inf
y2X

IT ðAðyÞ; IT ðRðy; xÞ;BðxÞÞÞ
and finally by (10)
¼ inf
y2X

IT AðyÞ; inf
x2X

IT ðRðy; xÞ;BðxÞÞ
� �

¼ inf
y2X

IT ðAðyÞ; ðR # BÞðyÞÞ ¼ inclðA;R # BÞ �
Proof of Proposition 1

To prove (27), we first show that for an arbitrary region Z, it holds that
IT ðCðZ;AÞ;CðZ;BÞÞP inclðR #" A;R #" BÞ

We obtain

IT ðCðZ;AÞ;CðZ;BÞÞ ¼ IT ðZ � R � A; Z � R � BÞ

¼ IT sup
x2X

T ZðxÞ; sup
y2X

T ðRðx; yÞ;AðyÞÞ
� �

; sup
x2X

T ZðxÞ; sup
y2X

T ðRðx; yÞ;BðyÞÞ
� �� �
and by (9)
¼ inf
x2X

IT T ZðxÞ; sup
y2X

T ðRðx; yÞ;AðyÞÞ
� �

; sup
x02X

T Zðx0Þ; sup
y2X

T ðRðx0; yÞ;BðyÞÞ
� �� �

P inf
x2X

IT T ZðxÞ; sup
y2X

T ðRðx; yÞ;AðyÞÞ
� �

; T ZðxÞ; sup
y2X

T ðRðx; yÞ;BðyÞÞ
� �� �
Finally, by (7), (3), and (A.5) we obtain
P inf
x2X

T IT ðZðxÞ; ZðxÞÞ; IT sup
y2X

T ðRðx; yÞ;AðyÞÞ; sup
y2X

T ðRðx; yÞ;BðyÞÞ
� �� �

¼ inf
x2X

IT sup
y2X

T ðRðx; yÞ;AðyÞÞ; sup
y2X

T ðRðx; yÞ;BðyÞÞ
� �

¼ inclðR " A;R " BÞ ¼ inclðR #" A;R #" BÞ
By the definition of infimum as the greatest lower bound, we conclude that
P ðA;BÞ ¼ inf
Z2U

IT ðCðZ;AÞ;CðZ;BÞÞP inclðR #" A;R #" BÞ ðA:6Þ
Conversely, we find
P ðA;BÞ ¼ inf
Z2U

IT ðCðZ;AÞ;CðZ;BÞÞ

¼ inf
Z2U

IT sup
x2X

T ZðxÞ; sup
y2X

T ðRðx; yÞ;AðyÞÞ
� �

; sup
x2X

T ZðxÞ; sup
y2X

T ðRðx; yÞ;BðyÞÞ
� �� �
For every z in X, we define the normalized fuzzy set Sz for x in X as
SzðxÞ ¼
1 if x ¼ z

0 otherwise

�

In other words, Sz corresponds to the crisp singleton set {z}. By monotonicity of the infimum, we find
6 inf
z2X

IT sup
x2X

T ðSzðxÞ; sup
y2X

T ðRðx; yÞ;AðyÞÞÞ; sup
x2X

T ðSzðxÞ; sup
y2X

T ðRðx; yÞ;BðyÞÞÞ
� �

¼ inf
z2X

IT sup
y2X

T ðRðz; yÞ;AðyÞÞ; sup
y2X

T ðRðz; yÞ;BðyÞÞ
� �

¼ inclðR " A;R " BÞ
Applying (A.5) to this last expression completes the proof of (27).
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To prove (28), we first show that for an arbitrary region Z, it holds that
T ðP ðZ;AÞ; PðZ;BÞÞ 6 overlðR #" A;R #" BÞ

As we have defined regions as normalized fuzzy sets, there must exist an m in X for which Z(m) = 1. We obtain
by (27) and (A.5)
T ðP ðZ;AÞ; PðZ;BÞÞ ¼ T ðinclðR #" Z;R #" AÞ; inclðR #" Z;R #" BÞÞ
¼ T ðinclðR " Z;R " AÞ; inclðR " Z;R " BÞÞ

¼ T inf
x2X

IT sup
y2X

T ðRðx; yÞ; ZðyÞÞ; ðR " AÞðxÞ
� �

;inf
x2X

IT sup
y2X

T ðRðx; yÞ; ZðyÞÞ; ðR " BÞðxÞ
� �� �

6 T inf
x2X

IT ðT ðRðx;mÞ; ZðmÞÞ; ðR " AÞðxÞÞ; inf
x2X

IT ðT ðRðx;mÞ; ZðmÞÞ; ðR " BÞðxÞÞ
� �

¼ T inf
x2X

IT ðRðx;mÞ; ðR " AÞðxÞÞ; inf
x2X

IT ðRðx;mÞ; ðR " BÞðxÞÞ
� �

6 sup
y2X

T inf
x2X

IT ðRðx; yÞ; ðR " AÞðxÞÞ; inf
x2X

IT ðRðx; yÞ; ðR " BÞðxÞÞ
� �

¼ overlðR #" A;R #" BÞ
By the definition of the supremum as least upper bound, we conclude from this
OðA;BÞ ¼ sup
z2U

T ðP ðZ;AÞ; P ðZ;BÞÞ 6 overlðR #" A;R #" BÞ
Conversely, we find by (27)
OðA;BÞ ¼ sup
Z2U

T ðP ðZ;AÞ; P ðZ;BÞÞ

¼ sup
Z2U

T inf
x2X

IT sup
y2X

T ðRðx; yÞ; ZðyÞÞ; ðR " AÞðxÞ
� �

; inf
x2X

IT sup
y2X

T ðRðx; yÞ; ZðyÞÞ; ðR " BÞðxÞ
� �� �

P sup
z2X

T inf
x2X

IT sup
y2X

T ðRðx; yÞ; SzðyÞÞ; ðR " AÞðxÞ
� �

; inf
x2X

IT sup
y2X

T ðRðx; yÞ; SzðyÞÞ; ðR " BÞðxÞ
� �� �

¼ supz2X T inf
x2X

IT ðRðx; zÞ; ðR " AÞðxÞÞ; inf
x2X

IT ðRðx; zÞ; ðR " BÞðxÞÞ
� �

¼ overlðR #" A;R #" BÞ
where the fuzzy set Sz is defined as before. This proves (28).
Finally, we prove (29). Let Z be an arbitrary region. We obtain by (28)
IT ðCðZ;AÞ;OðZ;BÞÞ ¼ IT sup
x2X

T ZðxÞ; sup
y2X

T ðAðyÞ;Rðx; yÞÞ
� �

; sup
x2X

T ððR #" ZÞðxÞ; ðR #" BÞðxÞÞ
� �
By (9), we find
¼ inf
x2X

IT T ZðxÞ; sup
y2X

T ðAðyÞ;Rðx; yÞÞ
� �

; sup
x02X

T ððR #" ZÞðx0Þ; ðR #" BÞðx0ÞÞ
� �

P inf
x2X

IT T ZðxÞ; sup
y2X

T ðAðyÞ;Rðx; yÞÞ
� �

; T ððR #" ZÞðxÞ; ðR #" BÞðxÞÞ
� �
and by Lemma 4 and (5)
P inf
x2X

IT T ðR #" ZÞðxÞ; sup
y2X

T ðAðyÞ;Rðx; yÞÞ
� �

; T ððR #" ZÞðxÞ; ðR #" BÞðxÞÞ
� �

¼ inf
x2X

IT ðsup
y2X

T ðAðyÞ;Rðx; yÞÞ; IT ððR #" ZÞðxÞ; T ððR #" ZÞðxÞ; ðR #" BÞðxÞÞÞÞ
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Finally, using (4) and (3), we find
P inf
x2X

IT ðsup
y2X

T ðAðyÞ;Rðx; yÞÞ; T ðIT ððR #" ZÞðxÞ; ðR #" ZÞðxÞÞ; ðR #" BÞðxÞÞÞ

¼ inf
x2X

IT ðsup
y2X

T ðAðyÞ;Rðx; yÞÞ; ðR #" BÞðxÞÞ ¼ inclðR " A;R #" BÞ
From the definition of infimum as the greatest lower bound, we conclude from this
NTPðA;BÞ ¼ inf
Z2U

IT ðCðZ;AÞ;OðZ;BÞÞP inclðR " A;R #" BÞ
Conversely, we find by (28)
NTPðA;BÞ ¼ inf
Z2U

IT ðCðZ;AÞ;OðZ;BÞÞ ¼ inf
Z2U

IT ðCðZ;AÞ; sup
x2X

T ððR #" ZÞðxÞ; ðR #" BÞðxÞÞÞ

6 inf
z2X

IT CðSz;AÞ; sup
x2X

T ðR #" SzÞðxÞ; ðR #" BÞðxÞð Þ
� �

¼ inf
z2X

IT CðSz;AÞ; sup
x2X

T inf
y2X

IT ðRðx; yÞ; sup
v2X

T ðRðy; vÞ; SzðvÞÞÞ; ðR #" BÞðxÞ
� �� �

¼ inf
z2X

IT CðSz;AÞ; sup
x2X

T inf
y2X

IT ðRðx; yÞ;Rðy; zÞÞ; ðR #" BÞðxÞ
� �� �
and by Lemmas 1, 5, and the symmetry of C
¼ inf
z2X

IT CðSz;AÞ; sup
x2X

T ðEðx; zÞ; ðR #" BÞðxÞÞ
� �

¼ inf
z2X

IT ðCðA; SzÞ; ðR #" BÞðzÞÞ

¼ inf
z2X

IT sup
x2X

T ðAðxÞ; sup
y2X

T ðRðx; yÞ; SzðyÞÞÞ; ðR #" BÞðzÞ
� �

¼ inf
z2X

IT sup
x2X

T ðAðxÞ;Rðx; zÞÞ; ðR #" BÞðzÞ
� �

¼ inf
z2X

IT ðR " AÞðzÞ; ðR #" BÞðzÞð Þ ¼ inclðR " A;R #" BÞ
which concludes the proof of (29).
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